Effective Testing: A case study approach for

Improving test efficiency

A Dissertation Submitted in Partial Fulfillment of the
Requirements for the Award of the Degree of

Master of Philosophy
in
Computer Science

by
Abdul Rauf E.M
(Reg. No. 1135008)

Under the Guidance of
Balaji V
Associate Professor

CHRIST

UNIVERSITY

BANGALORE,INDTIA

Declared as Deemed to be University under Section 3 of UGC Act 1956

Department of Computer Science

CHRIST UNIVERSITY
BANGALORE, INDIA
March 2012

Approval of Dissertation

Dissertation entitled “Effective Testing: A case study approach for improving test
efficiency” by Abdul Rauf E.M, Reg. N0.1135008 is approved for the award of the degree of

Master of Philosophy in Computer Science

Examiners:
1.
2.
3.
Supervisor(s):
Chairman:
Date:

(Seal)

Place: Christ University

DECLARATION

I Abdul Rauf E.M hereby declare that the dissertation, titled *Effective Testing: A case study
approach for improving test efficiency’ is a record of original research work undertaken by
me for the award of the degree of Master of Philosophy in Computer Science. | have
completed this study under the supervision of Ms. Balaji V, Associate Professor, Department

of Computer Science

I also declare that this dissertation has not been submitted for the award of any degree,
diploma, associate ship, fellowship or other title. It has not been sent for any publication or

presentation purpose.

Place: Christ University
Date:ccoeveviieennen. Signature of the candidate
Abdul Rauf E.M
Reg. No. 1135008
Department of Computer Science
Christ University, Bangalore

CERTIFICATE

This is to certify that the dissertation submitted by Abdul Rauf E.M(Reg. No. 1135008) titled
‘Effective testing: A case study approach for improving test efficiency’ is a record of research
work done by him during the academic year 2011-2012 under my supervision in partial

fulfillments for the award of Master of Philosophy in Computer Science.

This dissertation has not been submitted for the award of any degree, diploma, associate ship,

fellowship or other title. It has not been sent for any publication or presentation purpose.

Place: Christ University
Date:coveviieennnn. Signature of the Guide
Balaji V
Associate Professor
Department of Computer science

Christ University, Bangalore

Abstract

The study presented in this thesis investigates the methods for improving the software test
efficiency. Test efficiency measures the cost-effectiveness of a test organisation and it is
measured by dividing the number of defects found in a test by the effort needed to perform the
test. A review of the literature suggests that software test efficiency improvement depends on
direct and indirect success factors like test process, test management, test tools, test object
delimitation, test case determination, test infrastructure, configuration management, release
management etc. This thesis was a case study approach for improving the test efficiency of
an existing test setup in a database environment. Most of the thesis work followed an action
based research approach by giving importance to the test setup. Work started with an analysis
of the initial test environment, identified the issues and improvement areas in existing test
setup and given an implementation proposal for the identified problems. Based on the
proposal, team implemented the solutions, which lead to a test environment containing
number of actions like automation using standard framework, risk based testing, parallel

execution, modularization, avoiding code redundancy and proper test management.

The results of the case study suggest that the software products that has multiple releases
should seriously consider the test improvement factors like regression environment, risk based
testing, light weight test automation etc., in the initial stages of the testing. This will lead to
cost savings, quality, flexibility and higher productivity. The investigation further identifies
the issues in test management and introduced new method called “test point” method for
proper test execution tracking. Based on the implementation results and their discussions, this
study presents a new approach and practical guidelines for improving test efficiency of a
software test project. IBM has recognised this case study by giving eminence and excellence

award for saving one person year of testing effort in their indexing tool test environment.

Table of contents

LISt OF FIQUIES ..ot et e e e et e et e e e e et e et e e e viii
Abbreviation notation and NOMeNCIatUre.cc.oi i e iX
Introduction
1.1 Project DaCKGrOUNGoiuuie it e e et e e e e e e e eens 01
1.2 Purpose, scope and NYPOthesis.oour oo e e 02
Review of Literature
A R | =T LA | - PP 04
2.2 FINAINGS. ettt e e e e e e e e e 04
Method of research
31 RoadMap........ . .= . . L T e N 06
3.2 Research method sglection. . xi o i . i liel . i e 07
Testing Fundamentals
41 Testingphases.&d.. 4 = & S=5or L. L4 0. . 08
4.2 Testtechniquel,..wd. M FO0Lr S8 s A L 13
4.3 Test case design teChNIQUES.oui it e e e e e 18
A4 TYPES OF tBSHS. .. et i it it e et e e e e e e e n e 22 22
S T 1= A1 -1 (=T 0)V PP
4.6 TeStPIANNING.t e e e e e e 20
A7 TESECYCIE. e e e e e 2. 28
4.8 TeSt ESMALION.t e e e 29
N = A =) 010 £ PPN |0
Test Automation Process
5.1 Automation Framework OVEIVIEW.ueuiiiiiiiitie e e e e eeee e 200 32
5.2 Challenges in software test automation................coveiiiiniiiieiineceiieeen e 34

5.3 TSt AULOMAtION. .. tuiin e i i i oo e e by L i e e i e e e e e e e 35

Vi

6.

Identification of improvement candidates

6.1 System test QUIOMALIONcein it e e e e

6.2 InStall teSt AUTOMALION. ... ettt e e e e e e e e e e, 41

6.3 Lack of risk based teStiNg.......c.ue e e e 41

6.4 Parallel execution Of t8St SCENAITOS. v vt e e e e e e e, 42

6.5 Lack of scheduled execution of the SCENAIIOS. n et e e

6.6 TeSt ManagemeNt ISSUES.euue e eet it ettt e e e e e et e e e e e e e ees

Implementation and outputs of the research

7.1 Regression autOmMatiON.cou.uie i et e ettt e e e e e e 43

7.2 Install teSt AUTOMALION. ... ettt e e e e e e e, 44

7.3 Riskbased testing o L. 0 e M 46

7.4 Parallel procesginga . . # s BN Gt S i M
7.5 Scheduled execution.........................

7.6 Test Management using test point method

7.7 Measurable results after implementation

7.8 RECOMMENAATIONS. .. e ettt e e e e e e e e e e

Conclusions and Summary

8.1 Outputs Of the reSEarCh.oo i e

8.2 PUB I CAIONS. .. e et e e e e e e e 54

8.3 Validation of NYPOTNESIS. it e e e e

BLh FUTUIE WOTK . .. ettt e e e e e e e e e e e e

APPeNdiX 12 SAMPIE SCIIPTS. ettt et e e e e e e e e e e
ApPendix 11: SCreen SNOTS.o e e e e
Appendix I11: Recognition CertifiCate.............oooie i e e
Appendix 1V: Paper presentation CertifiCateooviuiiiiiiiiii i e e,

R O ENCES . .o e et et e e e e e

ACKNOWIEAGEMENLS. L e e e e e e e e e e 70

vii

List of figures

Figure 3.1 Research approach used for studying and implementing the setup 06
Figure 4.1 V-model of software development cycle 09
Figure 4.2 5 different testing phases 10
Figure 4.3 Time, employee relationship in a software development process 17
Figure 4.4 Test development life cycle 29
Figure 4.5 4 different cycles (release) of testing 29
Figure 5.1 Pictorial representation of the test environment used for the case study | 32
Figure 5.2 Build forge automation blocks 33
Figure 5.3 Test manager problems 34
Figure 5.4 Various stages in the test automation process 35
Figure 5.5 Test tool selection process in a typical automation project 36
Figure 5.6 Test patterns and test automation in various stages of software testing | 36
Figure 5.7 Sample screen shot of the build forge console 38
Figure 6.1 Initial test setup of the database indexing tool 40
Figure 7.1 Regression test setup 44
Figure 7.2 TIAT concepts 45
Figure 7.3 Typical work flow of the TIAT tool 45
Figure 7.4 Sequential processing of a large task 46
Figure 7.5 Execution of divided tasks in parallel 46
Figure 7.6 Initial setup of the search process 47
Figure 7.7 New processing mode using parallel execution 47
Figure 7.8 Database environment and hierarchical relationship between systems | 48
Figure 7.9 Pictorial representation of multiple tasks runs on different CPUs 49
Figure 7 .10 Screen shot of the scheduling screen in build forge execution 50
framework
Figure 7 .11 Sample chart of test execution 52

viii

Abbreviation notation and nomenclature

SDLC Software Development Life Cycle
STLC Software Test Life Cycle

DB Data Base

SQL Structured Query Language
GUI Graphical User Interface
LDTP Linux Desktop Testing Project
FIT Federated Integrated Test

IP Intellectual Property

TIAT Test Install Automation Tool
TTT Test Tracking Tool

TP Test Point

1. Introduction

1.1 Project background

Even though software development industry spends more than half of its budget on software
testing and maintenance related activities; software testing has received little attention in our
curricula. This suggests that most software testers are then either self taught or they acquire
needed skills on the job perhaps through formal and informal mechanisms used commonly in
the industry. Lack of proper attention in acquiring testing skills is resulting in less utilization
of test resources and thus results in less test efficiency of organisation. Review of extant
literature on software testing lifecycle (STLC) identifies various software testing activities
and ways in which these activities can be carried out in conjunction with the software
development process. This literature also identifies various skills that software testers need to
possess in order to perform activities effectively in a given phase of STLC. Similar to
development lifecycle (SDLC), STLC also suggests the phases of analysis, design,
implementation, execution, and evaluation in software testing lifecycle. The V - model, which
is the most popular testing model, provides a basis for the identification of various testing
activities. Based on the V- model, Vijay (2001), Waligora and Coon (1996) suggest the need
to conduct testing in parallel with many of the SDLC phases so that testing efforts in later

stages can be minimized.

With this case study, we are targeting on how we can improve the test efficiency of database
indexing tool and thus to prepare generic guidelines for improving the test efficiency of an
organisation. Database indexing tool, which provides users and application programmers a
fast, versatile, and quick method of searching full-text documents stored in DB and file

systems using - SQL queries. -The initial test environment 'of this tool was not fully

automated, that results in lot of manual intervention for executing system test cases and thus
results in lot of manpower utilization. This tool has multiple releases and service packs, each
service pack is consuming around 100 man days of system testing due to the execution of
regression scenarios in test cycle. This case study was targeted to come out with new
regression environment that can use the existing test setup and test tools for reducing 30-50 %
of system test effort. Case study was conducted in database environment, but the solution will

be generic and can be used in other test environments after customization.

1.2 Purpose, scope and hypothesis

The purpose of the case study was to evaluate the various software testing techniques used in
software industry, make a proposal for improving the test efficiency of an existing test
environment and implement the same in a data base domain. Thesis work comprised the
following activities.

e Identify and evaluate “state of the art” testing techniques and processes followed in
standard software industry. This is done based on my experience and the informal
interviews with various testing professionals.

e Evaluate the test process and methods followed in real time environment: As per the
industry standards.

o Identify the improvement areas: Details are mentioned in chapter 6.

e Prepare an implementation proposal and implement the same: Details are mentioned in
chapter 7.

During the studies we cut down the scope of the work to a specific environment for getting a

clear understanding of the work and also decided to come out with a general solution that can

extend to any environment for improving the test efficiency. We selected the data base
environment and decided to conduct case study on a data base indexing tool. The current test
environment of the indexing tool does not have automated regression setup and this had
negative impact on the effectiveness of the testing of the product. Test team used to run
regression test cases manually in system test cycle. Due to the time limit and resource
shortage, only selected regression scenarios were considered in system test cycle, which
resulted in a risk of less coverage for regression scenarios. Below are some of the issues we

identified in our case study and based on that prepared a proposal and implemented the same.

Manual intervention for running the test suites was resulting in more number of days of
effort

Manual download and installation of DB and indexing tool drivers was a repetitive task
and thus causing redundancy issues to test engineers.

Execution and monitoring of test scenarios from various test machines was resulting in
more effort and confusion.

Lack of scheduled test execution.

Existing test management process was not sufficient to track the test progress of various
service packs.

Issues in tracking the test status of the individual test team member.

Under utilisation of available hardware resources.

Less regression test coverage.

No GUI interface.

No central console for analysing the test outputs.

2. Review of Literature

2.1 Literature

While doing the research, many numbers of books, journals, articles, and technical websites

are referred. Names of the important references are mentioned in the reference section of this

document. Following are the important types of documents referred for this case study.

Testing fundamentals.

Test automation frameworks and related works.
Test management documents.

Combinatorial testing documents.

Security testing documents.

Software quality and productivity improvement documents.
IEEE documents related to software quality.
Operational excellence documents.

Rational build forge documents.

Software metrics related documents.

Test effort estimation documents.

Orthogonal testing documents.

Data base and indexing documents.

2.2 Findings

While doing the case study, we evaluated automation frame works like rational build forge
(IBM Rational build forge V 7.13), LDTP (Linux desktop testing project), Federated

Integrated Test frame work (FIT) etc. Out of this we selected the rational build forge

because of the various reasons like flexibility of the framework, support from IBM etc. The

4

selected case study was done on a data base indexing tool. As a first step, a detailed analysis
on existing test environment is done and we came out with hypothesis. The hypothesis is
validated based on the input we got from the reference document mentioned in the reference

section.

Manual intervention in SVT execution was one of the main bottlenecks identified in the
evaluation of the case study. For addressing this issue, various testing automation documents,
test management documents and best practices documents mentioned in the reference section
were referred and were summarised the various solutions and customized the same for our
case study evaluation. Automation framework documents for the LDTP, build forge, FIT
projects etc., played a major role in the selection of frameworks based on the case study
requirements. VM ware concepts helped us to solve the issue related to hardware and the
maximum utilisation of the available hardware. Parallel processing and scheduling of the
work implemented in the case study was a major step in efficient utilisation. The articles
published in this area and the common methods used in industry were the main input for this
task. Test documents published by IEEE were very useful for planning the test strategy, test
plan, test management and test execution. Test management method using test point system
will give a graphical representation of the test tracking and test status. Combinatorial
approach and best practices published in this area were used for proper selection of inputs to
the case study. We were able to reduce the testing effort by selecting proper input with
minimal execution effort and maximum releasing of defects. Papers published in operational
excellence area give a clear guidance for planning the proper operational activities and test
execution. Intellectual Property (IP) confidentiality is one of the hot areas in software testing.
Introducing proper security testing was one of the challenging activities during testing. By
following the security guidelines of the industry we were able to give maximum attention to

this area.

This chapter describes research methods followed in the case study. It starts with a roadmap that
describes the overall structure of the thesis followed by a discussion concerning possible research

3. Method of Research

methods to select.

3.1 Road Map

Through out the thesis preparation we followed an action based research methodology.

Figure 3.1 shows the approach used for studying and implementing the setup.

Possible
improvements

Lateramre

Stansncs
Suggests

Research

Are
evaluated
10 fund

v

Provect decuments

Fund
idens for

Idennfies
Efficient

llll!}l'ﬂ\'{'ll’l("lll%

Problems

The main activities we followed in our case study approach comprises the following steps

Figure 3.1

Study current research in software testing industry.

Evaluate test processes on various real time environments (Like LDTP, FIT, Device

anywhere, Build forge etc) and select one environment for implementation.

Execute a detailed investigation study on the selected environment.

e Prepare an improvement proposal.

e Implement the approved proposal.

3.2 Research method selection

While conducting the case study, it was possible to use two different approaches for collecting
information: the qualitative, and the quantitative method. The methods are applicable in different
situations and on different sources of information. The main difference between these two
methods is the way they approach the objects to investigate. The quantitative method makes an
assumption and then examines a set of representative objects to see if they are valid, whereas the
qualitative method seeks answers by reviewing as many sides of the object as possible. Since the
quantitative method gives numerical data, it can provide better scientific results than the
qualitative method; the main approach we employed in this case study was the exploratory
approach by mixing both qualitative and quantitative method. In this method we gave more
importance to action research as a supporting method for gathering project information by testing
theory in an on-going project. The main benefit with action research was to monitor the result of
a change while actively undergoing the changes in the existing environment. A drawback is that
action research requires allowance by the company to conduct live experiments since it might
interfere with the daily work and also it requires more efforts than other types of research since it

is hard to conduct on larger samples.

4. Testing Fundamentals

This chapter tries to give a basic knowledge about various testing activities that software testers

need to possess in order to perform activities effectively in a given phase of STLC.

4.1 Testing phases

Software testing is the process of verifying, validating and defect finding in a software
application or program. In verification we are ensuring that the construction steps are done
correctly (are we building the product right), where as in validation we are checking that
deliverable (code) is correct (are we building the right product). In software testing a defect is
the variance between the expected and actual result. During defects finding, its ultimate source
may be traced to a fault introduced in specification, design or development phases. Following
are the different levels of testing doing in STLC

e Unit test.

e Integration test.

e System test.

e Acceptance test.

¢ Regression testing.

Defects can be categorized in to different groups based on severity and priority. Below list
shows the common defect category used in software industry.

e Show stopper - Not possible to continue testing because of the severity of the defect

o Critical — Testing can proceed but the application cannot be released until the defect is

fixed.

e Major — Testing can continue but the defects may results in serious impacts in business
requirements if the software is released for production.
e Medium - Testing can continue and the defect will cause only minimal deviations from
the business requirements when in production.
e Minor —Testing can continue and the defect will not affect release.
e Cosmetic - Minor cosmetic issues like colours, fonts, and pitch size that do not affect
testing or production release.
Figure 4.1 shows the V-model of software development cycle. V- Model incorporates testing in
to the entire SDLC cycle and highlights the existence of different levels of testing and depicts
the way each relates to a different development phase. Figure 4.2 shows 5 different testing
phases each with a certain type of test associated with it. Each phase has entry criteria that must
be met before testing starts and specific exit criteria that should be met before certification of the

test. Entry and exit criteria are defined by the test owners listed in the test plan.

V-Model of Software Testing

Business Case and i __—a —— | Production Verification

= =

Statement of Work B 4

X %

Business Requirements -<:::2‘> User Acceptance Testing

S 2

Functional Design : : System and Integration Testing
Technical Design and Unit Testing
Coding

Validation <::>
and

Verification Testing Relationship Work Elow

Figure 4.1

Phase Guiding Document Test Type

Development Phase Technical Design Unit Testing
System and Integrafion : : System Testing
Functional [; 3
Phase e Integration Testing
User Acceptance Phase Business Requirements User Acceptance Testing
Implementation Phase Business Case Product Verification Testing

Figure 4.2
4.1.1 Unit testing
Unit testing test the functionality of basic software units. A unit is the smallest piece of software
that does something meaningful. It may be a small function, a statement or a library. Unit test is
also called module test where the developer tests the code he/she has produced. Unit tester is
mainly looking whether the code was implemented as per low level design document (LLD or
functional requirements) and the code structure. Following are some of the faults that are
uncovered during unit testing.
e Unit implementation issues — Checking that the unit has implemented the algorithm
correctly.
e Input/output data validation errors — Unit’s input/output are validated properly.
e Exception handling — Checking whether unit handles the entire environment related
errors/exceptions.
e Dynamic resource related errors —Verify whether the dynamic resources (memory,
handles, etc.) are allocated and deallocated.
e Ul formatting errors — Verify Ul is consistent, correct user interface (tabs, spelling,
colours etc).
e Basic performance issues — Each unit is critical to overall system performance. Unit tester

will ensure that the unit’s performance is as per the requirements specification.

Design of unit test cases is done using functional specification or LLD of the units. Any
techniques like white box/black box/ grey box can be applied to design unit test cases. Also the
structure of the code can be used as another input for improving the quality of the unit test
cases. During test cases design, some test cases may come as common to many units; such test

cases can be considered as a standard check list and can be used as reusable test suite. If the unit

10

is not a user interface (Ul), it is necessary to write test driver (drives the unit under test with

inputs and stores the outcome of the test) and test stubs (dummy storage module used for

replacing the unit not available) to automate the unit testing.

4.1.2 Integration testing

Integration testing starts as soon as a few modules are ready and the developers integrate their

code for testing the interfaces implemented by their code. High level design document (HLD) is

the main input for designing the test cases for integration testing. Following are some of the faults

that are uncovered during integration testing:

Interface integrity issues — Test whether the unit comply to the agreed upon interface
specification.

Data sharing issues — Verifying the common data is handled properly, synchronization
issues etc.

Exception handling — Handles all the environment related errors/exceptions.

Resource hogging issues — Check whether any unit consumes excessive resources.

Build issues — Cases like multiple units use a version of common unit that each depends
upon.

Error handling and bubbling of errors — Check that the error returned by a unit is handled
by the higher unit appropriately.

Functionality errors — Functionality formed by the integration of unit(s) work.

Integration testing is proceeded based on integration strategy (order of integration of module) that

the project follows. Since testing is an act to find issues that pose severe risk as early as possible,

it is preferable to test those interfaces that pose the high risk. Mainly four types of integration

strategy employed in software industry.

Top-down — Integration starts from highest chain of control (top-most module) and this
kind of integration uses where upper level interfaces are important.

Bottom-up — Integration starts from lowest chain of control (bottom-most module) and
this kind of integration uses where lower level interfaces are important.

Sandwich — Approach uses when not all on the top or not all at the bottom are important,
this will be a mixture of top-down and bottom-up approach.

Big bang — This is pretty dumb strategy but this will find issues, the main problem of this
approach is the difficulty in debugging.

11

The approach will be decided based on the criticality of the interfaces and the most critical
interfaces should be tested first and the others later. The criticality of the interface can decide
once the architecture of the project is ready. Normally most of the projects will follow sandwich

approach.

4.1.3 System testing
A system is not a just our code that we developed but that will be a collection of developed code,
supporting libraries , data bases (if any) , Web/App servers (if any), operating system and
hardware. In system testing phase we test the systems as a whole. For ensuring the maximum
benefit of the system test, it is preferable to perform system testing in an environment that is
similar to the target environment. Following are the types of faults discovered in system testing.
e Functional errors — Verification of the system that it has implemented the functionality
correctly.
e Performance issues — Making sure that the system is fast enough .
e Load-handling capability — Ensuring that the system handling the real life situation with
stated resources.
e Usability issues — Verify that the system is friendly and easy to use.
e Volume handling — Verify that the system is capable of handling large volume of data.
e Installation errors — Making sure that the system is able to install correctly using the
installation documents.
e Documentation errors — Checking that the documentation done for the system is correct.
e Language handling issues — Verify that the system is implemented the multiple locales

correctly. Localization and internationalization testing is performing in this stage.

4.1.4 Acceptance testing

Acceptance testing is the final testing done by the test team and the customer together before the
system put in to operation. Acceptance testing starts after completing the system test. The purpose
of the acceptance test is to give confidence in that the system is working, rather than trying to find
defects. Acceptance testing is mostly performed in contractual development to verify that the
system satisfies the agreed requirements. Acceptance testing is sometimes integrated into the

system testing phase.

12

4.1.5 Regression testing

Regression testing is doing for building the confidence of the system that has undergone some
changes like modification of the code, defects fixing or added some new module etc. In this test
user will rerun the existing test suites/test cases and make sure that the recent changes has not
impacted the functionality of the system. Regression test selection is one important task in this
phase and need to do carefully for avoiding unnecessary execution. Regression testing is a
repeated task and one of the most expensive activities doing in STLC. For saving the effort, it is
always good to look for automation so that we can save lot of manual effort. (Harrold 2000)
According to Harrold, some studies indicate that regression testing can account for as much as

one-third of the total cost of a software system.

4.1.6 Sanity test

Sanity testing will be performed whenever cursory testing is sufficient to prove that the system is
functioning according to specifications. A sanity test is a narrow regression test that focuses on
one or a few areas of functionality. Sanity testing is usually narrow and deep. It will normally
include a set of core tests of basic GUI functionality to demonstrate connectivity to the database,

application servers, printers, etc.

4.1.7 Alpha testing

Testing of an application when development is nearing completion; minor design changes may
still be made as a result of such testing. Typically done by end-users or others, not by

programmers or testers.

4.1.8 Beta testing

Testing when development and testing are essentially completed and final bugs and problems
need to be found before final release. Typically done by end-users or others, not by programmers

or testers.

4.2 Test technique

Effective test cases are the heart of the software testing. For designing test cases testers will use
various test techniques in industry and also uses options like domain knowledge, history of past

issues etc. Following are some of the test techniques used in industry.

13

4.2.1 Positive and Negative testing

Positive testing — Check that software performs its intended function correctly and execute
programs to check that it meets requirements.

Negative testing — Execute programs with an intent to find defects and discover defects in the
system. Negative testing involves testing of special circumstances that are outside the strict scope

of the requirements specification, and will therefore give higher coverage.

4.2.2 Risk based testing

Risk is the possibility of a negative or undesirable outcome, quality risk is a possible way that
something about your organization’s products or services could negatively affect stakeholder
satisfaction. Through risk based testing we can reduce quality risk level. This type of testing has
number of advantages.

e Finding defects earlier in the defect cycle and thus avoid the risk in schedule delay.

e Finding high severe and priority bugs than unimportant bugs.

e Providing the option of reducing the test execution period in the event of a schedule

crunch without accepting unduly high risks.

4.2.3 Defect testing

Defect testing or fault based testing is doing to ensure that certain types of defects are not there in
the code. It is a negative testing approach to discover defects in the system. Normally testing team
will identify and classify the defects that have occurred in the previous release of the product.
Based on this classification test team will decide where to add more testing efforts and also will
decide how deeply need to conduct testing on those areas. Test team will use defect tracking tool
or defect database as an input for this activity. The root cause analysis available in the defect or

that is prepared will play a major role in defect classification.

4.2.4 White box testing

White box testing or glass box testing or structural testing method uses the code structure to come
up with test cases. For doing effective white box testing tester need to have a good understanding
of the code. Normally there is a miss-understanding that white box testing can apply only in unit

level testing. It can definitely be applied at the unit level. It can be applied at the higher levels like

14

integration level, system level. Unit testing becomes difficult as the size of the code rapidly

increases at higher levels.

4.2.5 Black box testing

In black box testing or functional testing, the tester should have a clear understanding of the
specification of the product/project that he is testing. Specification covers both data (input and
out put specification) as well as business logic specification (processing logic
involved).Requirement specification is one of the major input doc for doing black box testing.
Black box testing can apply at any levels of testing. Some of the black box techniques detect

functionality issues while some of them help in detecting non-functional issues.

4.2.6 Grey box testing

Gray box testing is combination of white and black box testing. This testing will identify the
defects related to bad design or bad implementation of the product. Test engineer who executes
gray box testing has some knowledge of the system and design test cases based on that
knowledge. Tester applies a limited number of test cases to the internal working of the software
under test. Remaining part of the execution will do based on data specification and business
logic. The idea behind the gray box testing is that one who knows something about how the

products works on the inside, one can test it better.

4.2.7 Statistical testing

The purpose of statistical testing is to test the software according to its operational behaviour, i.e.
by running the test cases with the same distribution as the users intended use of the software. By
developing operational profiles that describes the probability of different kinds of user input over
time; it is possible to select a suitable distribution of test cases. Developing operational profiles is
a time consuming task but a proper developed profile will help to make a system with a high

reliability. In short a statistical test will help to make a quantitative decision about a process.

4.2.8 Clean room software engineering

Clean room software engineering is more of a development process than a testing technique. The
idea clean room will help to avoid high cost defects by writing source code accurately during
early stages of development process and also' employ formal methods for verifying the

correctness of the code before testing phase. Even though the clean room process is time

15

consuming task but helps to reduce the time to market because the precision of the development
helps to eliminate rework and reduces testing time. Clean room is considered as a radical
approach to quality assurance, but has become accepted as a useful alternative in some systems

that have high quality requirements.

4.2.9 Static testing

Testing is normally considered as a dynamic process, where the tester will give various inputs to
the software under test and verify the results. But static testing is of different kind of testing that
is used for evaluating the quality of the software without executing the code. Static testing is fall
in the verification process that ensures the construction steps are done correctly with out
executing the code. One commonly used technique for static testing is the static analysis-
functionality that the compilers for most modern programming languages have. Reviews and
inspection are the most commonly used static testing method in almost all software development
organizations. Static testing is applicable to all stages but particularly appropriate in unit testing,

since it does not require interaction with other units.

4.2.10 Review and inspection
Each author has there on definition for the terms review and inspection. As per IEEE Std. 610.12-
1990 the terms are defined as
Review: A process or meeting during which a work product, or set of work products, is presented
to project personnel, managers, users, customers, or other interested parties for comment or
approval. Types include code review, design review, formal qualification review, requirements
review, and test readiness review’ (IEEE 1990). IEEE standard says that, the purpose of a
technical review is to evaluate a software product by a team of qualified personnel to determine
its suitability for its intended use and identify discrepancies from specifications and standards.
Following are some of the inputs to the technical review:

e A statement of objectives for the technical review (mandatory).

e The software product being examined (mandatory).

e Software project management plan (mandatory).

e Current anomalies or issues list for the software product (mandatory).

e Documented review procedures (mandatory).

e Relevant review reports (should).

16

e Any regulations, standards, guidelines, plans, and procedures against which the software
product is to be examined (should).
e Anomaly categories (See IEEE Std 1044-1993 [B7]) (should).

Inspection: A static analysis technique that relies on visual examination of development
standards, and other problems. Types include code inspection; design inspection’ (IEEE 1990).
Inspection has many names, some called software inspection that could cover design and
documentation, and some others will call it as code inspection that relates more on source code
written by developer. Fagan inspection is another name that came as the name of the person who
invented QA and testing method. Code inspection is a time consuming task but statistics telling
that it may cover up to 90% of the contained errors if we apply that in a systematic way. Figure

4.3 below shows time, employee relationship in a software development process.

ik
ar
Q
b—
L)
o
E
L L]
n / Without inspection
k= = e
1] m Py
: —
= > f/;_—h—_—““x With inspection
= 2 £
3 B
/ ? E
; time
>

Source of the diagram: Michael Fagan

Figure 4.3
IEEE Standard for Software Reviews (IEEE 1028-1997 standard) is talking about manual static

testing methods like inspections, reviews and walkthroughs.

4.2.11 Walk-throughs

Walk-throughs are techniques used in software development cycle for improving the quality of
the product. It helps to detect anomalies, evaluate the conformance to standards and specifications
etc. It is considering as a techniques for collecting ideas and inputs from team members during

the design stage of the software product and also as for exchanging techniques and conduct

17

training to the participants , thus to raise the level of team mates to same programming style and
details of the product. Walk-through leader, recorder, author of the product under development

and team members are some of the roles defined in walk-through method.

4.3 Test case design techniques

A test case is a set of data and test programs (scripts) and their expected results. Test case
validates one or more system requirements and generates a pass or fail. The Institute of Electrical
and Electronics Engineers defines test case as "A set of test inputs, execution conditions, and
expected results developed for a particular objective, such as to exercise a particular program path
or to verify compliance with a specific requirement.” Selecting adequate test case is an important
task to testers other wise that may result in too much testing, or too little testing or testing wrong
things. Following are the characteristics of a good test.

e A test case has a reasonable probability of catching an error

e Itis not redundant

e It’s the best of its breed

e It is neither too simple nor too complex

While doing test case design, designer should have an intension to find errors so that he can start
searching ideas for test cases and try working backwards from an idea of how the program might

fail. Following are some of the techniques we use in industry for designing effective test cases.

4.3.1 Equivalence classes
It is essential to understand equivalence classes and their boundaries. Classical boundary tests are
critical for checking the program’s response to input and output data. You can consider test cases
as equivalent, if you expect same result from two tests. A group of tests forms an equivalent class
if you believe that

e They all test same thing

o If one test catch catches a bug , the others probably will too

o If one test doesn’t catch a bug, the others probably won’t either.

Tests are often lumped into the same equivalence classes when
e They involve the same input variables
e Theyresult in similar operations in the program

18

e They affect the same output variables

e None force the program to do error handling or all of them do

Different people will analyse programs in different way and comes up with different list of
equivalent classes. This will help you to select test cases and avoid wasting time repeating what is
virtually the same test. You should run one or few of the test cases that belongs to an equivalence
class and leave the rest aside. Below are some of the recommendations for looking equivalence

classes:
e Don’t forget equivalence classes for invalid inputs
e Organize your classification into a table or an outline
e Look for range of numbers
e Look for membership in a group
e Analyse responses to lists and menus
e Look for variables that must be equal
o Create time-determined equivalence classes
e Look for variable groups that must calculate to a certain values or range
e Look for equivalent output events

e Look for equivalent operating environments

4.3.2 Boundaries of equivalence classes
Normally we use to select one or two test cases from each equivalence class. The best ones are
the class boundaries, the boundary values are the biggest, smallest, soonest, shortest, loudest,
fastest ugliest members of the class i.e., the most extreme values. Program that fail with non-
boundary values usually fail at the boundaries too. While analysing program boundaries it is
important to consider all outputs. It is good to remember that input boundary values might not
generate output boundary values.
4.3.3 Black box test techniques
This type of techniques can be categorized in to three broad types

e Those useful to design test scenarios (High level test design techniques).

e Those useful to generate test values for each input(Low level test design techniques).

e Those useful in combining test values to generate test cases.

19

4.3.3.1 High level test design techniques
Some of the commaonly used high level test design techniques are
e Flowchart — Represent flow based behaviour (Each scenarios has a unique flow in the
flow chart).
e Decision table — Represent rule based behaviour (Each scenario is an unique rule in the
decision table).
e State machine — Represent state based behaviour (Each scenario is an unique path in the

state transition diagram.

4.3.3.2 Low level test design techniques

Following are some of the some of the low level test design techniques:
e Boundary value analysis - Generate test values on and around boundary
e Equivalence partitioning — Ensues that all representative values have been considered
e Special value - generate interesting test values based on experience/guess

e Errorbased vales - Generate test values based on past history of issues

4.3.3.3 Combinational test design techniques
This technique will combine test values to generate test cases, some of the combinational test
design techniques are mentioned below:
e Exhaustive testing — Combine all vales exhaustively (All combination of all test inputs
are considered).
e All-pairs /Orthogonal — Combine to form minimal yet complete combinations. This will
ensures that all distinct pairs of inputs have been considered.
e Single-fault — Combine such that only a single input in a test case is faulty (Generate

negative test cases where only one input is incorrect).

4.3.4 White box test techniques
This technique uses the structure of the code for designing test cases; following are some of the
aspects of the code that constitutes the code structure:

e Flow of control - Is the code sequential / recursive / concurrent

e Flow of data — Where is the data initialized and where it is used

e Resource usage — What dynamic resources are allocated , used and released

20

4.3.5 Coverage based testing
Statement coverage is an oldest structural test technique that targets to execute every statement
and branch during a set of tests. Statement coverage will give an idea about the percentage of
total statements executed. Since programs with for example loops contain an almost infinite
number of different paths, complete path coverage is impractical. Normally, a more realistic goal
is to execute every statement and branch at least once. This technique can be varied in several
ways and is usually tightly knit to coverage testing.
e Branch coverage — Measuring the number of conditions / branches executed as a
percentage of total branch.
e Multiple condition coverage — Measuring the number of multiple conditions executed as a
percentage of total multiple conditions.
e Statement coverage — Measuring the number of statements executed as a percentage of

total statements.

4.3.6 Random input testing

Rather than explicitly subdividing the input in to a series of equal sub ranges, it is better to use a
series of randomly selected input values, that will ensues that input value is likely as any other ,
any two equal sub ranges should be about equally represented in your tests. When ever you
cannot decide what vales to use in test cases, choose them randomly. A random input doesn’t
mean “what ever inputs come to your mind” but a table of random numbers or a random number
generating function. Random testing using random inputs can be very effective in identifying
rarely occurring defects, but is not commonly used since it easily becomes a labour-intensive

process.

4.3.7 Syntax testing

This is a data-driven test technique where well-defined syntax rules validate the input data Syntax
testing can also be called grammar -based testing since grammars can define the syntax rules. An
example of a grammar model is the Backus Naur Form, which can represent every combination

of valid inputs.

21

4.4 Types of tests

Testing can be broadly classified as two types, namely functional tests and non-functional tests.
Functional Testing is the process by which expected behaviour of an application can be tested.
We already discussed many functional test techniques in previous section. In this section we will
try to give a brief description about various non functional tests that used to execute in IT

industry.

4.4.1 Load test

Load testing is used for verifying the software product is able to handle real life operations with
the stated resources. It can be done in controlled lab conditions or in a field. Load test in a lab
will help to compare the capabilities of different systems or to measure the actual capability of a
single system. The main aim of the load testing is to determine the maximum limit of the work

that can handle with out significant performance degradation.

4.4.2 Stress test

This test will check that worst load it can handle is well above real life extreme load. The stress
test process can involve quantitative test done in a lab , such as measuring the frequency of errors
or system crashes. It can also use for evaluating the factors like availability of the system,

resistance to denial of service attacks.

4.4.3 Performance test

Check that the key system operations perform with in the stated time. Performance testing is very
difficult to conduct because the performance requirements often are poorly specified and the test
requires a realistic operational environment to get reliable results. Automated tool support is

required for doing proper performance evaluation of the software.

4.4.4 Scalability test

Check that the system is able to handle more loads with more hardware resources. We can
consider scalability testing as an extension of performance testing. Scalability is the factor that
needs to consider in the beginning of the project planning and designing. The architect of the
product should have a proper picture about the product before he plans the scalability of the

product under development. For making sure that the products is truly scalable and for identify

22

major work loads and mitigate bottlenecks, it is very important to rigorously and regularly test it
for scalability issues. The results from the performance test can consider as the baseline, and we

can compare the results of the performance test results to know the application is scaled up or not.

4.4.5 Reliability test

This test will check that the system when used in an extended manner is free from failures. In
systems with strict reliability requirements, the reliability of the system under typical usage
should be tested. Several models for testing and predicting reliability exist but in reality, the exact

reliability is more or less impossible to predict.

4.4.6 Volume test

Check that the system can handle large amounts of data. VVolume test is mainly concentrating
about the concept of throughput instead of response time on other testing. Capacity drivers are the
key to do effective volume testing for the application like messaging systems, batch systems etc.
A capacity driver is something that directly impacts on the total processing capacity. For a

messaging system, a capacity driver may well be the size of messages being processed.

4.4.7 Usability test

Check whether the system is easy to operate by its end users. When the system contains a user
interface, the user-friendliness might be important. However, it is hard to measure usability since
it is difficult to define and most likely require end-user interaction when being tested.
Nevertheless, it is possible to measure attributes like for example learn-ability and handling
ability by monitoring potential users and record their speed of conducting various operations in

the systems.

4.4.8 Security test

This test will ensure that the integrity of the system is not compromised. Security test is also
called penetration testing and used to test how well the system protects against unauthorized
internal or external access, wilful damage, etc; may require sophisticated testing techniques.
Testers must use a risk-based approach, grounded in both the system’s architectural reality and
the attacker’s mindset, to gauge software security adequately. By identifying risks in the system

and creating tests driven by those risks, a software security tester can properly focus on areas of

23

code in which an attack is likely to succeed. This approach provides a higher level of software

security assurance than possible with classical black-box testing.

4.4.9 Recovery test
Recovery test will verify that that the system is able to recover from erroneous conditions
graciously. It also tests how well a system recovers from crashes, hardware failures, or other

catastrophic problems.

4.4.10 Storage test

Check that the system complies with the stated storage requirements like disk/memory.

4.4.11 Internationalization test (I118N)

This test will verify the ability of the system to support multiple languages. Internationalization
test is also called as 118N test. 118N testing of the products is targeted to uncover the international
functionality issues before the system’s global release. Mainly this will check whether the system
is correctly adapted to work under different languages and regional settings like the ability to
display correct numbering system — thousands, decimal separators, accented characters etc. 118N
testing is not same as the L10N testing. In 118N testing product functionality and usability are the
focus, where as L10N testing focuses on linguistic relevance and verification that functionality

has not changed as a result of localization.

4.4.12 Localization test (L10N)

Check that the strings, currency, date, time formats for this language version has been translated
correctly. Localization testing is also called L10N testing. Localization is the process of changing
the product user interface and modification of some initial settings to make it suitable for another
region. Localization testing checks the quality of a product's localization for a particular target
culture/locale. Localization test is based on the results of 118N testing, which verifies the
functional support for that particular culture/locale. L10N testing can be executed only on the

localized version of a product.

4.4.13 Configuration test

Check that the system can execute on different hardware and software configuration.

24

4.4.14 Compatibility test

Check that the system is backward compatible to its prior versions.

4.4.15 Installation test
Check that the system can be installed correctly following the installation instructions. The
installation test for a release will be conducted with the objective of demonstrating production

readiness.

4.4.16 Documentation test

Documentation test will make sure that the user documentation, online help is inline with
software functionality. Testing of user documentation and help-system documentation is often
overlooked because of a lack of time and resources (Watkins 2001). However, Watkins claims
that accurate documentation might be vital for successful operation of the system and reviews are

in that case probably the best way to check the accuracy of the documents.

4.4.17 Compliance test

Check that the software has implemented the applicable standard correctly.

4.4.18 Accessibility test

Accessibility test will check that the product under test is accessibility complaint or not. With this
test we are targeting four types of users namely people with visual impairments, hearing
impairments, motor skills(Inability to use keyboard or mouse) and cognitive abilities (reading
difficulties, memory loss). Normally we plan separate testing cycle for accessibility testing.
Inspectors or web checkers are some example of tools available in market for doing accessibility

testing.

4.5 Test Strategy

A Test Strategy document is a high level document that talks about the overall approach for
testing and normally developed by project manager. This document is normally derived from the
Business Requirement Specification document. This static document contains standards for
testing process and will not undergo changes frequently. This is acting as an input document for

test plan. A good test strategy will answer the below questions.

25

e Where should I focus?

e On what features?

e On what type of potential issues?

e What test technique should I use for effective testing?
e How much of black box, white box?

e What type of issues should I look for?

e Which is best discovered by testing?

e Which is best discovered via inspection?

e How do | execute the tests? Manual/Automated?
e What do | automate?

e What tool should I consider?

e How do | know that | am doing a good job?

e What metrics should | collect and analyse?

4.5.1 Contents of test strategy

e Features to focuson :
- List down the major features of the product.
- Rate importance of each features (Importance = Usage frequency * failure
criticality).
e Potential issue to uncover:
- ldentify potential faults.
- ldentify potential incorrect inputs that can result in failure.
- State the type of issues that you will aim to uncover.
- ldentify what types of issues will be detected at each level of testing.
e Types of test to be done:
- State the various tests that need to be done to uncover the above potential issues.
- ldentify the test techniques that may be used for designing effective test cases.
e Execution approach:
- Continue what test will be done: manual/automated.
- Outline tools that may be used for automated testing.
e Test metrics to collect and analyse

- ldentify measurements that help analyse if the strategy is working effectively.

26

4.6 Test Planning

Test plan details out the operational aspects to executing the test strategy. Test plan will be

derived from the product description, software requirement document, use case documents etc. It

may be prepared by a test lead or test manager. A test plan outlines the following

Effort / time needed

Resources needed

Schedules

Team composition

Anticipated risk and contingency plan

Process to be followed for efficient execution

Roles of various team members and their work

As per the IEEE 829 format, following are the contents of the test plan

1.

2
3
4.
9]

10.

11.

Test Plan Identifier : Unique company generated number to identify this test plan
References : List all documents that support this test plan

Introduction : A short introduction to the software under test

Test Items : Things you intend to test within the scope of this test plan

Software Risk Issues : Identify what software is to be tested and what the critical
areas are

Features to be Tested: This is a listing of what is to be tested from the users
viewpoint of what the system does

Features not to be Tested: Listing of what is not to be tested from both the Users
viewpoint of what the system does and a configuration management/version
control view.

Approach : This is your overall test strategy for this test plan

Item Pass/Fail Criteria: What are the Completion criteria for this plan? The goal is
to identify whether or not a test item has passed the test process

Suspension Criteria and Resumption Requirements : Know when to pause in a
series of tests or possibly terminate a set of tests. Once testing is suspended how is
it resumed and what are the potential impacts

Test Deliverables

27

12. Remaining Test Tasks: There should be tasks identified for each test deliverable.
Include all inter-task dependencies, skill levels, etc. These tasks should also have
corresponding tasks and milestones in the overall project tracking process

13. Environmental Needs : Are there any special requirements for this test plan

14. Staffing and Training Needs : State the staffing learning/training needs to be
done to execute the test plan

15. Responsibilities: Who is in charge? There should be a responsible person for each
aspect of the testing and the test process. Each test task identified should also have
a responsible person assigned

16. Schedule : Detail the work schedule as Gantt chart

17. Planning Risks and Contingencies : State the top five (or more) anticipated risks
and mitigation plan

18. Approvals : Who can approve the process as complete and allow the project to

proceed to the next level

4.7 Testcycle

Test cycle is the point of time wherein the build is validated and it takes multiple test cycles to
validate a product. Each test cycle should have a clear scope like what features will be tested and
what test will be done. Figure 4.4 below shows the test development life cycle. Normally we
used to run four rounds of the test cycle. In this period will be catching around 80% of the errors.
With the majority of these errors fixed, standard and/or frequently used actions will be tested to
prove individual elements and total system processing in cycle 3. Regression testing of
outstanding errors will be performed on an ongoing basis. When all major errors are fixed, an
additional set of test cases are processed in cycle 4 to ensure the system works in an integrated
manner. It is intended that cycle 4 be the final proving of the system as a single application. There
should be no Sevl or Sev2 class errors outstanding prior to the start of cycle 4 testing. Figure 4.5

shows the 4 different cycles (release) of testing that normally follows in software development.

28

Test Development Cycle

B validate | N

Test Plan 1 Test Spec. Code Tests { Run Tests

Tests

Figure 4.4

Acceptance 1
Release wi. 1 Functional 1

User Acceptance

Acceptance 2
Release w2 Functional 2

Regression 1
Acceptance 3

Functional 3
Release wD.32 Performance 1

Bash & Multi-User Testing
Regression 1
Regression 2
Integration 1

Technical 1
Release vD.4 Regression 1

Regression 2
Regression 3

Installation Test
Contingency Per Bug Fix Test Onfy

Figure 4.5

4.8 Test Estimation

Test Estimation is the estimation of the testing size, testing effort, testing cost and testing

schedule for a specified software testing project in a specified environment using defined

29

methods, tools and techniques. Effort estimation can consider as a science of guessing. Some of
the terms commonly used in test estimation are
Testing Size — the amount (quantity) of testing that needs to be carried out. Some times this may
not be estimated especially in Embedded Testing (that is, testing is embedded in the software
development activity itself) and in cases where it is not necessary
Testing Effort — the amount of effort in either person days or person hours necessary for
conducting the tests
Testing Cost — the expenses necessary for testing, including the expense towards human effort
Testing Schedule — the duration in calendar days or months that is necessary for conducting the
tests
To do a proper estimation we need to consider the following areas

e Features to focus

e Types of test to do

e Development of automated scripts

e Number of test cycles

e Effort to design , document test plan, scenarios/cases

e Effort need to document defects

e Take expert opinion

e Use the previous similar projects as inputs

e Breaking down the big work of testing to smaller pieces of work and then estimation

(Work break down structure)

e Use empirical estimation models

4.9 Test reports

There are multiple number of test reports are using in various kinds of testing. Some of the

commonly used test reports in industry are mentioned below.
4.9.1 Weekly status report

Weekly status report gives an idea about the works completed in a specific week against the plan

of actual execution. Companies have their own standard template for reporting this status.

30

4.9.2 Test cycle report

Product testing has multiple cycles. Management will expect the correct status of each cycle for
tracking the project. Test team is responsible for giving report on accomplishments in the cycle

and potential testing related risks in a standard template approved by the company.

4.9.3 Quality report

Quality report will give an idea about objectives and subjective assessment of quality of a product
on a specific date. A product quality depends on factors like scope, cost and time. Quality lead

will consider all these 3 factors before reporting the status in the standard template.

4.9.4 Defect report

A defect report will give a detailed description of defects. This is one of the important
deliverables in STLC. An effective defect report will reduce the number of returned defects. A
good defect report will reflect the credibility of the tester and also will help for speeding up the

defect fixes.
4.9.5 Final test report

This is the report that summarizes the test happened in various levels and cycles. Based on this

report the stake holder can assess the release quality of the product.

31

5. Test Automation Process

In software industry, test automation becomes an increasingly critical and strategic necessity.
Assuming the level of testing in the past was sufficient (which is rarely the case), how do we
possibly keep up with this new explosive pace of project deployment while retaining satisfactory
test coverage and reducing risk? The answer is either more people for manual testing, or a greater
level of test automation. After all, a reduction in project cycle time generally correlates to a
reduction of time for test. In this chapter we are discussing abut the test automation processes that

we employed in our case study for improving the test efficiency.

5.1 Automation Framework Overview

the machine for management console server

the machine in fest

machine where drivers are stored

Figure 5.1

32

Figure 5.1 shows the pictorial representation of the test environment used for the case study.
This set up consist of central test server that act as a repository used for storing test drivers
and other documents used for testing. Test machines with various operating systems like
Windows (32 bit and 64 bit), Linux (32 bit and 64 bit), AlX, Solaris and HP etc act as client
machines. The third important component is the test automation frame work (Central console
- A server with Rational build forge tool). IBM Rational Build Forge (Figure 5.2- Build forge
automation blocks) automates and accelerates build, test and release processes to enable
iterative development, high-performance builds and streamlined software delivery. Through
an adaptive framework, it helps the teams to standardize and automate repetitive tasks,
optimize hardware resources and connect development tools to increase staff productivity,
compress development cycles and deliver high quality software, quickly. Following are some
of the advantages:

e Leverage of current assets (tools/scripts).

e Integration with other tools (Adapters and IDE plug-in).

o Effective Monitoring through single window (web console).

e Effective environment maintenance.

e Support availability.

/ Management Console \

= Source code
® Defect racking
= Test

\ Centrally Hosted Web Interface

D
<P isual Studic
@ Developer IDE plug-ins

Figure 5.2

33

5.2 Challenges in software test automation

So many different
projects running in
parallel

Which test case
to automate?

How to finish
automation for all
projects within short
cycle time?

Which project
to automate?

Figure 5.3
Figure 5.3 shows the situation of a test manager who is not following proper test process. It is

quite common that many automation testers are being thrown to the automation job without
having proper guidelines on the automation test process. They just “dive in” and begin
automating test cases without a thought towards any process or strategy. Normally this kind of
approach will reach a situation that says “We’ve invested lot in automation and number of
testers allocated for fulltime in automation testing. After Y months, we still do not see any
improvement in our overall testing cycle times. In fact, testing seems to be taking longer!” To
avoid such a situation we should have a clear understanding about our project and automation
process that we are going to implement. Also we should have a proper test strategy in selecting
the framework and execution. Some of the factors that need to consider while defining test

strategy are:

o Testautomation is a fulltime effort, not a sideline.

o The test design and the test framework are totally separate entities.

e The test framework should be application-independent.

o The test framework must be easy to expand, maintain, and perpetuate.

e The test strategy/design vocabulary should be framework independent.

e The test strategy/design should remove most testers from the complexities of the test

framework.

34

5.3 Test Automation

Test Automation | % Test Automation | ¥ Test Automation
Feasibility Design Development

|

est Automation est Automation
Maintenance Execution

|

Test Automation
Deployment

Figure 5.4
Figure 5.4 shows various stages in the test automation process and figure 5.5 shows the test tool

selection process in a typical automation project

5.3.1 Roles
Automation lead/manager will be responsible for selection of a tool, development of tools and
maintenance activities of the frame work. Test engineer will be responsible for script generation,

deployment and execution.

5.3.2 Feasibility study
This stage will decide whether we need to automate the project or not. Failure in this stage may
have a larger impact on the project execution. Following are some of the factors considered in
feasibility stage:
e Project impact: Automation priority according to project prioritization and delivery.
e Test case selection :
1. Repetitive test that needs to be run on multiple build.
2. Frequently used functions.
3. Tests that run on several different platforms.

4. Tests that take a lot of effort and time when manual testing.

35

e Framework availability: Exploring various existing tools and evaluating whether we

can use the same in our setup through customization.

Check frame
work avalzble
or can develop

Can we integrae
dirzetly?

YES

' Customizztion Anzlyze the

Cotings with of the frams test case for
Stop ¢ i wotk | zutomation
manual test

Integrate the
frame work
with existing
test st up

F3

Figure 5.5
Figure 5.6 depicts how we consider the test patterns and test automation in various stages of

software testing.

‘What Kind

test automation
patterns?

What to
automate?

Unit testing Integration & System testing
regression testing

Figure 5.6

36

5.3.3 Automation design
A good automation test design will tell how a particular function or feature will be tested. A test
designer will consider the following facts:

1. What is being tested and how is the test set up?

2. What are the inputs used and from where the inputs are coming?

3. What is being checked and where are the expected results?

4. What are the things need to print?

5. How do you know the test is pass or fail?

6. Keep the output simple and well formatted.

5.3.4 Automation development and deployment
Mainly we need to develop two types of items during the development stage

1. Scripts for execution.

2. Frame work code (or customization of the existing code).
Some projects, whole modules may not be available. In such case we may need to develop stubs
and drivers for simulating the module. In our frame work, test developer is responsible for
creating the test suites (test scripts), customization of the rational build forge tool and the
environment setting for the test bed. Also after developing the script and code we need to
regularly check in the same in Clear case (or any other tool) and need to create the proper build

for execution. Testers have access permission for taking the same for testing.

5.3.5 Automation execution and maintenance

In testing phase we will execute the test cases either manual or automated fashion. For the
automation, selection of the test cases is done using the automation strategy. Normally all the
regression test cases will be moving to automated environment for avoiding the repeated manual
execution. In our automated environment the tester can select/deselect the test cases that he wants
to execute on a particular platform. While executing we can give two different options. In the first
option, that is, halt on failure, the test execution will stop if any one of the selected test fails. But
in second option, continue on failure, will allow executing all the selected suites, even if one suite
fails. At the end of the execution we can see the results and logs of each suite separately. This will
give a detailed status of the execution. In our frame work we can execute test cases on any
number of platforms simultaneously. Figure 5.7 shows the sample screen shot of the build forge

console.

37

Rational: Build Forge

% Hone
i} Active Runs
{é} Completed Runs
@ Systam Messages

5 rorcs

w Ubrariss

{08 Jobs

[schedues

"(;} Environments

% Servers

é_b Administration

@ Help

Tag

Projects and Libraries

{0} Job nsa v3Ehpd 111128
{0} Job nse vaSfod 111128
{08 1ob e callo 111306
40¢ Job nse 3569
{0} Job nse gallen 111206
j_\\gf Job nse w3509
;\.2} Job nse Va5

{0} Job nse galles 111205

{0} Job nse galleo 111306

{0} Job nse galleo 111205

| Test NSE ALXB4 V35 P8
| Test NSE Solers V5 FP3
|| Tet NSE ALXG4 Galleo
|| Test NSE Solsris V5 FP3
| Test NSE ALG4 Galleo
|| Test NSE Solsrs VS5 FP9
| Test NSE LINUEKEA V35 PP
|| Tz NSE ALE4 Galleo
|| Test NSE ALXE4 Gelleo

|5 Test NSE ADYGA Gafien

{08 1ob s ittt
49¢ Job nse v31fplt
{0} Job nse qallen 111206

j_\\gf Job nse galleo 111206
{0} Job nse qallen 111306

{c) Copyright International Business Machines Corporabon 2003, 2010, Al rights reserved

. Errar on page.

|5 et i s s 9
|5 Test NSE LINDXE? Galien
|5 Test NSE ADYE4 Galieo
|| Test NSE ADXG4 Gelleo
|| Test NSE ALXG4 Gelleo

Figure 5.7

5.3.6 Benefits of automation

Class =~
Production
Production
Production
roduction
Production

Production

Following are some of the benefits of test automation

o High coverage for regression testing

(N o

State . Result
Compieed (i Ffed But ontiuad
Compeed b Fied Bt Contirusd
Completed @Pased
Compieted [Pt
Completed @Pased
Completed A Faed Bt Contnueg
Compited 1 Faed Bt Contnued
Complted [Pesed
Completed @P&s&d
Compied b Fied Bt Contirusd
Compited I Faed Bl Continued
Compeed i Ffed But ontrusd
Completed @Pasad
Compited [Paseed
Completed @Pasad

Date =

1/3/12 3:33 AM
1212 5:05 M
12/30/11 28 P
12/30/11 2:02 PM
12/30/11 1:31 M
12/29/11 3:54 P
12/25/1 3:15 P
/911 7:16 M
/B a5 PN
/2911 04 M
12/29/11 1155 P
/2811 8:55 M
12/28/11 7:34 P
/2811 7:22 M
/211 628 P

Logout: Root User

6:26:17

4:55:03
01102
0:07:53
0:20:8
0:22:48
01342
01451
L EST)
080
40509
L)
0:06:51
0:06:51

0:iz01

Root User
Roat User
Nikunja Das
Roat User
Nikunja Das
Raot User
Root User
likunjz Dzs
Nikunja Dzs
Nikunjz Dzs
Roct Uszr
Roat User
Nikunja Das
Nikunjz Dzs

Nikunja Das

@ Internet

W *\100% T

e Improve the speed of product to market by reducing the elapsed time for testing

e Improve the productivity

o Generate detailed test logs

e Run the scripts across multiple platforms

o Fast, reliable, comprehensive and reusable

e Cost effectiveness

5.3.7 Test automation success factors

Success of test automation depends on direct and indirect factors of the test organisation.

Direct success factors:

e Test process

Test management

Test object delimitation

Test case determination

Test data and test data definition
Test infrastructure and environment
Test tools selected

Employees productivity

Indirect success factors:

Configuration management
Change management
Defect management
Release management

Requirements management

39

6. Identification of improvement candidates

This chapter is talking about the areas that need to give more attention for improving the test
efficiency of the existing test environment.

6.1 System test automation

Test
machine-2
-

Test 2 % Test
machine-3 machine-n

Test Test
machine—4 machine-5

Figure 6.1

Figure 6.1 shows the initial test setup of the database indexing tool. The test server is the place

where we store the test documents, test drivers and execution logs of the test runs. Test machines
are loaded with software under test. The above setup needs a lot of manual intervention for doing
proper test execution. After doing deep analysis on the test setup, we identified this as one of the

main bottle necks.

40

6.2 Install test automation

Indexing tool has multiple builds in each service pack release. Test team needs to ensure that the

drivers are working fine before proceeding with a system test. Manual download and installation

of database and indexing tool drivers are identified as the problem area for improving the test

efficiency. During the analysis stage, team identified the following items for avoiding manual

errors, redundancy and thus to improve the test efficiency.

FTP download of selected levels of drivers to centralized location (Test server)
Copy the specified driver to the test machine

Unzip the compressed drivers and extract the same

Run silent install using response file generated

DB installation on multiple machines

Index tool installation on multiple machines

Un installation of installed drivers after sample verification (if needed)
Generate reports that summarizes results of the job

Sample verification

Scheduled download of various builds

6.3 Lack of risk based testing

Following are some of the points that need to be considered for creating security test plan:

Creating security abuse/misuse cases

Listing standard security requirements

Product architecture risk

Building risk-based security test plans

Wielding static analysis tools

Performing security tests

Performing penetration testing in the final environment

Cleaning up after security breaches

In our study we identified that we can have some improvements in security by following proper

security test process.

41

6.4 Parallel execution of test scenarios

In our case study analysis, we spotted some areas where we can implement parallel processing
concepts and improve the test efficiency. Following are some of the key points selected for
improvements:

o Identifying serially executing independent steps.

e Under utilisation of hardware resources.

e Lack of Modularisation.

e Code redundancy.

e Syntactic optimization of the codes.

6.5 Lack of scheduled execution of the scenarios

In the existing test setup, test team was executing the system test by manually during the office
hours. This was one bottleneck for maximum utilisation of the test hardware. Most of the time
test machines were free during night time and weekends. For improving the hardware utilisation
of the team, we suggested for an automatic scheduled execution of the test scenarios. As per this
suggestion, tester can schedule the test execution based on machine availability. Once we
schedule the execution, the tool will automatically start the execution without manual

intervention.

6.6 Test Management issues

Test team was involved in multiple projects. Due to this multiple activities test manager was
facing many issues in proper work allocation and tracking of the allocated work. Many times
multiple activities created issues to testers for meeting the dead line. After the case study analysis
we suggested a ‘test point method’ of tracking for ensuring that the work is allocated in a

balanced way.

42

7. Implementation and outputs of the research

This chapter is talking about the implementation work that we carried out in the existing test

setup and the major outputs of the research work.

7.1 Regression automation

Figure 7.1 shows the setup that we implemented in our case study. To address the identified
problems of system test execution environment, team evaluated many tools and processes and
finally shortlisted the build forge tool. IBM Rational Build Forge is an adaptive process execution
framework that automates, orchestrates, manages, and tracks all the processes between each
handoff within the assembly line of software development, creating an automated software
factory. Rational Build Forge integrates into your current environment and supports major
development languages, scripts, tools, and platforms; allowing you to continue to use your
existing investments while adding valuable capabilities around process automation, acceleration,

notification, and scheduling.

New regression environment implementation done after a deep analysis of the current test frame
work. Following issues are addressed using the new regression setup:

o Parallel execution of test scenarios

e Scheduling of different jobs

e Log verification from a central console

e Monitoring of long running scenarios from central console

e Report generation

With the new regression setup we are able to move many system test cases to automated

regression environment and thus reduced the system test cycle time. Test team was taking around

43

100 man days of testing effort for each release. After the implementation of the framework we are
able to complete the task in 50-70 man days of effort. This product has minimum 5-7 releases per

year. With this case study we are able to save 1 to 1.5 man years of testing effort.

Figure 7.1

7.2 Install test automation

Manual download and installation of DB and index tool drivers are one of the painful issues we
faced during system and installation testing. We addressed this issue with the development of new
tool named Test Install Automation Tool (TIAT). Figure 7.2 shows the TIAT concepts that we
implemented and Figure 7.3 shows the typical work flow of the TIAT tool. With this tool we are

able to solve almost all the issues related with driver download and installation (Refer 6.2)

44

hine: the machine starting the installation(s)

ne: the machine in test

Figure 7.2

Workflow

Start

Figure 7.3

45

7.3 Risk based testing

Risk is the possibility of a negative or undesirable outcome, so a risk could negatively affect
customer, user, or stakeholder satisfaction. Through testing, we can reduce the overall level of
quality risk. Analytical risk-based testing uses an analysis of quality risks to prioritize tests and
allocate testing effort. By introducing this approach we are able to achieve the following things.
e Find out the important bugs earlier in test execution, that reduces the risk of schedule
delay.
e Finding important bugs than unimportant bugs, reducing the time spent chasing
trivialities.
e Provide the option of reducing the test execution period in the event of a schedule crunch

without accepting unduly high risks.

7.4 Parallel processing

Parallel processing is used for completing long tasks in a short duration of time. Large tasks will
be divided in to multiple numbers of smaller tasks and run concurrently on several nodes
/instances. Figure 7.4 shows the sequential processing of a large task and Figure 7.5 shows the

execution of divided tasks in parallel.

[TOTAL ELAPSED TIME >

Processor 1
& Task(rn time)
Figure 7.4
[TOTAL ELAPSED TIME >
1 .
z
L
4 -
s
q .
7
o -
o
1o & Component task{ron time)
Processors

Figure 7.5

46

In our case study, for increasing the speed of query search on different languages and
environments we applied the parallel processing techniques for completing the task in fast
mode. In the initial setup, searching of the documents on different languages was happening
in a sequential order. Using the new method we are able to increase the search speed of the
query by splitting the sequential scripts in to multiple tasks by considering the language and
environment. Figure 7.6 shows the initial setup of the search process and Figure 7.7 shows the
new processing mode using parallel execution. While splitting the tasks, two types of issues
we need to address.
e Structuring the task

e Preserving the sequence of tasks that need to be executed serially

[TOTAL ELAPZED TIME >

®
-
g = o o o = &
7 = - W »
e Em s s Es = []
Q e Em E as Es Es Em o s
. - o o s s o omm o 5
® | task(run time)
- wait
Processors
Figure 7.6

TOTAL ELAPSED TIME >

= IO O =] (B A In Wk kY =

[=]
apoOReROIORD

& tazk(run time)

Processors

Figure 7.7

47

7.4.1 Database environment for parallel execution
Figure 7.8 shows the database environment and hierarchical relationship between systems,
instances and databases. For running different tasks on different instances we need to set the
OS environments variables and data base environment and registry variables. Following are
the some of the characteristics of our parallel execution environment:

e Each language has its own instance

o Code page needs be to set for each language

o All the instances on the same server behave like separate installations of database

o Allinstances are sharing same database manager program files

e Each instance can run task concurrently

e Task synchronization

e To be runon using single or multiple CPUs

e Problem broken in to discrete parts that can be solved concurrently

e Each part is further broken down in to a series of instructions

e Instruction from different parts execute simultaneously on different instances /CPUs

m E -

.-—-Ig IrasTardcE 1 r—ég IS TAMNCE 2
-

-

T y

IaTaRASE DaTasme e
e e e e w ey Far e o LA T Ere e

D T AaBRASE 2 . @
CFE ThraEABRASs bl e
O FUGLTRL T FILE
TaTmBRASH
T e e e
——— 57]

TOFRD That sk Rfas~ acsi
* s FoE

[Tt s Pl o FT PR
TP R A el L S

Figure 7.8

48

problem instructions

iN 13 f2 t1

Figure 7.9

Figure 7.9 shows the pictorial representation of multiple tasks runs on different CPUs. By

introducing the parallel processing in test execution, we were able to achieve the following
things
e Save time: By splitting the sequential task in to multiple parallel tasks we are able to
finish the search related testing ina 1/5™ of the original time
e Save money : We are able to save tester’s time and machine time
e Solve larger problems : For testing the creation of larger indexes and index updates,
processing of documents on multi core machine is very helpful

e Provide concurrency in execution

7.4.2 Parallel queries

This approach is introduced in our case study for analysing the reliability of the indexing tool
while running multiple queries in parallel. In this setup the database will be residing on one
machine and various kinds of documents (pdf, html, xml etc.) will be regularly added to the
database. The index update will be happening in a regular time interval. While doing index
update, parallel search queries will be sent to the database. With this scenario, we are trying to
simulate a real time customer production environment. Here we use a multi threading concept.
From the remote machine, we will execute the search queries as multiple threads. Below are

the steps that we need to follow for running the parallel queries.

49

e Setup the data base machine and remote client

e Export the server and load the test setup

e Set the DB2 communication using TCP/IP

e Catalog the test server nodes and database on client machines

o Create proper directories on server machines for creating the database and indices

e Runthe test suite on test server

e Run the parallel queries from the client machines after connecting to the server
database

e Monitor the test execution and verify the logs for errors

e Clean up the machine after test execution

Refer Appendix | for scripts and queries

7.5 Scheduled execution

Figure 7.10 shows the screen shot of the scheduling screen in build forge execution framework.
We implemented the scheduling option in our framework for maximum utilisation of the
machine. With this option the test team is able to schedule the execution of regression scenarios

in advance based on the availability of the machine.

Rational| Build Forge

G L

& Home [Eschedules | had seheuedRun |
=
] Projecs Schedule List
W i @ .
@ Jobs Description Project Class + Owner Environment - Selector Hext Run
[F] schedles
U Environments
%Sewers
5 advinstatcn
@ Help

Q’P(Nzwintry-]‘ dave Schedule || Copy Sehedule H Resync Environment || Delete Schedule

provm—

Dﬁcriptmn:|:| Accﬁs:‘au”d Enginger U‘ Oeren‘RmuSEI u‘

Envircnment:

Aute-Sync Environment :
Mmutﬁ:\zl Haurs:[l Daiﬁ:EI Months:EI Davslj

Selector:

(c) Copyright Internations! Business Machines Corporation 2003, 2010, Al rihs reserved

Figure 7.10

50

7.6 Test Management using test point method

Proper tracking of the test execution and test management was one of the improvement area we
noticed in project execution. By introducing a new tool called Test Tracking Tool (TTT) and a
new method named as test point method, we are able to address most of the issues we faced in
this area. TTT, an IBM test tracking tool helped us to track the test status of each tester
separately. TTT has multiple options to customize the tracking view based on our requirements.
We used to follow a test point method, where we assigned test points to the scenarios based on
the importance and duration of execution. This helped us to easily predict the duration of the test
cycle. Using this method, test manager will get a clear idea, how the testing is progressing. Based
on the test points completion manager can take early decisions like, whether the testing will
meet the project dead line, whether the team is overloaded, is there any extra resource needed,
etc. And he can make adjustments in manpower utilization based on the test point’s completion.
Initially we were facing problems for reporting daily progress of the testing due to the
incompletion of long running scenarios. Tracking the progress on each platform (product used to
test on 20 + platforms) and getting the correct report from each tester was also another painful
task. This caused a lot of confusion in test management for rotating resources to other work and
for re allocation of scenario to different testers. After implementing the test point method and
graphical report using test points, we are able to solve the test management issues

Below example shows, how a test manager is planning the testing using test point method
Assume that 10 test points (TP) = 1 man day

After analysing the selected scenarios of the test phase, manager got total test points of 560 TP.
This means he need total 56 man days of execution. Based on test start date and end date
manager can easily decide the number of testers need to allocate for this test cycle. For example
the manager want to finish the execution in 28 days, he can allocate 2 people for this test phase
Time allotted for test completion = 28

Total test points in test cycle = 560

Number of test points need to cover in one day = 560/28 =20 TP

Total tester needed = 20/10 = 2 person

Based on this calculation, the manager can easily monitor the test progress and if there any
shortage in execution he can easily adjust the resources with below calculations

Planned number of test points completion on N day of execution = N * 20

Actual number of test points executed on N" day =M

o1

Difference in expectation = N*20 -M

Eg: -After 10" day as per the plan we need to complete 10* 20 TP s. But actual number executed
is only 140.

Difference in plan is 200-140 = 60 TP s

That means as per the plan, testing is lagging behind by 3 days.

Here test manager can change his plan by adjusting the days/resources etc.

This early planning will help the manager to avoid missing dead lines of test execution. Also with
this approach he can prepare pictorial representation of test progress. See the below sample chart
of execution. Using the below graph (Figure-7.11), manager will get a clear picture of the
execution progress. Also he will get an idea of total defects found in test phase. With this

approach the manager can handle any number of releases without any management issues.

Test progress test ceen

Yellow
150 4 |

100
50 - ‘
0

600

550
500
450 +
400 +
350
300

Defects

250

Test Points

200 -

02/08
02/09
02/10
02/12
02/15
02/16
02117
02/18
02/19
02/22
02/23
02/24
02/25
02/26
03/01
03/02
03/03
03/04
03/05
03/08

02/ 11

Date
Figure 7.11

7.7 Measurable results after implementation

Based on the implementation proposal and the action taken to improve the test execution and test
management of indexing tool, team was able to address the challenges specified and actually
benefited in terms of test effectiveness and productivity improvement. Overall, it improved the

test management. Below are some of the significant benefits and improvements achieved.

52

Implemented new regression frame work and thus are able to increase the testing
coverage.

Reduced manual intervention for the system test and thus saved 30-50% system test
execution time (Approximate saving of one person year).

Introduced parallel execution of the scenarios on test machines and that helps to improve
CPU utilisation.

Report generation

Automated the DB, index tool driver download and installation process

Scheduled execution of test scenarios

Introduced new method called - Test Point method - for tracking the test execution
progress

Introduced new database tool -TTT - for tracking the individual test status

Improved hardware utilisation using VM ware and through machine sharing option

New GUI interface

Central console for analysing the test logs and reports

7.8 Recommendations

Based on the work done by the team in the test execution and management area, below are some

of the recommendations to testing engineers. This can apply to any software testing project where

there is a scope of automation and efficiency improvement.

Know your efficiency to know what to improve

Institute risk based testing for catching defect in early test cycle

Setup regression frame work as early as possible and move repeatedly executing system
test scenarios to regression

Introduce light weight test automation

Use IBM Rational Build Forge, that you can easily integrate into your current
environment and support major development languages, scripts, tools, and platforms

Try to exploit the maximum existing investments while adding valuable capabilities
around process automation, acceleration, notification, and scheduling.

Automate your install verification test (IVT) so that you can run the IVT for each and
every build without manual intervention

Introduce proper test tracking system using easily understandable graphical approach

53

8. Summary and Conclusions

This thesis followed a case study approach in a database environment. Throughout the research,

team focused on identifying the limitation of the existing environment and suggested how we can

improve the test effectiveness by using various tools, theories, standards etc. The investigations

gave results showing possibilities for increasing the test efficiency. At the end of implementation

stage, team got an appreciation certificate for saving a minimum of one person year of effort

(Refer appendix — 1).

8.1 Outputs of the research

Following are the major outputs of the research work:

Introduced a new simple approach called test point method for easy tracking of the test
execution progress

Implemented a multi threading algorithm for simulating the customer environment for test
execution

Introduced a new algorithmic solution for solving the issues in system management with
a title of “Generating index for data stored in a conf file: A new way of System
management”

Reduced manual intervention for the system test and thus saved approximate one
personal year of test execution time

Introduced new tool called TIAT for install and download

8.2 Publications

Following are the publications prepared during the thesis work:

54

Effective testing: An investigative approach for improving test efficiency (International
Journal of Scientific & Engineering Research, Volume 3, Issue 2, February-2012-1SSN
2229-5518)

Software Test Automation Process —STAP — (Presented a paper in eit-12- National
conference)

Effective testing: A customized hand book for testing professionals and students- has been
accepted for publication in IJSER, which will be published in IJSER Volume 3, Issue 5,
May 2012

Generating index for data stored in a conf file: A new way of System management: This
algorithm Published in IBM developer works article

Effective testing: A combinatorial approach for improving test efficiency — Wrote a paper

and waiting for submitting to an international conference on testing

8.3 Validation of hypothesis

From the project results we validate the hypothesis as follows

Manual intervention for running the test suites: After evaluation of the existing test setup
we came to know that the reason for the less test efficiency is due to manual execution of
the test suites and for reducing the same we decided to integrate all the test suites in an
automation frame work and selected the Rational build forge for the same.

Manual download and installation of DB and indexing tool drivers: Install verification of
each build for the DB and indexing tool was very repetitive and time consuming task. The
team was spending around 2-3 person months for install test. We decided to automate the
same and introduced a new tool TIAT for the same.

Parallel execution of different scenarios on different machines from central point: We
investigated the existing lab setup of the test environment and came to know that the CPU
utilisations of the various machines are very less. For improving the test efficiency we
introduced instance level and processor level parallelism.

Scheduled execution of multiple scenarios: Due to manual execution of the test suites,
most of the time, during nights and weekends the machines were free. We implemented a
scheduled execution for addressing the issue. With this mechanism we are able to improve
the hardware utilisation during nights and other non office hours.

Tracking the test status for multiple service packs: Introduced a new tool called Test

Tracking Tool for point wise tracking of the each service packs.

95

e Tracking the test progress for each service pack: Introduced a test point method for proper
tracking of the test progress using graphical method.
e Tracking the test status of the individual test team members: Test tracking tool has an

option for individual tracking of the tester.

8.4 Future work
Following are the areas that we planned for further investigations related to efficiency
improvements of the testing:

o Effective testing using combinatorial testing approaches

¢ Reliability analysis of real time system

e Issues in test management for outsourced testing projects

e Issues in Knowledge transfer

56

Appendix I: Test script sample

This portion contain the scripts that are used for setting up the customer environment (Refer
7.4.2)

[Environment setup: Common to database machine and remote client]

Export Server= <sever machine>

. ttcsetup nse svt R2-3

[DB2 communication]

db2set DB2COMM=TCPIP

export SvceName=DB2_"$DB2INSTANCE"

db2 Update DBM CFG Using SvceName $SvceName

db2stop

db2start

[On remote clients]

db2 Catalog TCPIP Node $Server Remote $Server Server $Port Number

Eg: - db2 Catalog tcpip node node3 remote sunspool.in.ibm.com server 60000
db2 Catalog Database A819UPD At Node $Server

db2 Catalog db A819UPD at node node3

db2 Terminate

db2 List Node Directory

db2 List DB Directory

[On database machine]

mkdir -m 777 -p "$TTC_DATAROOT"/nsesvt/indices/"$USER"/A819UPD
mkdir -m 777 -p "$TTC_DATAROOT"/nsesvt/work/"$USER"/A819UPD
testall -noabortonfail -suite: index_update_1000x

[On remote clients: Run queries and check output]

export Parallel Queries=25

db2 Connect To A819UPD User nseglwe Using test@123

rexx /svttest/ttcR1/nsesvtR2-3/tools/Inb_test_tools/longLastQuery_aix_special.rex $Parallel
Queries $Prefix

[On database machine: Check for locks while queries are running]

Open a new server session and do the ttcset up

Check for locks periodically:

57

rexx [svttest/ttcR1/nsesvtR2-3/tools/Inb_test tools/lockManagerCheckPlusPlatform.rex
<number of loops> <sleep time interval> <platform (Unix or windows)>

Eg:- rexx $TTC_ROOT/tools/Inb_test tools/lockManagerCheckPlusPlatform.rex 1000 10
Unix

[On database machine: Check for locks after the test is done]

rexx /svttest/ttcR1/nsesvtR2-3/tools/Inb_test_tools/lockManagerCheckPlusPlatform.rex 1 0
Unix

[On remote clients: Check output files for NSE errors]

grep -in CTE21 /ttcdata/"$Prefix"_mass_search_special* > /ttcdata/"$Prefix" CTE21.txt

grep -in CTE0116 /ttcdata/"$Prefix"_mass_search_special* > /ttcdata/"$Prefix" CTEO0116.txt
grep -in CTE0119 /ttcdata/"$Prefix"_mass_search_special* > /ttcdata/"$Prefix" CTE0119.txt
grep -in CTE0157 /ttcdata/"$Prefix"_mass_search_special* > /ttcdata/"$Prefix" CTEO0157.txt
[Cleanup activities]

[On remote clients]

db2 Uncatalog Database A819UPD

db2 Uncatalog Node $Server

db2 Terminate

[On database machine]

export DB2DBDFT=A819UPD

db2 Disconnect All

db2text Drop Index Admin.Index For Text

db2text Disable Database For Text

db2text Stop

db2 Deactivate Database $DB2DBDFT

db2 Drop Database $DB2DBDFT

Script to create one long lasting process to run queries

/**/

/* Script to create one long lasting process to run queries */
/* Done by Abdul Rauf 31/01/2012 */
/* Syntax: longLastQuery_aix_special.rex */

/**/

parse arg queryL.oops myld.
QueryThreads = queryLoops
if queryThreads =" | myld = "then do

58

say "Please enter number of threads"
say "Syntax is longLastQuery_aix_special.rex <number of threads> <my Userid>"
end

[* trace 'ia' */
i = queryThreads
USER = myld
do while i>0
[* "™sh -c 'db2 -tvf /svttest/ttcR1/nsesvtR2-3/db2_search/mass_search_extended.tvf
1>/ttcdata/"||USER||"_mass_search_extended.out"||i
"2>/ttcdata/"||USER||"_mass_search_extended_err.out”|li "™ &" */
"sh -c 'db2 -tvf [svttest/ttcR1/nsesvtR2-3/db2_search/mass_search_special.tvf
1>/ttcdata/"||USER||"_mass_search_special.out"||i
"2>/ttcdata/"||USER||"_mass_search_special_err.out"||i " &"
say "This is the:" i "run"
i=i-1

end

exit

Sample content of the mass_search_special.tvf

*hkhkhkhkhkkkhkkkkhkkhhkhkhhkhhkhkhhkhhkhhhkhhkhkrhkrhhrhkhhkhkirhkrhkhrhkhhkhirhrhhhhhhhkhihhirhihhhiikhikikiixk

-- DB2 Net Search Extender Test

-- Version: 9.1

-- Usage: Call from the operating system command line:

-- db2 -tvf search

-- For Windows NT: first enter the db2 command line environment
-- with db2cmd command

*hkkhkhkkhkkhkkhkkhhkhkhkhhkhhkhkhhkkhhhhhkhhkhhhkhhhrhkhhkhkihkrhhrhkrhhkhihrhhhhhhkhhhihhihidkhiikiixk

connect to A819UPD user db2admin using test@123;

-- 1. Query

SELECT count (FILENAME)
FROM AXML.MASS
WHERE CONTAINS (CLOB_DOC, "Tippettstudio™) = 1;

-- 2. Query
SELECT count (FILENAME),

NUMBEROFMATCHES (CLOB_DOC, "Tippettstudio™)
FROM AXML.MASS;

-- 3. Query
WITH TEMPTABLE (DocSegNo,score)
AS (SELECT DocSegNo,
SCORE (CLOB_DOC, " Tippettstudio™)
FROM AXML.MASS)

59

Appendix Il: Screen shots

This section will give an idea about the various screens of the regression test environment

Screen 1- Build forge project screen

Rational| Build Forge

@ Heme

| Projects
@ Adzplars
@ Adzptor Links
) Classes

T oo Fites
L‘._}‘ Templztes
Iﬁ Libraries
{6} sobs
[scheduies
‘\5‘-) Envircnments
Eﬁ Servers
o7 ndminisration

Q Hep

=] Projects|| Add Project
[©

Project ©
Test NSE ADXG4 Galieo

Test NSE HP
Test NSE HP VS5 FP8

W[5

Test NSE Solaris

Test NSE ADE4 V35 FP3
Test NSE ADXE4 V97 FPE

Test NSE LINUXEd Galieo
Test NSE LINUXEd V35 FP3
Test NSE LINUXE4 v57 fob

18 of 19 Auto Paginate

=] Project: Add Project | Save |

Snapshat Tag Environment
Base Snapshet o NSE ENV
Base Snapshat V95 FP3 NSE ENV
Base Snapshet VS5_FP3 NSE ENV
Base Snapshat VSLFPIL NSE ENV
Base Snapshat Ve5_FP9 NSE ENV
Base Snapshat Vo5_FP9 NSE ENV
Base Snapshat Vot NSE ENV
Base Snapshat Vo5_FP9 NSE ENV
Base Snapshat Vot NSE ENV
Base Snapshat vill NSE ENV
Base Snapshat w35 FP9 NSE ENV
Base Snapshat vill NSE ENV
Base Snapshet aLfpll NSE ENV
Create New Snapshot | fault || Copy Project || Delete Project ‘

Project Details | Ta0e R s liotes {0} Snapshot

Screen 2- Build forge project execution screen

Rational; Build Forge

Selector 4
giforce buid
aiforce nsealie
giforce nssahve

rEmanujan

ramanuizn nssalvie

remanuizn nseale

bird nseqlvie

bird nseq

blr3 nseglie
betal nseclve
blr3 nseqlvie

sunspool nsegle

_
i

A o

{4 one o start
= pos =
s | [Filr] shoning - 2t of 21 il 7 ¥ page
u! Libraries
@ e Projects and Libraries Snapshot Tag Class Environment Selector v
@Sﬁaﬂ @ NSE Win LIE Baza Snapshot BUILD S8 Production -+~ Build Enginser
Test NSE A Galleo Base Snapshat ViDL NSE EWV airforee buid - Buid Engineer
{0} e Teat NSE AIXG4 W35 FPS Basa Snapshot V35 FR3 NSE ENYV aiforce nssale -+~ Buid Enginser
(0 steis Test NSE AT V57 FD6 Base Snapsht V5 Produchin NGE EWV srtoce psegive - Ruid Enginesr
U Environments Test HSE HP Bas= Snapshat V81 FRLL Production NSE EHYV rEmenuizn nssghis - Build Engineer
% Sarvers Test NSE HP V95 FPY Baze Snapshot g5 FPY Produstion NSE ENY ramanuizn nszalve - Build Enginzer
:;_, Admindraion Test NGE H P Basz Snapshat V35 FPY Production NSE ENV rEmanuizn nszalie - Buid Engineer
@ bep Test NSE LINUX3 Galleg Baza Snapshot viot Production NSE ENV birf nsealwe -+~ Build Enginser
Test NSE LINUX32 V35 FP3 Base Snapshot V95 FP3 Production NSE EWV birl nseqlue - Build Engineer
Teat HSE LINUX32 V97 FRS Basa Snapshot viol Prodution NSE ENY birt nssalie - Build Engineer
Test NGE LINUXGA Galleo Base Snapshat Vil Production NSE ENV bird nsealus - Buid Enginzsr
Test NSE LINUE4 V35 FPY Baz= Snapshat vi5_FP3 Production NSE ENV betal nzealvie - Build Enginzer
Teat NSE LINUXES v37 fof Bass Snapshot viot Production NSE ENV ~-- Build Enginzzr
Test HSE Soleris Base Snapshat vaL fplt NSE ENV —- Buid Engineer
Test NSE Solaris w37 fpf Baza Snapshot Ve fpll NSE ENV -+~ Buiild Enginzer
Test NSE Solaris V5 FPY Base Snapshat V5 fp9 Production NSE ENV - Buid Engineer
Test HSE Win32 Baze Snapshot ViLFPLL Production NSE EHY gama! dh2admin -+~ Build Enginser
Test NSE Baze Snapshet Va5 PR3 NSE ENY gamal db2admin - Build Enginzer
Test NSE Base Snapshat vi5_ P Production NSE ENV gamzt dbdadmin - Buid Engineer
Baza Snapshot Va5 FP3 Production NSE ENV -+~ Build Enginear
Base Snapshat V35 FP3 Production NSE ENV bitad dbd - Build Engineer
—. el vl e T i rtemet PR

60

Screen 3- Executed job status screen

Console Logout: Root User
He\p@

43 Jobs
BN e | (Y N il
[:I] Showing 24- 44 of 51 bET Page 4of5[] [
[Tag ¢ Projects and Libraries Class & State ¢ Result + Date Runtime Ourer
O 4G Job nse galleo L1120 ﬁfst NSE LINUEE4 Galieo Production Completed & Failed But Continued 1/412 3:33 AM 0] Roat User
N 408 Job nse v35fpd LIL0E |55 Test HSE ATYE V5 P8 Producti Completed & Faied But Continusd 1/3/123:3 AN [Root User
Il {0 Job nse va5fpd 111108 @Te;t NSE Selaris V55 FPS Producion Completed & Faied But Confinued 1/2/12 505 PH 45503 Root User
O 40¢ Job nse galleo L1206 @Teﬂ NSE AL Galleo Production Cormpleted Paszed 12/30/11 218 M 0:11:02 Wikunjz Dzs
O 198 Job nse galleo 111206 E‘Tﬂ NEE ATXE4 Galiko Producion Completed Pessed 12(30/11 1:31 PM 0:20:52 Wkunjz Dzs
[{Gh Job rss 300 |5 st HoE L 35 3 Preducion Compled i) Fded Bl Contrued 1211 %16 PM 0:1342 Roct User
0 Q¢ Job nee galleo 111206 @Te‘t NE ATXE4 Gallko Producion Completed Passad 1B/ 716 PM 0:14i51 Wkunjz Das
0 40p Job nse galleo 111206 @Taﬂ NSE ADGS4 Galle Completed Paszed 12211 6:52 M 0:13:34 Nikunja Das
[T 4k job rse calleo 111206 &‘ Test NSE ALY Producion Completed & Faied But Confinued 12(25/11 6:04 PM 0827 Nikunja Das
[408 Job nse vSifpld D|"'5t NSE Solaris V35 FP3 Production Cormpleted @} Failed But Continued 12/29/11 1:55 PM 4050 Roct User
Il 19 Job nse vtfp1t @Tsﬂ HSE LINU Completed & Faied But Confinusd 12(28/11 %:% PM £k Root User

Screen 4- Server added to regression environment

m Cansole lo

@ Hame LLi'{_‘,er\,ers ‘ Add Server |
- e oy
|5 Projcts betad | |}IFM Showing1- B8 of 68 Auto Paginate)[4 Page
M Yane ¢ s ¢ ol ¢ Host - B
{SJ Jobs @Hr?) Buld Enginesr bigndbm.com fimp
(2] Scheduls @b\rl nsenlve Build Engineer brLinibm.com fmp
U Environments @M Buld Enginesr birZin bm.com fmp
= (& srforce root Buid Engineer aiforee.n.bmcom fimp
5 Servers S S
Buld Engineer aiforczinbmicom fmp
u}\h S Buld Engineer aiforcen.bmicom fmp
L'qu Celetrs Buld Enqinesr arcoverlLinbm.com fmp
L Server Auth G2 sirfree nsclee Bl Enginesr siforeeinbm.com fmp
/d drimsraion @ Buld Enginesr betzS.nbm.com ftp
@ i @b}rl nsealip Buid Enginesr birtnibm.com fmp
bt nsegieat Buid Engineer birLinbm.com fimy
@_-n_ [mp
(bt ru Buid Enginesr blLinibm.com fp
Buld Engneer betatin.bm.com fp

Test Conni

Capy Reset Jof Count |

E(NewSemr]‘Save

61

Screen 5- Suite wise execution status

() b b e ittt el

Siahz: Completed - Failed But Confnued - Bkt Date: 3/7/1210:07 PH Projct: Tast NSE Solari (Base Snapshot) Sector:sunspaal nsaglwe (Base Snapshot) e PmduttianU

:ﬂ Shuwingl- b of 8 Auto Paginate PugeJob | Restutlob | Crce o me 1ot

Step Sten Hame Result Server Selector) Runtime Chains
19, i e 10 @P&iﬁd snspon eaghe) R
1 1. ki mbobypes @Passed sunspoc) nszqhie (Defaut) L
3 Y, oy e 8 e @Passed snspon eeghe) [
¢ Y oy s s s ve @Passad sunspon neegie) (i
§ Yoynsshd dudiap &Failed But Coniued Defaut (Deful) e
b Loyvnsand dshipp &Failad But Confiued Defaut (Defaut) i
7 Yy st 8 s U @Pﬁ&d sinspon neeghe) B
b ¥, oy ang v ok @Pﬁ&d anspon g D) (L)
Screen 6- Log display screen
Help@
15 Jobs >> Job nse v1fpll
s Completed Filed But Confined ~ Bt Defe: 3/7/12 40:07 PH. Project Test USE Solaris (Base Snapshot) - Seecor: sunspool nseclee (Base Snapshot)
E | PurgeJob || Restartlob || Cancel o
Step Step Name Result Sarver (Selector) Runtime Chains
1 1 index updste 1000 Passed sunspoal_nseqivis Defaut) b1
EfEP MAN]FE’:T ALHH SEr EXEC SSL EN\' MKD&R RESULT rrw scruw AMSE[UP m‘mu Refresh
s
Showing 1 - 23304 of 33604 Display Al Slpage foftli® B
§943 3/8/12 12:52 IM TESTALL
8946 3/8/12 12:52 MM TESTALL Number of rows read = 300
8947 3/8/12 12:52 MM TESTALL Number of rows skipped =10
8948 3/8/12 12:52 I TESTALL Number of rows inserted = 500
8949 3/8/12 12:52 MM TESTALL Number of rows updated =10
B950 3/8/12 12:52 B TESTALL Number of rows rejected =0
8851 3/8/12 12:52 I TESTALL Number of rows committed = 500 |
8952 3/8/12 12:52 M TESTALL
8953 3/8/12 12:53 M TESTALL CTE0001 Operation completed successfully.
BO54 3/8/12 12:53 MM TESTALL EXEC» rexx /svttest/ttcR1/nsesvtR2-3/tools/lnb test tools/docloader.rex /svttest/ttcRl/nsesvtR2-3/1o
8955 3/8/12 12:53 MM TESTALL
8956 3/8/12 12:53 I TESTALL Database Connection Information
8957 3/8/12 12:53 MM TESTALL

B958 3/8/12 12:53 MM TESTALL Database server = DB2/5UN64 9.5.9

anrn Alnian an.ra 3w TERTATT AT cmicewien TR = WATATIT

62

Screen 7- Log summary

Rationall Build Forge \

‘ﬁ Homa
2] ot
w Lbrariss
{C:)} Jobs
) st
{9} Semaphares
@ scoedis
'\J Environments
3 Servers
,f’ Administration
@ Help
] Resls
2] i of Mateids
1] Mot)
E-" Step Logs
4 indsx_update 1000
Eu multpl_xmlcoltypes
s ary_nk _struct_v8 udf we

Screen 8- Project

f‘ Home

Projects and Libraries

{6 sk win LB

{6} Tt NSE ADGH Gl
{0 Tt e 0t Vo5 9
{68 Tes sz o

{0 Tt st 0 55 09
68 Ted NS 1IN Galeo
{0 T e v s
{2 Ted NS LINH Gaeo
{0 Tt e LNt 5 8
{6 Test N s

{0} Tet NSE Soors V35 B9
{6 Test e Wi

{0 Tet s w5 8
G} Tet NSE wins o

>

0 Jobs > Job nse v91fp11

Status: Completed - Failed But Continued - Built Date: 3/7/12 10:07 PM Project: Test NSE Solaris (Base Snapshot) Selactor: sunspool nseqlwe (Base Snapshot) b F’“““‘“”U

\:I] @ Purge Job || Restartdob || Cancel

Step Step Name Rﬂlh Server (Selector)
1,y inde updste 1000 sunspeal Defaul)

;rEp MAN]FE.' IAUTH Isrr IEXEC

4
Showing 1 - 32604 of 33604 Display All

Cansole - Loge

Runtime
0333

4l page

ENV IMKD!R IRESULT Im Iscmr IAM;Erup ITE’AL

1oft

EEEES T R TESIALD
33592 2 6:41 M TESTALL ~ Status Report

33593 3/B/12 e:41 DM TESTALL

33594 i TESTALL Logfile.........vewvenenennod [ttcdata/trclogs/nsesveR2-3/SUITE INDEX UPDATE 1000X nseqlws
33593 TESTALL Time SPeBC......vexvivveesessst 13987.159737 seC (~1233 min)

33596 Number of test suites.........: 42 (incl., 2 INIT/DEINIT suites)

33597 Number of test cases... i 1125 (incl. 1122 external commands)

33588 Mmber of eITOZ3. . vviiueiiiiiit 0

33599

53600 1‘.‘.\1‘.‘.\1‘.‘.\1‘.‘.11‘.‘.11"."""“"“"“""""""""""‘.""“111‘.111‘.111‘.111

33601 £

33602 ALL 7‘.‘.11‘.‘..11‘.‘.11‘.‘..11‘.‘..11‘.‘"J.‘..‘in..‘".‘.\'].‘..‘i"‘f'ﬁ.l FEHHH

33603 end [/tmp/Test NSE

wise execution summary

14 0f 14 Display All 4 |4 Page
Snapshot Analyze Last Job Start Duration Total Jobs Avg Duration Confidence Pass Wam

Base Snzpshot Analysis Repart 9/15/11 12:12 AM 10s 1 10 : 1

Base Snapehit Anghysis Repart YT/ 244 AM % PR 845 ¥ 1
Base Snapshot Anshysis Report 15/12 2:00 AM 5150 i 141635 1756646 1
Base Snapshat Analvss Report Y1712 247 M s 3 T3 590465 11
Base Snapshot Rnshysis Report 1/16/12 251 AM 95805 2 143%.5 4434 1
Base Snapshot Analvss Report 122811 5% W 1% B 1575415 12461 P 3
Base Snapshot Analysis Report 12/27/118:35 PN 1925 i S5 65807 1 1
Base Snapshot Analysts Report Yi7/12 245 AM I jt] 128137 1502.08 g 1
Base Snapshot Analysis Report Y17/12 154 AM 557) 15661675 14552.82 2 |
Base Snapshet Anahyss Report 3712 10:07PH a7 3 16455 W% i1
Basa Snapshot Analysiz Repart Y112 L5 AM 2] 1435 5508.71 4
Basz Snapshot Analysis Report 11/47/11 12:48 P 17 1 101,44 733 7

Base Snaphict Anahysis Repart 116/12 326 AM S 2 BI%: B8)

Base Snapshot Analysis Report 36/12 452 AM 5305 i 64545 63314 1

63

Help @

TofL{x| [»

Fail

1

1es

Screen 9 - Build duration Vs Build instance graph

2000 2 586
2800
2600
2400
2200
c 2000 1,767
S 1800 i
:% 1600
S 1400
51200 1
D000
800 | gggean
600

400
200 toraresann:

304334232320032322322000022322200333333 33666465

Build instance
Screen 10 - Scenario runtime graph

Step Average Runtime for Server
o | 1 533
&3; : 617
e

g | 401
e 03
—— 03
W = 188

. 419
Q e 1)

(‘?@"9!‘5" ' 19 Server Name
ISP 7°6 [airforce_nseqtwe

o I

7 i e 338

Ez__of Q gf [airforce_nseqlip
E—— 3] - .
airforce_nseqlee

Step Name
s
o
{:-.
Gs

[TN A
Step Average Duration

64

Screen 11 — Sample capacity report

ooon 66,248

65000

60000

55000
_ 50000
e 39,196
£ 40000 |
8 35000
& 30000
5 25000

20000 - so16524

15000 24141634, 398

10000 P

50001 49 401 275 704 12811075
0l — 2 i wm
Projects

65

Appendix I11: Recognition certificate

This Certificate Is
Issued in Honor of

Abdul Rauf & Nikunja B Das

for

their contribution in improving the NSE test efficiency by introducing
automation. This resulted in major effort savings in the current test
activities and an expected effort savings of one person year for the

coming years.

5 Focus and
Tde Passion for
Your Work

Girish Venkatachaliah
Director-Information Management
Date_01Dec2011

Eminence and Excellence Recognition Award

66

Appendix IV: Paper presentation certificate

240 CHRIST

\;&ﬂm% UNIVERSITY
e Bangalore,India

&5

Declared as Deemed to be University under Section 3 of UGC Act 1956

Certificate

This is to Certify that
Ms. ABDUL RAVF E.mM.

authered/co-authored/presented a paper titled
Software Gect Aubo mation m.ER ¢ —H m.::u\._

in the Third National Conference on Emerging Trends in IT eitl2

organised by Department of Computer Science and Faculty of Engineering,

Christ University, Bangalore, held on 2 March 2012

il [

Dr (Fr) Thomas C. Mathew Prof. Joy Paulose

Vice Chancellor Organizing Chair

67

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

References

Cem Kaner, Jack Falk, Hung Quoc Nguyen, ‘Testing Computer Software’ 2™ Edition,
2001, ISBN: 81-7722-015-2.

Boris Beizer, ‘Software Testing Techniques’, ik Reprint Edition, 2002, ISBN: 81-7722-

260-0.

Booz Allen Hamilton, Gary McGraw, ‘Software Security Testing’, IEEE SECURITY &
PRIVACY, 2004, PP 1540-7993.

‘Test Plan Template’ (IEEE 829-1998 Format), 2001, Software Quality Engineering -
Version7.0.

Toshiaki Kurokawa, Masato Shinagawa, ‘Technical Trends and Challenges of Software
Testing’, Science & Technology Trends, 2008 — Quarterly review no.29.

IBM Rational build forge V 7.13 — Information Center document.

Viraj Kumbhakarna, ‘A Practical Approach to Process Improvement Using Parallel
Processing’, PharmaSUG2011 - Paper POO03.

Lars-Ola Damm, ‘Evaluating and Improving Test Efficiency’, Master Thesis, Software
Engineering, June 2002, Thesis no: MSE-2002-15.

K. Burr and W. Young, ‘Combinatorial Test Techniques: Table-Based Automation, Test
Generation, and Test Coverage’, Proc. Int’l Conf. Software Testing, Analysis, and

Review (STAR), 1998; http://aetgweb.argreenhouse.com/papers/1998-star.pdf .

[10] Rick Kuhn, Yu Lei and Raghu Kacker, ‘Practical Combinatorial testing: Beyond Pair

wise’, 2010 \http://csrc.nist.gov/groups/SNS/acts/itpro-final.pdf .

[11] D. Richard Kuhn, Raghu N. Kacker, Yu Lei, ‘Practical Combinatorial testing’, NIST

Special Publication 800-142.

[12] Elfriede Dustin, http://www.combinatorialtesting.com, December 2011.
[13] Ambler S.W., “Introduction to Test Driven Development, 2006°.

http://www.agiledata.org/essays/tdd.html, December 2011.

[14] Binder R., ‘Testing Object-oriented Systems’, Addison-Wesley, 1999.
[15] Marciniak, J., “‘Encyclopedia of Software Engineering’, John Wiley & Sons Inc, 1994,

ISBN 0-471-54004-8.

[16] IEEE Std. 610.12-1990, ‘Standard Glossary of Software Engineering Terminology’,

1990.

68

[17] A Nagappan, ‘Linux Desktop Testing Project— LDTP tutorial’®
http://Idtp.freedesktop.org, August 2011.

[18] IBM, ‘Federated Integration Test (FIT)’
http://salwiki.rtp.raleigh.ibm.com./confluence/display/fit, August 2011.

[19] SQS Software Quality Systems AG, ‘Software test automation —White paper’, August
2010.

[20] Rex Black, ‘Advanced Software Testing vol.1’, Fifth Indian Reprint ,2011,
ISBN: 13-978-81-8404-698-4.

69

Acknowledgements

Many people contributed to this dissertation in innumerable ways, and | am grateful to all of
them. First and foremost, |1 would like to express my sincere gratitude to my advisor V Balaji
for the continuous support of my Mphil study and research, for her patience, motivation,
enthusiasm, and immense knowledge. Her guidance helped me in all the time of research and

writing of this thesis.

I would like to thank Mohammed Shaffi - Project Manager - IBM India, who has given an

opportunity for conducting the case study in IBM Lab.

I wish to express my sincere thanks to Nikunja B Das -Test Engineer - IBM India, who helped

in automation works for making the regression test environment available for this work

My sincere thanks to Saleema. J.S for her valuable advice and friendly help. Her extensive

discussions around my work was very helpful for this study
During this work I have collaborated with many colleagues for whom I have great regard, and
I wish to extend my warmest thanks to all those who have helped me with my work in the

Department of Computer Science, Christ University — Bangalore — India

I owe my loving thanks to my parents, Ahammed Kutty and Fathima, who have been a

constant source of support

My wife Sajna P.V and my son Muhammad Razi, has been, always, my pillars, my joy and

my guiding light, and | thank them.

Last but not the least, 1 would like to thank God Almighty for giving me the chance, the

strength and patience for doing this research work.

70

