

Effective Testing: A case study approach for

improving test efficiency

A Dissertation Submitted in Partial Fulfillment of the
Requirements for the Award of the Degree of

Master of Philosophy
in

Computer Science

by
Abdul Rauf E.M

(Reg. No. 1135008)

Under the Guidance of
Balaji V

Associate Professor

Department of Computer Science

CHRIST UNIVERSITY
BANGALORE, INDIA

March 2012

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

ii

Approval of Dissertation

Dissertation entitled “Effective Testing: A case study approach for improving test

efficiency” by Abdul Rauf E.M, Reg. No.1135008 is approved for the award of the degree of

Master of Philosophy in Computer Science

Examiners:

 1. ___________________ ___________________

 2. ___________________ ___________________

 3. ___________________ ___________________

Supervisor(s):

 ___________________ ___________________

 Chairman:

 ___________________ ___________________

 Date: ___________

 (Seal)

 Place: Christ University

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

iii

DECLARATION

I Abdul Rauf E.M hereby declare that the dissertation, titled ‘Effective Testing: A case study

approach for improving test efficiency’ is a record of original research work undertaken by

me for the award of the degree of Master of Philosophy in Computer Science. I have

completed this study under the supervision of Ms. Balaji V, Associate Professor, Department

of Computer Science

I also declare that this dissertation has not been submitted for the award of any degree,

diploma, associate ship, fellowship or other title. It has not been sent for any publication or

presentation purpose.

Place: Christ University

Date: ………………… Signature of the candidate

 Abdul Rauf E.M

 Reg. No. 1135008

 Department of Computer Science

 Christ University, Bangalore

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

iv

CERTIFICATE

This is to certify that the dissertation submitted by Abdul Rauf E.M(Reg. No. 1135008) titled

‘Effective testing: A case study approach for improving test efficiency’ is a record of research

work done by him during the academic year 2011-2012 under my supervision in partial

fulfillments for the award of Master of Philosophy in Computer Science.

This dissertation has not been submitted for the award of any degree, diploma, associate ship,

fellowship or other title. It has not been sent for any publication or presentation purpose.

Place: Christ University

Date: ………………… Signature of the Guide

 Balaji V

 Associate Professor

 Department of Computer science

 Christ University, Bangalore

Property of Christ University.

Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

v

Abstract

The study presented in this thesis investigates the methods for improving the software test

efficiency. Test efficiency measures the cost-effectiveness of a test organisation and it is

measured by dividing the number of defects found in a test by the effort needed to perform the

test. A review of the literature suggests that software test efficiency improvement depends on

direct and indirect success factors like test process, test management, test tools, test object

delimitation, test case determination, test infrastructure, configuration management, release

management etc. This thesis was a case study approach for improving the test efficiency of

an existing test setup in a database environment. Most of the thesis work followed an action

based research approach by giving importance to the test setup. Work started with an analysis

of the initial test environment, identified the issues and improvement areas in existing test

setup and given an implementation proposal for the identified problems. Based on the

proposal, team implemented the solutions, which lead to a test environment containing

number of actions like automation using standard framework, risk based testing, parallel

execution, modularization, avoiding code redundancy and proper test management.

The results of the case study suggest that the software products that has multiple releases

should seriously consider the test improvement factors like regression environment, risk based

testing, light weight test automation etc., in the initial stages of the testing. This will lead to

cost savings, quality, flexibility and higher productivity. The investigation further identifies

the issues in test management and introduced new method called “test point” method for

proper test execution tracking. Based on the implementation results and their discussions, this

study presents a new approach and practical guidelines for improving test efficiency of a

software test project. IBM has recognised this case study by giving eminence and excellence

award for saving one person year of testing effort in their indexing tool test environment.

Property of Christ University.

Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

vi

Table of contents
 List of Figures ………………………………………………………….…..…………....viii

 Abbreviation notation and nomenclature…………………………………...…………..…ix

1. Introduction

 1.1 Project background ………………………………………………..……………….01

 1.2 Purpose, scope and hypothesis……………………..…..……………………..……02

2. Review of Literature

 2.1 Literature………………………………….………....………...……………………04

 2.2 Findings………………………………..………..……………………..……………04

3. Method of research

 3.1 Road Map……………………………..……...……………………..………………06

 3.2 Research method selection..……………………………..……...……………..……07

4. Testing Fundamentals

 4.1 Testing phases……………………..………………………………..………………08

 4.2 Test technique ………………………………………………………………………13

 4.3 Test case design techniques……………………………………...…………………18

 4.4 Types of tests………………………………………………...…..…………………22

 4.5 Test Strategy…………………………………...…………...………………………25

 4.6 Test Planning…………………………………………...………………...…………27

 4.7 Test cycle……………………………………………………………...……………28

 4.8 Test Estimation…………………………………………..…..……………………29

 4.9 Test reports…………………………………………..…………...…………………30

5. Test Automation Process

 5.1 Automation Framework Overview…………………………………………………32

 5.2 Challenges in software test automation………………….…………………………34

 5.3 Test Automation…………………………………...………….….…………………35

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

vii

6. Identification of improvement candidates

 6.1 System test automation ………………………...……………..................................40

 6.2 Install test automation………………………………………...…………………….41

 6.3 Lack of risk based testing……………………………...……………………………41

 6.4 Parallel execution of test scenarios……………………….……...…………………42

 6.5 Lack of scheduled execution of the scenarios……………...…….…………………42

 6.6 Test Management issues………………………………………...….………………42

7. Implementation and outputs of the research

 7.1 Regression automation…………………………...…………………………………43

 7.2 Install test automation……..…………………………………...…...………………44

 7.3 Risk based testing……………...……………………………...……….……………46

 7.4 Parallel processing…………………………...………………….………….………46

 7.5 Scheduled execution………………...………………………………………………50

 7.6 Test Management using test point method……………...……………………..……51

 7.7 Measurable results after implementation………………………...……….…………52

 7.8 Recommendations………………………………………………...…………………53

8. Conclusions and Summary

 8.1 Outputs of the research…………………………………………………...…………54

 8.2 Publications…………………………………………………………….……………54

 8.3 Validation of hypothesis………………..……………………...……………………55

 8.4 Future work…….……………………………………………...……………………56
 Appendix I: Sample scripts………………………………………….....…………………57

 Appendix II: Screen shots…………………..….…………………………………………60

 Appendix III: Recognition certificate………………………………………………….....66

 Appendix IV: Paper presentation certificate ……………………………………………..67

 References…………………………………………………….………..…………………68

 Acknowledgements……………………………………………………………………….70

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

viii

List of figures

Figure 3.1 Research approach used for studying and implementing the setup

06

Figure 4.1 V-model of software development cycle 09

Figure 4.2 5 different testing phases 10

Figure 4.3 Time, employee relationship in a software development process 17

Figure 4.4 Test development life cycle 29

Figure 4.5 4 different cycles (release) of testing

29

Figure 5.1 Pictorial representation of the test environment used for the case study

32

Figure 5.2 Build forge automation blocks

33

Figure 5.3 Test manager problems

34

Figure 5.4 Various stages in the test automation process

35

Figure 5.5 Test tool selection process in a typical automation project

36

Figure 5.6 Test patterns and test automation in various stages of software testing

36

Figure 5.7 Sample screen shot of the build forge console

38

Figure 6.1 Initial test setup of the database indexing tool 40

Figure 7.1 Regression test setup 44

Figure 7.2 TIAT concepts 45
Figure 7.3 Typical work flow of the TIAT tool 45

Figure 7.4 Sequential processing of a large task 46

Figure 7.5 Execution of divided tasks in parallel 46

Figure 7.6 Initial setup of the search process 47

Figure 7.7 New processing mode using parallel execution 47

Figure 7.8 Database environment and hierarchical relationship between systems

48

Figure 7.9 Pictorial representation of multiple tasks runs on different CPUs

49

Figure 7 .10 Screen shot of the scheduling screen in build forge execution
framework

50

Figure 7 .11 Sample chart of test execution 52

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

ix

Abbreviation notation and nomenclature

SDLC Software Development Life Cycle

STLC Software Test Life Cycle

DB Data Base

SQL Structured Query Language

GUI Graphical User Interface

LDTP Linux Desktop Testing Project

FIT Federated Integrated Test

IP Intellectual Property

TIAT Test Install Automation Tool

TTT Test Tracking Tool

TP Test Point

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

1. Introduction

1.1 Project background
Even though software development industry spends more than half of its budget on software

testing and maintenance related activities; software testing has received little attention in our

curricula. This suggests that most software testers are then either self taught or they acquire

needed skills on the job perhaps through formal and informal mechanisms used commonly in

the industry. Lack of proper attention in acquiring testing skills is resulting in less utilization

of test resources and thus results in less test efficiency of organisation. Review of extant

literature on software testing lifecycle (STLC) identifies various software testing activities

and ways in which these activities can be carried out in conjunction with the software

development process. This literature also identifies various skills that software testers need to

possess in order to perform activities effectively in a given phase of STLC. Similar to

development lifecycle (SDLC), STLC also suggests the phases of analysis, design,

implementation, execution, and evaluation in software testing lifecycle. The V - model, which

is the most popular testing model, provides a basis for the identification of various testing

activities. Based on the V- model, Vijay (2001), Waligora and Coon (1996) suggest the need

to conduct testing in parallel with many of the SDLC phases so that testing efforts in later

stages can be minimized.

With this case study, we are targeting on how we can improve the test efficiency of database

indexing tool and thus to prepare generic guidelines for improving the test efficiency of an

organisation. Database indexing tool, which provides users and application programmers a

fast, versatile, and quick method of searching full-text documents stored in DB and file

systems using SQL queries. The initial test environment of this tool was not fully
Property of Christ University.

Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

2

automated, that results in lot of manual intervention for executing system test cases and thus

results in lot of manpower utilization. This tool has multiple releases and service packs, each

service pack is consuming around 100 man days of system testing due to the execution of

regression scenarios in test cycle. This case study was targeted to come out with new

regression environment that can use the existing test setup and test tools for reducing 30-50 %

of system test effort. Case study was conducted in database environment, but the solution will

be generic and can be used in other test environments after customization.

1.2 Purpose, scope and hypothesis
 The purpose of the case study was to evaluate the various software testing techniques used in

software industry, make a proposal for improving the test efficiency of an existing test

environment and implement the same in a data base domain. Thesis work comprised the

following activities.

 Identify and evaluate “state of the art” testing techniques and processes followed in

standard software industry. This is done based on my experience and the informal

interviews with various testing professionals.

 Evaluate the test process and methods followed in real time environment: As per the

industry standards.

 Identify the improvement areas: Details are mentioned in chapter 6.

 Prepare an implementation proposal and implement the same: Details are mentioned in

chapter 7.

During the studies we cut down the scope of the work to a specific environment for getting a

clear understanding of the work and also decided to come out with a general solution that can

extend to any environment for improving the test efficiency. We selected the data base

environment and decided to conduct case study on a data base indexing tool. The current test

environment of the indexing tool does not have automated regression setup and this had

negative impact on the effectiveness of the testing of the product. Test team used to run

regression test cases manually in system test cycle. Due to the time limit and resource

shortage, only selected regression scenarios were considered in system test cycle, which

resulted in a risk of less coverage for regression scenarios. Below are some of the issues we

identified in our case study and based on that prepared a proposal and implemented the same.

Property of Christ University.

Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

3

 Manual intervention for running the test suites was resulting in more number of days of

 effort

 Manual download and installation of DB and indexing tool drivers was a repetitive task

 and thus causing redundancy issues to test engineers.

 Execution and monitoring of test scenarios from various test machines was resulting in

 more effort and confusion.

 Lack of scheduled test execution.

 Existing test management process was not sufficient to track the test progress of various

 service packs.

 Issues in tracking the test status of the individual test team member.

 Under utilisation of available hardware resources.

 Less regression test coverage.

 No GUI interface.

 No central console for analysing the test outputs.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

4

2. Review of Literature

2.1 Literature
While doing the research, many numbers of books, journals, articles, and technical websites

are referred. Names of the important references are mentioned in the reference section of this

document. Following are the important types of documents referred for this case study.

 Testing fundamentals.

 Test automation frameworks and related works.

 Test management documents.

 Combinatorial testing documents.

 Security testing documents.

 Software quality and productivity improvement documents.

 IEEE documents related to software quality.

 Operational excellence documents.

 Rational build forge documents.

 Software metrics related documents.

 Test effort estimation documents.

 Orthogonal testing documents.

 Data base and indexing documents.

2.2 Findings
While doing the case study, we evaluated automation frame works like rational build forge

(IBM Rational build forge V 7.13), LDTP (Linux desktop testing project), Federated

Integrated Test frame work (FIT) etc. Out of this we selected the rational build forge

because of the various reasons like flexibility of the framework, support from IBM etc. The

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

5

selected case study was done on a data base indexing tool. As a first step, a detailed analysis

on existing test environment is done and we came out with hypothesis. The hypothesis is

validated based on the input we got from the reference document mentioned in the reference

section.

Manual intervention in SVT execution was one of the main bottlenecks identified in the

evaluation of the case study. For addressing this issue, various testing automation documents,

test management documents and best practices documents mentioned in the reference section

were referred and were summarised the various solutions and customized the same for our

case study evaluation. Automation framework documents for the LDTP, build forge, FIT

projects etc., played a major role in the selection of frameworks based on the case study

requirements. VM ware concepts helped us to solve the issue related to hardware and the

maximum utilisation of the available hardware. Parallel processing and scheduling of the

work implemented in the case study was a major step in efficient utilisation. The articles

published in this area and the common methods used in industry were the main input for this

task. Test documents published by IEEE were very useful for planning the test strategy, test

plan, test management and test execution. Test management method using test point system

will give a graphical representation of the test tracking and test status. Combinatorial

approach and best practices published in this area were used for proper selection of inputs to

the case study. We were able to reduce the testing effort by selecting proper input with

minimal execution effort and maximum releasing of defects. Papers published in operational

excellence area give a clear guidance for planning the proper operational activities and test

execution. Intellectual Property (IP) confidentiality is one of the hot areas in software testing.

Introducing proper security testing was one of the challenging activities during testing. By

following the security guidelines of the industry we were able to give maximum attention to

this area.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

6

3. Method of Research

This chapter describes research methods followed in the case study. It starts with a roadmap that

describes the overall structure of the thesis followed by a discussion concerning possible research

methods to select.

3.1 Road Map
Through out the thesis preparation we followed an action based research methodology.

Figure 3.1 shows the approach used for studying and implementing the setup.

Figure 3.1

The main activities we followed in our case study approach comprises the following steps

 Study current research in software testing industry.

 Evaluate test processes on various real time environments (Like LDTP, FIT, Device

anywhere, Build forge etc) and select one environment for implementation.

 Execute a detailed investigation study on the selected environment.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

7

 Prepare an improvement proposal.

 Implement the approved proposal.

3.2 Research method selection
While conducting the case study, it was possible to use two different approaches for collecting

information: the qualitative, and the quantitative method. The methods are applicable in different

situations and on different sources of information. The main difference between these two

methods is the way they approach the objects to investigate. The quantitative method makes an

assumption and then examines a set of representative objects to see if they are valid, whereas the

qualitative method seeks answers by reviewing as many sides of the object as possible. Since the

quantitative method gives numerical data, it can provide better scientific results than the

qualitative method; the main approach we employed in this case study was the exploratory

approach by mixing both qualitative and quantitative method. In this method we gave more

importance to action research as a supporting method for gathering project information by testing

theory in an on-going project. The main benefit with action research was to monitor the result of

a change while actively undergoing the changes in the existing environment. A drawback is that

action research requires allowance by the company to conduct live experiments since it might

interfere with the daily work and also it requires more efforts than other types of research since it

is hard to conduct on larger samples.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

8

4. Testing Fundamentals

This chapter tries to give a basic knowledge about various testing activities that software testers

need to possess in order to perform activities effectively in a given phase of STLC.

4.1 Testing phases

Software testing is the process of verifying, validating and defect finding in a software

application or program. In verification we are ensuring that the construction steps are done

correctly (are we building the product right), where as in validation we are checking that

deliverable (code) is correct (are we building the right product). In software testing a defect is

the variance between the expected and actual result. During defects finding, its ultimate source

may be traced to a fault introduced in specification, design or development phases. Following

are the different levels of testing doing in STLC

 Unit test.

 Integration test.

 System test.

 Acceptance test.

 Regression testing.

Defects can be categorized in to different groups based on severity and priority. Below list

shows the common defect category used in software industry.

 Show stopper - Not possible to continue testing because of the severity of the defect

 Critical – Testing can proceed but the application cannot be released until the defect is

fixed.
Property of Christ University.

Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

9

 Major – Testing can continue but the defects may results in serious impacts in business

requirements if the software is released for production.

 Medium - Testing can continue and the defect will cause only minimal deviations from

the business requirements when in production.

 Minor –Testing can continue and the defect will not affect release.

 Cosmetic - Minor cosmetic issues like colours, fonts, and pitch size that do not affect

testing or production release.

Figure 4.1 shows the V-model of software development cycle. V- Model incorporates testing in

to the entire SDLC cycle and highlights the existence of different levels of testing and depicts

the way each relates to a different development phase. Figure 4.2 shows 5 different testing

phases each with a certain type of test associated with it. Each phase has entry criteria that must

be met before testing starts and specific exit criteria that should be met before certification of the

test. Entry and exit criteria are defined by the test owners listed in the test plan.

Figure 4.1

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

10

Figure 4.2

4.1.1 Unit testing
Unit testing test the functionality of basic software units. A unit is the smallest piece of software

that does something meaningful. It may be a small function, a statement or a library. Unit test is

also called module test where the developer tests the code he/she has produced. Unit tester is

mainly looking whether the code was implemented as per low level design document (LLD or

functional requirements) and the code structure. Following are some of the faults that are

uncovered during unit testing.

 Unit implementation issues – Checking that the unit has implemented the algorithm

correctly.

 Input/output data validation errors – Unit’s input/output are validated properly.

 Exception handling – Checking whether unit handles the entire environment related

errors/exceptions.

 Dynamic resource related errors –Verify whether the dynamic resources (memory,

handles, etc.) are allocated and deallocated.

 UI formatting errors – Verify UI is consistent, correct user interface (tabs, spelling,

colours etc).

 Basic performance issues – Each unit is critical to overall system performance. Unit tester

will ensure that the unit’s performance is as per the requirements specification.

Design of unit test cases is done using functional specification or LLD of the units. Any

techniques like white box/black box/ grey box can be applied to design unit test cases. Also the

structure of the code can be used as another input for improving the quality of the unit test

cases. During test cases design, some test cases may come as common to many units; such test

cases can be considered as a standard check list and can be used as reusable test suite. If the unit

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

11

is not a user interface (UI), it is necessary to write test driver (drives the unit under test with

inputs and stores the outcome of the test) and test stubs (dummy storage module used for

replacing the unit not available) to automate the unit testing.

4.1.2 Integration testing
Integration testing starts as soon as a few modules are ready and the developers integrate their

code for testing the interfaces implemented by their code. High level design document (HLD) is

the main input for designing the test cases for integration testing. Following are some of the faults

that are uncovered during integration testing:

 Interface integrity issues – Test whether the unit comply to the agreed upon interface

specification.

 Data sharing issues – Verifying the common data is handled properly, synchronization

issues etc.

 Exception handling – Handles all the environment related errors/exceptions.

 Resource hogging issues – Check whether any unit consumes excessive resources.

 Build issues – Cases like multiple units use a version of common unit that each depends

upon.

 Error handling and bubbling of errors – Check that the error returned by a unit is handled

by the higher unit appropriately.

 Functionality errors – Functionality formed by the integration of unit(s) work.

Integration testing is proceeded based on integration strategy (order of integration of module) that

the project follows. Since testing is an act to find issues that pose severe risk as early as possible,

it is preferable to test those interfaces that pose the high risk. Mainly four types of integration

strategy employed in software industry.

 Top-down – Integration starts from highest chain of control (top-most module) and this

kind of integration uses where upper level interfaces are important.

 Bottom-up – Integration starts from lowest chain of control (bottom-most module) and

this kind of integration uses where lower level interfaces are important.

 Sandwich – Approach uses when not all on the top or not all at the bottom are important,

this will be a mixture of top-down and bottom-up approach.

 Big bang – This is pretty dumb strategy but this will find issues, the main problem of this

approach is the difficulty in debugging.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

12

The approach will be decided based on the criticality of the interfaces and the most critical

interfaces should be tested first and the others later. The criticality of the interface can decide

once the architecture of the project is ready. Normally most of the projects will follow sandwich

approach.

4.1.3 System testing
A system is not a just our code that we developed but that will be a collection of developed code,

supporting libraries , data bases (if any) , Web/App servers (if any), operating system and

hardware. In system testing phase we test the systems as a whole. For ensuring the maximum

benefit of the system test, it is preferable to perform system testing in an environment that is

similar to the target environment. Following are the types of faults discovered in system testing.

 Functional errors – Verification of the system that it has implemented the functionality

correctly.

 Performance issues – Making sure that the system is fast enough .

 Load-handling capability – Ensuring that the system handling the real life situation with

stated resources.

 Usability issues – Verify that the system is friendly and easy to use.

 Volume handling – Verify that the system is capable of handling large volume of data.

 Installation errors – Making sure that the system is able to install correctly using the

installation documents.

 Documentation errors – Checking that the documentation done for the system is correct.

 Language handling issues – Verify that the system is implemented the multiple locales

correctly. Localization and internationalization testing is performing in this stage.

4.1.4 Acceptance testing
Acceptance testing is the final testing done by the test team and the customer together before the

system put in to operation. Acceptance testing starts after completing the system test. The purpose

of the acceptance test is to give confidence in that the system is working, rather than trying to find

defects. Acceptance testing is mostly performed in contractual development to verify that the

system satisfies the agreed requirements. Acceptance testing is sometimes integrated into the

system testing phase.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

13

4.1.5 Regression testing
Regression testing is doing for building the confidence of the system that has undergone some

changes like modification of the code, defects fixing or added some new module etc. In this test

user will rerun the existing test suites/test cases and make sure that the recent changes has not

impacted the functionality of the system. Regression test selection is one important task in this

phase and need to do carefully for avoiding unnecessary execution. Regression testing is a

repeated task and one of the most expensive activities doing in STLC. For saving the effort, it is

always good to look for automation so that we can save lot of manual effort. (Harrold 2000)

According to Harrold, some studies indicate that regression testing can account for as much as

one-third of the total cost of a software system.

4.1.6 Sanity test
Sanity testing will be performed whenever cursory testing is sufficient to prove that the system is

functioning according to specifications. A sanity test is a narrow regression test that focuses on

one or a few areas of functionality. Sanity testing is usually narrow and deep. It will normally

include a set of core tests of basic GUI functionality to demonstrate connectivity to the database,

application servers, printers, etc.

4.1.7 Alpha testing
Testing of an application when development is nearing completion; minor design changes may

still be made as a result of such testing. Typically done by end-users or others, not by

programmers or testers.

4.1.8 Beta testing
Testing when development and testing are essentially completed and final bugs and problems

need to be found before final release. Typically done by end-users or others, not by programmers

or testers.

4.2 Test technique
Effective test cases are the heart of the software testing. For designing test cases testers will use

various test techniques in industry and also uses options like domain knowledge, history of past

issues etc. Following are some of the test techniques used in industry.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

14

4.2.1 Positive and Negative testing
Positive testing – Check that software performs its intended function correctly and execute

programs to check that it meets requirements.

Negative testing – Execute programs with an intent to find defects and discover defects in the

system. Negative testing involves testing of special circumstances that are outside the strict scope

of the requirements specification, and will therefore give higher coverage.

4.2.2 Risk based testing
Risk is the possibility of a negative or undesirable outcome, quality risk is a possible way that

something about your organization’s products or services could negatively affect stakeholder

satisfaction. Through risk based testing we can reduce quality risk level. This type of testing has

number of advantages.

 Finding defects earlier in the defect cycle and thus avoid the risk in schedule delay.

 Finding high severe and priority bugs than unimportant bugs.

 Providing the option of reducing the test execution period in the event of a schedule

crunch without accepting unduly high risks.

4.2.3 Defect testing
Defect testing or fault based testing is doing to ensure that certain types of defects are not there in

the code. It is a negative testing approach to discover defects in the system. Normally testing team

will identify and classify the defects that have occurred in the previous release of the product.

Based on this classification test team will decide where to add more testing efforts and also will

decide how deeply need to conduct testing on those areas. Test team will use defect tracking tool

or defect database as an input for this activity. The root cause analysis available in the defect or

that is prepared will play a major role in defect classification.

4.2.4 White box testing
White box testing or glass box testing or structural testing method uses the code structure to come

up with test cases. For doing effective white box testing tester need to have a good understanding

of the code. Normally there is a miss-understanding that white box testing can apply only in unit

level testing. It can definitely be applied at the unit level. It can be applied at the higher levels like

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

15

integration level, system level. Unit testing becomes difficult as the size of the code rapidly

increases at higher levels.

4.2.5 Black box testing
In black box testing or functional testing, the tester should have a clear understanding of the

specification of the product/project that he is testing. Specification covers both data (input and

out put specification) as well as business logic specification (processing logic

involved).Requirement specification is one of the major input doc for doing black box testing.

Black box testing can apply at any levels of testing. Some of the black box techniques detect

functionality issues while some of them help in detecting non-functional issues.

4.2.6 Grey box testing
Gray box testing is combination of white and black box testing. This testing will identify the

defects related to bad design or bad implementation of the product. Test engineer who executes

gray box testing has some knowledge of the system and design test cases based on that

knowledge. Tester applies a limited number of test cases to the internal working of the software

under test. Remaining part of the execution will do based on data specification and business

logic. The idea behind the gray box testing is that one who knows something about how the

products works on the inside, one can test it better.

4.2.7 Statistical testing
The purpose of statistical testing is to test the software according to its operational behaviour, i.e.

by running the test cases with the same distribution as the users intended use of the software. By

developing operational profiles that describes the probability of different kinds of user input over

time; it is possible to select a suitable distribution of test cases. Developing operational profiles is

a time consuming task but a proper developed profile will help to make a system with a high

reliability. In short a statistical test will help to make a quantitative decision about a process.

4.2.8 Clean room software engineering
Clean room software engineering is more of a development process than a testing technique. The

idea clean room will help to avoid high cost defects by writing source code accurately during

early stages of development process and also employ formal methods for verifying the

correctness of the code before testing phase. Even though the clean room process is time

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

16

consuming task but helps to reduce the time to market because the precision of the development

helps to eliminate rework and reduces testing time. Clean room is considered as a radical

approach to quality assurance, but has become accepted as a useful alternative in some systems

that have high quality requirements.

4.2.9 Static testing
Testing is normally considered as a dynamic process, where the tester will give various inputs to

the software under test and verify the results. But static testing is of different kind of testing that

is used for evaluating the quality of the software without executing the code. Static testing is fall

in the verification process that ensures the construction steps are done correctly with out

executing the code. One commonly used technique for static testing is the static analysis-

functionality that the compilers for most modern programming languages have. Reviews and

inspection are the most commonly used static testing method in almost all software development

organizations. Static testing is applicable to all stages but particularly appropriate in unit testing,

since it does not require interaction with other units.

4.2.10 Review and inspection
Each author has there on definition for the terms review and inspection. As per IEEE Std. 610.12-

1990 the terms are defined as

Review: A process or meeting during which a work product, or set of work products, is presented

to project personnel, managers, users, customers, or other interested parties for comment or

approval. Types include code review, design review, formal qualification review, requirements

review, and test readiness review’ (IEEE 1990). IEEE standard says that, the purpose of a

technical review is to evaluate a software product by a team of qualified personnel to determine

its suitability for its intended use and identify discrepancies from specifications and standards.

Following are some of the inputs to the technical review:

 A statement of objectives for the technical review (mandatory).

 The software product being examined (mandatory).

 Software project management plan (mandatory).

 Current anomalies or issues list for the software product (mandatory).

 Documented review procedures (mandatory).

 Relevant review reports (should).
Property of Christ University.

Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

17

 Any regulations, standards, guidelines, plans, and procedures against which the software

product is to be examined (should).

 Anomaly categories (See IEEE Std 1044-1993 [B7]) (should).

Inspection: A static analysis technique that relies on visual examination of development

standards, and other problems. Types include code inspection; design inspection’ (IEEE 1990).

Inspection has many names, some called software inspection that could cover design and

documentation, and some others will call it as code inspection that relates more on source code

written by developer. Fagan inspection is another name that came as the name of the person who

invented QA and testing method. Code inspection is a time consuming task but statistics telling

that it may cover up to 90% of the contained errors if we apply that in a systematic way. Figure

4.3 below shows time, employee relationship in a software development process.

Figure 4.3

IEEE Standard for Software Reviews (IEEE 1028-1997 standard) is talking about manual static

testing methods like inspections, reviews and walkthroughs.

4.2.11 Walk-throughs
Walk-throughs are techniques used in software development cycle for improving the quality of

the product. It helps to detect anomalies, evaluate the conformance to standards and specifications

etc. It is considering as a techniques for collecting ideas and inputs from team members during

the design stage of the software product and also as for exchanging techniques and conduct

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

18

training to the participants , thus to raise the level of team mates to same programming style and

details of the product. Walk-through leader, recorder, author of the product under development

and team members are some of the roles defined in walk-through method.

4.3 Test case design techniques
A test case is a set of data and test programs (scripts) and their expected results. Test case

validates one or more system requirements and generates a pass or fail. The Institute of Electrical

and Electronics Engineers defines test case as "A set of test inputs, execution conditions, and

expected results developed for a particular objective, such as to exercise a particular program path

or to verify compliance with a specific requirement." Selecting adequate test case is an important

task to testers other wise that may result in too much testing, or too little testing or testing wrong

things. Following are the characteristics of a good test.

 A test case has a reasonable probability of catching an error

 It is not redundant

 It’s the best of its breed

 It is neither too simple nor too complex

While doing test case design, designer should have an intension to find errors so that he can start

searching ideas for test cases and try working backwards from an idea of how the program might

fail. Following are some of the techniques we use in industry for designing effective test cases.

4.3.1 Equivalence classes
It is essential to understand equivalence classes and their boundaries. Classical boundary tests are

critical for checking the program’s response to input and output data. You can consider test cases

as equivalent, if you expect same result from two tests. A group of tests forms an equivalent class

if you believe that

 They all test same thing

 If one test catch catches a bug , the others probably will too

 If one test doesn’t catch a bug, the others probably won’t either.

Tests are often lumped into the same equivalence classes when

 They involve the same input variables

 They result in similar operations in the program

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

19

 They affect the same output variables

 None force the program to do error handling or all of them do

Different people will analyse programs in different way and comes up with different list of

equivalent classes. This will help you to select test cases and avoid wasting time repeating what is

virtually the same test. You should run one or few of the test cases that belongs to an equivalence

class and leave the rest aside. Below are some of the recommendations for looking equivalence

classes:

 Don’t forget equivalence classes for invalid inputs

 Organize your classification into a table or an outline

 Look for range of numbers

 Look for membership in a group

 Analyse responses to lists and menus

 Look for variables that must be equal

 Create time-determined equivalence classes

 Look for variable groups that must calculate to a certain values or range

 Look for equivalent output events

 Look for equivalent operating environments

4.3.2 Boundaries of equivalence classes
Normally we use to select one or two test cases from each equivalence class. The best ones are

the class boundaries, the boundary values are the biggest, smallest, soonest, shortest, loudest,

fastest ugliest members of the class i.e., the most extreme values. Program that fail with non-

boundary values usually fail at the boundaries too. While analysing program boundaries it is

important to consider all outputs. It is good to remember that input boundary values might not

generate output boundary values.

4.3.3 Black box test techniques
This type of techniques can be categorized in to three broad types

 Those useful to design test scenarios (High level test design techniques).

 Those useful to generate test values for each input(Low level test design techniques).

 Those useful in combining test values to generate test cases.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

20

4.3.3.1 High level test design techniques

Some of the commonly used high level test design techniques are

 Flowchart – Represent flow based behaviour (Each scenarios has a unique flow in the

flow chart).

 Decision table – Represent rule based behaviour (Each scenario is an unique rule in the

decision table).

 State machine – Represent state based behaviour (Each scenario is an unique path in the

state transition diagram.

4.3.3.2 Low level test design techniques

Following are some of the some of the low level test design techniques:

 Boundary value analysis - Generate test values on and around boundary

 Equivalence partitioning – Ensues that all representative values have been considered

 Special value - generate interesting test values based on experience/guess

 Error based vales - Generate test values based on past history of issues

4.3.3.3 Combinational test design techniques

This technique will combine test values to generate test cases, some of the combinational test

design techniques are mentioned below:

 Exhaustive testing – Combine all vales exhaustively (All combination of all test inputs

are considered).

 All-pairs /Orthogonal – Combine to form minimal yet complete combinations. This will

ensures that all distinct pairs of inputs have been considered.

 Single-fault – Combine such that only a single input in a test case is faulty (Generate

negative test cases where only one input is incorrect).

4.3.4 White box test techniques
This technique uses the structure of the code for designing test cases; following are some of the

aspects of the code that constitutes the code structure:

 Flow of control – Is the code sequential / recursive / concurrent

 Flow of data – Where is the data initialized and where it is used

 Resource usage – What dynamic resources are allocated , used and released

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

21

4.3.5 Coverage based testing
Statement coverage is an oldest structural test technique that targets to execute every statement

and branch during a set of tests. Statement coverage will give an idea about the percentage of

total statements executed. Since programs with for example loops contain an almost infinite

number of different paths, complete path coverage is impractical. Normally, a more realistic goal

is to execute every statement and branch at least once. This technique can be varied in several

ways and is usually tightly knit to coverage testing.

 Branch coverage – Measuring the number of conditions / branches executed as a

percentage of total branch.

 Multiple condition coverage – Measuring the number of multiple conditions executed as a

percentage of total multiple conditions.

 Statement coverage – Measuring the number of statements executed as a percentage of

total statements.

4.3.6 Random input testing
Rather than explicitly subdividing the input in to a series of equal sub ranges, it is better to use a

series of randomly selected input values, that will ensues that input value is likely as any other ,

any two equal sub ranges should be about equally represented in your tests. When ever you

cannot decide what vales to use in test cases, choose them randomly. A random input doesn’t

mean “what ever inputs come to your mind” but a table of random numbers or a random number

generating function. Random testing using random inputs can be very effective in identifying

rarely occurring defects, but is not commonly used since it easily becomes a labour-intensive

process.

4.3.7 Syntax testing
This is a data-driven test technique where well-defined syntax rules validate the input data Syntax

testing can also be called grammar -based testing since grammars can define the syntax rules. An

example of a grammar model is the Backus Naur Form, which can represent every combination

of valid inputs.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

22

4.4 Types of tests
Testing can be broadly classified as two types, namely functional tests and non-functional tests.

Functional Testing is the process by which expected behaviour of an application can be tested.

We already discussed many functional test techniques in previous section. In this section we will

try to give a brief description about various non functional tests that used to execute in IT

industry.

4.4.1 Load test
Load testing is used for verifying the software product is able to handle real life operations with

the stated resources. It can be done in controlled lab conditions or in a field. Load test in a lab

will help to compare the capabilities of different systems or to measure the actual capability of a

single system. The main aim of the load testing is to determine the maximum limit of the work

that can handle with out significant performance degradation.

4.4.2 Stress test
This test will check that worst load it can handle is well above real life extreme load. The stress

test process can involve quantitative test done in a lab , such as measuring the frequency of errors

or system crashes. It can also use for evaluating the factors like availability of the system,

resistance to denial of service attacks.

4.4.3 Performance test
Check that the key system operations perform with in the stated time. Performance testing is very

difficult to conduct because the performance requirements often are poorly specified and the test

requires a realistic operational environment to get reliable results. Automated tool support is

required for doing proper performance evaluation of the software.

4.4.4 Scalability test
Check that the system is able to handle more loads with more hardware resources. We can

consider scalability testing as an extension of performance testing. Scalability is the factor that

needs to consider in the beginning of the project planning and designing. The architect of the

product should have a proper picture about the product before he plans the scalability of the

product under development. For making sure that the products is truly scalable and for identify

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

23

major work loads and mitigate bottlenecks, it is very important to rigorously and regularly test it

for scalability issues. The results from the performance test can consider as the baseline, and we

can compare the results of the performance test results to know the application is scaled up or not.

4.4.5 Reliability test
This test will check that the system when used in an extended manner is free from failures. In

systems with strict reliability requirements, the reliability of the system under typical usage

should be tested. Several models for testing and predicting reliability exist but in reality, the exact

reliability is more or less impossible to predict.

4.4.6 Volume test
Check that the system can handle large amounts of data. Volume test is mainly concentrating

about the concept of throughput instead of response time on other testing. Capacity drivers are the

key to do effective volume testing for the application like messaging systems, batch systems etc.

A capacity driver is something that directly impacts on the total processing capacity. For a

messaging system, a capacity driver may well be the size of messages being processed.

4.4.7 Usability test
Check whether the system is easy to operate by its end users. When the system contains a user

interface, the user-friendliness might be important. However, it is hard to measure usability since

it is difficult to define and most likely require end-user interaction when being tested.

Nevertheless, it is possible to measure attributes like for example learn-ability and handling

ability by monitoring potential users and record their speed of conducting various operations in

the systems.

4.4.8 Security test
This test will ensure that the integrity of the system is not compromised. Security test is also

called penetration testing and used to test how well the system protects against unauthorized

internal or external access, wilful damage, etc; may require sophisticated testing techniques.

Testers must use a risk-based approach, grounded in both the system’s architectural reality and

the attacker’s mindset, to gauge software security adequately. By identifying risks in the system

and creating tests driven by those risks, a software security tester can properly focus on areas of

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

24

code in which an attack is likely to succeed. This approach provides a higher level of software

security assurance than possible with classical black-box testing.

4.4.9 Recovery test
Recovery test will verify that that the system is able to recover from erroneous conditions

graciously. It also tests how well a system recovers from crashes, hardware failures, or other

catastrophic problems.

4.4.10 Storage test
Check that the system complies with the stated storage requirements like disk/memory.

4.4.11 Internationalization test (I18N)
This test will verify the ability of the system to support multiple languages. Internationalization

test is also called as I18N test. I18N testing of the products is targeted to uncover the international

functionality issues before the system’s global release. Mainly this will check whether the system

is correctly adapted to work under different languages and regional settings like the ability to

display correct numbering system – thousands, decimal separators, accented characters etc. I18N

testing is not same as the L10N testing. In I18N testing product functionality and usability are the

focus, where as L10N testing focuses on linguistic relevance and verification that functionality

has not changed as a result of localization.

4.4.12 Localization test (L10N)
Check that the strings, currency, date, time formats for this language version has been translated

correctly. Localization testing is also called L10N testing. Localization is the process of changing

the product user interface and modification of some initial settings to make it suitable for another

region. Localization testing checks the quality of a product's localization for a particular target

culture/locale. Localization test is based on the results of I18N testing, which verifies the

functional support for that particular culture/locale. L10N testing can be executed only on the

localized version of a product.

4.4.13 Configuration test
Check that the system can execute on different hardware and software configuration.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

25

4.4.14 Compatibility test
Check that the system is backward compatible to its prior versions.

4.4.15 Installation test
Check that the system can be installed correctly following the installation instructions. The

installation test for a release will be conducted with the objective of demonstrating production

readiness.

4.4.16 Documentation test
Documentation test will make sure that the user documentation, online help is inline with

software functionality. Testing of user documentation and help-system documentation is often

overlooked because of a lack of time and resources (Watkins 2001). However, Watkins claims

that accurate documentation might be vital for successful operation of the system and reviews are

in that case probably the best way to check the accuracy of the documents.

4.4.17 Compliance test
Check that the software has implemented the applicable standard correctly.

4.4.18 Accessibility test
Accessibility test will check that the product under test is accessibility complaint or not. With this

test we are targeting four types of users namely people with visual impairments, hearing

impairments, motor skills(Inability to use keyboard or mouse) and cognitive abilities (reading

difficulties, memory loss). Normally we plan separate testing cycle for accessibility testing.

Inspectors or web checkers are some example of tools available in market for doing accessibility

testing.

4.5 Test Strategy
A Test Strategy document is a high level document that talks about the overall approach for

testing and normally developed by project manager. This document is normally derived from the

Business Requirement Specification document. This static document contains standards for

testing process and will not undergo changes frequently. This is acting as an input document for

test plan. A good test strategy will answer the below questions.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

26

 Where should I focus?

 On what features?

 On what type of potential issues?

 What test technique should I use for effective testing?

 How much of black box, white box?

 What type of issues should I look for?

 Which is best discovered by testing?

 Which is best discovered via inspection?

 How do I execute the tests? Manual/Automated?

 What do I automate?

 What tool should I consider?

 How do I know that I am doing a good job?

 What metrics should I collect and analyse?

4.5.1 Contents of test strategy

 Features to focus on :

- List down the major features of the product.

 - Rate importance of each features (Importance = Usage frequency * failure

 criticality).

 Potential issue to uncover:

- Identify potential faults.

- Identify potential incorrect inputs that can result in failure.

- State the type of issues that you will aim to uncover.

- Identify what types of issues will be detected at each level of testing.

 Types of test to be done:

- State the various tests that need to be done to uncover the above potential issues.

- Identify the test techniques that may be used for designing effective test cases.

 Execution approach:

- Continue what test will be done: manual/automated.

- Outline tools that may be used for automated testing.

 Test metrics to collect and analyse

- Identify measurements that help analyse if the strategy is working effectively.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

27

4.6 Test Planning
Test plan details out the operational aspects to executing the test strategy. Test plan will be

derived from the product description, software requirement document, use case documents etc. It

may be prepared by a test lead or test manager. A test plan outlines the following
 Effort / time needed

 Resources needed

 Schedules

 Team composition

 Anticipated risk and contingency plan

 Process to be followed for efficient execution

 Roles of various team members and their work

As per the IEEE 829 format, following are the contents of the test plan

1. Test Plan Identifier : Unique company generated number to identify this test plan

2. References : List all documents that support this test plan

3. Introduction : A short introduction to the software under test

4. Test Items : Things you intend to test within the scope of this test plan

5. Software Risk Issues : Identify what software is to be tested and what the critical

areas are

6. Features to be Tested: This is a listing of what is to be tested from the users

viewpoint of what the system does

7. Features not to be Tested: Listing of what is not to be tested from both the Users

viewpoint of what the system does and a configuration management/version

control view.

8. Approach : This is your overall test strategy for this test plan

9. Item Pass/Fail Criteria: What are the Completion criteria for this plan? The goal is

to identify whether or not a test item has passed the test process

10. Suspension Criteria and Resumption Requirements : Know when to pause in a

series of tests or possibly terminate a set of tests. Once testing is suspended how is

it resumed and what are the potential impacts

11. Test Deliverables Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

28

12. Remaining Test Tasks: There should be tasks identified for each test deliverable.

Include all inter-task dependencies, skill levels, etc. These tasks should also have

corresponding tasks and milestones in the overall project tracking process

13. Environmental Needs : Are there any special requirements for this test plan

14. Staffing and Training Needs : State the staffing learning/training needs to be

done to execute the test plan

15. Responsibilities: Who is in charge? There should be a responsible person for each

aspect of the testing and the test process. Each test task identified should also have

a responsible person assigned

16. Schedule : Detail the work schedule as Gantt chart

17. Planning Risks and Contingencies : State the top five (or more) anticipated risks

and mitigation plan

18. Approvals : Who can approve the process as complete and allow the project to

proceed to the next level

4.7 Test cycle
Test cycle is the point of time wherein the build is validated and it takes multiple test cycles to

validate a product. Each test cycle should have a clear scope like what features will be tested and

what test will be done. Figure 4.4 below shows the test development life cycle. Normally we

used to run four rounds of the test cycle. In this period will be catching around 80% of the errors.

With the majority of these errors fixed, standard and/or frequently used actions will be tested to

prove individual elements and total system processing in cycle 3. Regression testing of

outstanding errors will be performed on an ongoing basis. When all major errors are fixed, an

additional set of test cases are processed in cycle 4 to ensure the system works in an integrated

manner. It is intended that cycle 4 be the final proving of the system as a single application. There

should be no Sev1 or Sev2 class errors outstanding prior to the start of cycle 4 testing. Figure 4.5

shows the 4 different cycles (release) of testing that normally follows in software development.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

29

Figure 4.4

Figure 4.5

4.8 Test Estimation
Test Estimation is the estimation of the testing size, testing effort, testing cost and testing

schedule for a specified software testing project in a specified environment using defined

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

30

methods, tools and techniques. Effort estimation can consider as a science of guessing. Some of

the terms commonly used in test estimation are

Testing Size – the amount (quantity) of testing that needs to be carried out. Some times this may

not be estimated especially in Embedded Testing (that is, testing is embedded in the software

development activity itself) and in cases where it is not necessary

Testing Effort – the amount of effort in either person days or person hours necessary for

conducting the tests

Testing Cost – the expenses necessary for testing, including the expense towards human effort

Testing Schedule – the duration in calendar days or months that is necessary for conducting the

tests

To do a proper estimation we need to consider the following areas

 Features to focus

 Types of test to do

 Development of automated scripts

 Number of test cycles

 Effort to design , document test plan, scenarios/cases

 Effort need to document defects

 Take expert opinion

 Use the previous similar projects as inputs

 Breaking down the big work of testing to smaller pieces of work and then estimation

(Work break down structure)

 Use empirical estimation models

4.9 Test reports
There are multiple number of test reports are using in various kinds of testing. Some of the

commonly used test reports in industry are mentioned below.

4.9.1 Weekly status report
Weekly status report gives an idea about the works completed in a specific week against the plan

of actual execution. Companies have their own standard template for reporting this status.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

31

4.9.2 Test cycle report
Product testing has multiple cycles. Management will expect the correct status of each cycle for

tracking the project. Test team is responsible for giving report on accomplishments in the cycle

and potential testing related risks in a standard template approved by the company.

4.9.3 Quality report
Quality report will give an idea about objectives and subjective assessment of quality of a product

on a specific date. A product quality depends on factors like scope, cost and time. Quality lead

will consider all these 3 factors before reporting the status in the standard template.

4.9.4 Defect report
A defect report will give a detailed description of defects. This is one of the important

deliverables in STLC. An effective defect report will reduce the number of returned defects. A

good defect report will reflect the credibility of the tester and also will help for speeding up the

defect fixes.

4.9.5 Final test report
This is the report that summarizes the test happened in various levels and cycles. Based on this

report the stake holder can assess the release quality of the product.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

32

5. Test Automation Process

In software industry, test automation becomes an increasingly critical and strategic necessity.

Assuming the level of testing in the past was sufficient (which is rarely the case), how do we

possibly keep up with this new explosive pace of project deployment while retaining satisfactory

test coverage and reducing risk? The answer is either more people for manual testing, or a greater

level of test automation. After all, a reduction in project cycle time generally correlates to a

reduction of time for test. In this chapter we are discussing abut the test automation processes that

we employed in our case study for improving the test efficiency.

5.1 Automation Framework Overview

Figure 5.1

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

33

Figure 5.1 shows the pictorial representation of the test environment used for the case study.

This set up consist of central test server that act as a repository used for storing test drivers

and other documents used for testing. Test machines with various operating systems like

Windows (32 bit and 64 bit), Linux (32 bit and 64 bit), AIX, Solaris and HP etc act as client

machines. The third important component is the test automation frame work (Central console

- A server with Rational build forge tool). IBM Rational Build Forge (Figure 5.2- Build forge

automation blocks) automates and accelerates build, test and release processes to enable

iterative development, high-performance builds and streamlined software delivery. Through

an adaptive framework, it helps the teams to standardize and automate repetitive tasks,

optimize hardware resources and connect development tools to increase staff productivity,

compress development cycles and deliver high quality software, quickly. Following are some

of the advantages:

 Leverage of current assets (tools/scripts).

 Integration with other tools (Adapters and IDE plug-in).

 Effective Monitoring through single window (web console).

 Effective environment maintenance.

 Support availability.

f

Figure 5.2

Database

Centrally Hosted Web Interface

1 2 Execute Command Status Results

Agents

Management Console

Developer IDE plug-ins

Adaptors

 Source code
 Defect tracking
 Test

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

34

5.2 Challenges in software test automation

Figure 5.3

Figure 5.3 shows the situation of a test manager who is not following proper test process. It is

quite common that many automation testers are being thrown to the automation job without

having proper guidelines on the automation test process. They just “dive in” and begin

automating test cases without a thought towards any process or strategy. Normally this kind of

approach will reach a situation that says “We’ve invested lot in automation and number of

testers allocated for fulltime in automation testing. After Y months, we still do not see any

improvement in our overall testing cycle times. In fact, testing seems to be taking longer!” To

avoid such a situation we should have a clear understanding about our project and automation

process that we are going to implement. Also we should have a proper test strategy in selecting

the framework and execution. Some of the factors that need to consider while defining test

strategy are:

 Test automation is a fulltime effort, not a sideline.

 The test design and the test framework are totally separate entities.

 The test framework should be application-independent.

 The test framework must be easy to expand, maintain, and perpetuate.

 The test strategy/design vocabulary should be framework independent.

 The test strategy/design should remove most testers from the complexities of the test

framework.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

35

5.3 Test Automation

Figure 5.4

Figure 5.4 shows various stages in the test automation process and figure 5.5 shows the test tool

selection process in a typical automation project

5.3.1 Roles
Automation lead/manager will be responsible for selection of a tool, development of tools and

maintenance activities of the frame work. Test engineer will be responsible for script generation,

deployment and execution.

5.3.2 Feasibility study
This stage will decide whether we need to automate the project or not. Failure in this stage may

have a larger impact on the project execution. Following are some of the factors considered in

feasibility stage:
 Project impact: Automation priority according to project prioritization and delivery.

 Test case selection :

 1. Repetitive test that needs to be run on multiple build.

 2. Frequently used functions.

 3. Tests that run on several different platforms.

 4. Tests that take a lot of effort and time when manual testing.
Property of Christ University.

Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

36

 Framework availability: Exploring various existing tools and evaluating whether we

can use the same in our setup through customization.

Figure 5.5

Figure 5.6 depicts how we consider the test patterns and test automation in various stages of

software testing.

Figure 5.6

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

37

5.3.3 Automation design
A good automation test design will tell how a particular function or feature will be tested. A test

designer will consider the following facts:
1. What is being tested and how is the test set up?

2. What are the inputs used and from where the inputs are coming?

3. What is being checked and where are the expected results?

4. What are the things need to print?

5. How do you know the test is pass or fail?

6. Keep the output simple and well formatted.

5.3.4 Automation development and deployment
Mainly we need to develop two types of items during the development stage

1. Scripts for execution.

2. Frame work code (or customization of the existing code).

Some projects, whole modules may not be available. In such case we may need to develop stubs

and drivers for simulating the module. In our frame work, test developer is responsible for

creating the test suites (test scripts), customization of the rational build forge tool and the

environment setting for the test bed. Also after developing the script and code we need to

regularly check in the same in Clear case (or any other tool) and need to create the proper build

for execution. Testers have access permission for taking the same for testing.

5.3.5 Automation execution and maintenance
In testing phase we will execute the test cases either manual or automated fashion. For the

automation, selection of the test cases is done using the automation strategy. Normally all the

regression test cases will be moving to automated environment for avoiding the repeated manual

execution. In our automated environment the tester can select/deselect the test cases that he wants

to execute on a particular platform. While executing we can give two different options. In the first

option, that is, halt on failure, the test execution will stop if any one of the selected test fails. But

in second option, continue on failure, will allow executing all the selected suites, even if one suite

fails. At the end of the execution we can see the results and logs of each suite separately. This will

give a detailed status of the execution. In our frame work we can execute test cases on any

number of platforms simultaneously. Figure 5.7 shows the sample screen shot of the build forge

console.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

38

Figure 5.7

5.3.6 Benefits of automation
Following are some of the benefits of test automation

 High coverage for regression testing

 Improve the speed of product to market by reducing the elapsed time for testing

 Improve the productivity

 Generate detailed test logs

 Run the scripts across multiple platforms

 Fast, reliable, comprehensive and reusable

 Cost effectiveness

5.3.7 Test automation success factors
Success of test automation depends on direct and indirect factors of the test organisation.

Direct success factors:

 Test process

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

39

 Test management

 Test object delimitation

 Test case determination

 Test data and test data definition

 Test infrastructure and environment

 Test tools selected

 Employees productivity

Indirect success factors:

 Configuration management

 Change management

 Defect management

 Release management

 Requirements management

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

40

6. Identification of improvement candidates

This chapter is talking about the areas that need to give more attention for improving the test

efficiency of the existing test environment.

6.1 System test automation

Figure 6.1

Figure 6.1 shows the initial test setup of the database indexing tool. The test server is the place

where we store the test documents, test drivers and execution logs of the test runs. Test machines

are loaded with software under test. The above setup needs a lot of manual intervention for doing

proper test execution. After doing deep analysis on the test setup, we identified this as one of the

main bottle necks.

 Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

41

6.2 Install test automation
Indexing tool has multiple builds in each service pack release. Test team needs to ensure that the

drivers are working fine before proceeding with a system test. Manual download and installation

of database and indexing tool drivers are identified as the problem area for improving the test

efficiency. During the analysis stage, team identified the following items for avoiding manual

errors, redundancy and thus to improve the test efficiency.

 FTP download of selected levels of drivers to centralized location (Test server)

 Copy the specified driver to the test machine

 Unzip the compressed drivers and extract the same

 Run silent install using response file generated

 DB installation on multiple machines

 Index tool installation on multiple machines

 Un installation of installed drivers after sample verification (if needed)

 Generate reports that summarizes results of the job

 Sample verification

 Scheduled download of various builds

6.3 Lack of risk based testing
Following are some of the points that need to be considered for creating security test plan:

 Creating security abuse/misuse cases

 Listing standard security requirements

 Product architecture risk

 Building risk-based security test plans

 Wielding static analysis tools

 Performing security tests

 Performing penetration testing in the final environment

 Cleaning up after security breaches

In our study we identified that we can have some improvements in security by following proper

security test process.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

42

6.4 Parallel execution of test scenarios
In our case study analysis, we spotted some areas where we can implement parallel processing

concepts and improve the test efficiency. Following are some of the key points selected for

improvements:

 Identifying serially executing independent steps.

 Under utilisation of hardware resources.

 Lack of Modularisation.

 Code redundancy.

 Syntactic optimization of the codes.

6.5 Lack of scheduled execution of the scenarios
In the existing test setup, test team was executing the system test by manually during the office

hours. This was one bottleneck for maximum utilisation of the test hardware. Most of the time

test machines were free during night time and weekends. For improving the hardware utilisation

of the team, we suggested for an automatic scheduled execution of the test scenarios. As per this

suggestion, tester can schedule the test execution based on machine availability. Once we

schedule the execution, the tool will automatically start the execution without manual

intervention.

6.6 Test Management issues
Test team was involved in multiple projects. Due to this multiple activities test manager was

facing many issues in proper work allocation and tracking of the allocated work. Many times

multiple activities created issues to testers for meeting the dead line. After the case study analysis

we suggested a ‘test point method’ of tracking for ensuring that the work is allocated in a

balanced way.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

43

7. Implementation and outputs of the research

This chapter is talking about the implementation work that we carried out in the existing test

setup and the major outputs of the research work.

7.1 Regression automation
Figure 7.1 shows the setup that we implemented in our case study. To address the identified

problems of system test execution environment, team evaluated many tools and processes and

finally shortlisted the build forge tool. IBM Rational Build Forge is an adaptive process execution

framework that automates, orchestrates, manages, and tracks all the processes between each

handoff within the assembly line of software development, creating an automated software

factory. Rational Build Forge integrates into your current environment and supports major

development languages, scripts, tools, and platforms; allowing you to continue to use your

existing investments while adding valuable capabilities around process automation, acceleration,

notification, and scheduling.

New regression environment implementation done after a deep analysis of the current test frame

work. Following issues are addressed using the new regression setup:

 Parallel execution of test scenarios

 Scheduling of different jobs

 Log verification from a central console

 Monitoring of long running scenarios from central console

 Report generation

With the new regression setup we are able to move many system test cases to automated

regression environment and thus reduced the system test cycle time. Test team was taking around

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

44

100 man days of testing effort for each release. After the implementation of the framework we are

able to complete the task in 50-70 man days of effort. This product has minimum 5-7 releases per

year. With this case study we are able to save 1 to 1.5 man years of testing effort.

Figure 7.1

7.2 Install test automation
Manual download and installation of DB and index tool drivers are one of the painful issues we

faced during system and installation testing. We addressed this issue with the development of new

tool named Test Install Automation Tool (TIAT). Figure 7.2 shows the TIAT concepts that we

implemented and Figure 7.3 shows the typical work flow of the TIAT tool. With this tool we are

able to solve almost all the issues related with driver download and installation (Refer 6.2)

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

45

Figure 7.2

Figure 7.3

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

46

7.3 Risk based testing
Risk is the possibility of a negative or undesirable outcome, so a risk could negatively affect

customer, user, or stakeholder satisfaction. Through testing, we can reduce the overall level of

quality risk. Analytical risk-based testing uses an analysis of quality risks to prioritize tests and

allocate testing effort. By introducing this approach we are able to achieve the following things.

 Find out the important bugs earlier in test execution, that reduces the risk of schedule

delay.

 Finding important bugs than unimportant bugs, reducing the time spent chasing

trivialities.

 Provide the option of reducing the test execution period in the event of a schedule crunch

without accepting unduly high risks.

7.4 Parallel processing
Parallel processing is used for completing long tasks in a short duration of time. Large tasks will

be divided in to multiple numbers of smaller tasks and run concurrently on several nodes

/instances. Figure 7.4 shows the sequential processing of a large task and Figure 7.5 shows the

execution of divided tasks in parallel.

Figure 7.4

Figure 7.5

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

47

In our case study, for increasing the speed of query search on different languages and

environments we applied the parallel processing techniques for completing the task in fast

mode. In the initial setup, searching of the documents on different languages was happening

in a sequential order. Using the new method we are able to increase the search speed of the

query by splitting the sequential scripts in to multiple tasks by considering the language and

environment. Figure 7.6 shows the initial setup of the search process and Figure 7.7 shows the

new processing mode using parallel execution. While splitting the tasks, two types of issues

we need to address.

 Structuring the task

 Preserving the sequence of tasks that need to be executed serially

Figure 7.6

Figure 7.7

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

48

7.4.1 Database environment for parallel execution
Figure 7.8 shows the database environment and hierarchical relationship between systems,

instances and databases. For running different tasks on different instances we need to set the

OS environments variables and data base environment and registry variables. Following are

the some of the characteristics of our parallel execution environment:

 Each language has its own instance

 Code page needs be to set for each language

 All the instances on the same server behave like separate installations of database

 All instances are sharing same database manager program files

 Each instance can run task concurrently

 Task synchronization

 To be run on using single or multiple CPUs

 Problem broken in to discrete parts that can be solved concurrently

 Each part is further broken down in to a series of instructions

 Instruction from different parts execute simultaneously on different instances /CPUs

Figure 7.8

 Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

49

Figure 7.9

Figure 7.9 shows the pictorial representation of multiple tasks runs on different CPUs. By

introducing the parallel processing in test execution, we were able to achieve the following

things

 Save time: By splitting the sequential task in to multiple parallel tasks we are able to

finish the search related testing in a 1/5th of the original time

 Save money : We are able to save tester’s time and machine time

 Solve larger problems : For testing the creation of larger indexes and index updates,

processing of documents on multi core machine is very helpful

 Provide concurrency in execution

7.4.2 Parallel queries
This approach is introduced in our case study for analysing the reliability of the indexing tool

while running multiple queries in parallel. In this setup the database will be residing on one

machine and various kinds of documents (pdf, html, xml etc.) will be regularly added to the

database. The index update will be happening in a regular time interval. While doing index

update, parallel search queries will be sent to the database. With this scenario, we are trying to

simulate a real time customer production environment. Here we use a multi threading concept.

From the remote machine, we will execute the search queries as multiple threads. Below are

the steps that we need to follow for running the parallel queries.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

50

 Setup the data base machine and remote client

 Export the server and load the test setup

 Set the DB2 communication using TCP/IP

 Catalog the test server nodes and database on client machines

 Create proper directories on server machines for creating the database and indices

 Run the test suite on test server

 Run the parallel queries from the client machines after connecting to the server

database

 Monitor the test execution and verify the logs for errors

 Clean up the machine after test execution

Refer Appendix I for scripts and queries

7.5 Scheduled execution
Figure 7.10 shows the screen shot of the scheduling screen in build forge execution framework.

We implemented the scheduling option in our framework for maximum utilisation of the

machine. With this option the test team is able to schedule the execution of regression scenarios

in advance based on the availability of the machine.

Figure 7.10

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

51

7.6 Test Management using test point method
 Proper tracking of the test execution and test management was one of the improvement area we

noticed in project execution. By introducing a new tool called Test Tracking Tool (TTT) and a

new method named as test point method, we are able to address most of the issues we faced in

this area. TTT, an IBM test tracking tool helped us to track the test status of each tester

separately. TTT has multiple options to customize the tracking view based on our requirements.

We used to follow a test point method, where we assigned test points to the scenarios based on

the importance and duration of execution. This helped us to easily predict the duration of the test

cycle. Using this method, test manager will get a clear idea, how the testing is progressing. Based

on the test points completion manager can take early decisions like, whether the testing will

meet the project dead line, whether the team is overloaded, is there any extra resource needed,

etc. And he can make adjustments in manpower utilization based on the test point’s completion.

Initially we were facing problems for reporting daily progress of the testing due to the

incompletion of long running scenarios. Tracking the progress on each platform (product used to

test on 20 + platforms) and getting the correct report from each tester was also another painful

task. This caused a lot of confusion in test management for rotating resources to other work and

for re allocation of scenario to different testers. After implementing the test point method and

graphical report using test points, we are able to solve the test management issues

 Below example shows, how a test manager is planning the testing using test point method

Assume that 10 test points (TP) = 1 man day

After analysing the selected scenarios of the test phase, manager got total test points of 560 TP.

This means he need total 56 man days of execution. Based on test start date and end date

manager can easily decide the number of testers need to allocate for this test cycle. For example

the manager want to finish the execution in 28 days, he can allocate 2 people for this test phase

Time allotted for test completion = 28

Total test points in test cycle = 560

Number of test points need to cover in one day = 560/28 = 20 TP

Total tester needed = 20/10 = 2 person

Based on this calculation, the manager can easily monitor the test progress and if there any

shortage in execution he can easily adjust the resources with below calculations

Planned number of test points completion on N th day of execution = N * 20

Actual number of test points executed on N th day = M

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

52

Difference in expectation = N*20 –M

Eg: -After 10th day as per the plan we need to complete 10* 20 TP s. But actual number executed

is only 140.

Difference in plan is 200-140 = 60 TP s

That means as per the plan, testing is lagging behind by 3 days.

Here test manager can change his plan by adjusting the days/resources etc.

This early planning will help the manager to avoid missing dead lines of test execution. Also with

this approach he can prepare pictorial representation of test progress. See the below sample chart

of execution. Using the below graph (Figure-7.11), manager will get a clear picture of the

execution progress. Also he will get an idea of total defects found in test phase. With this

approach the manager can handle any number of releases without any management issues.

Figure 7.11

7.7 Measurable results after implementation
 Based on the implementation proposal and the action taken to improve the test execution and test

management of indexing tool, team was able to address the challenges specified and actually

benefited in terms of test effectiveness and productivity improvement. Overall, it improved the

test management. Below are some of the significant benefits and improvements achieved.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

53

 Implemented new regression frame work and thus are able to increase the testing

coverage.

 Reduced manual intervention for the system test and thus saved 30-50% system test

execution time (Approximate saving of one person year).

 Introduced parallel execution of the scenarios on test machines and that helps to improve

CPU utilisation.

 Report generation

 Automated the DB, index tool driver download and installation process

 Scheduled execution of test scenarios

 Introduced new method called - Test Point method - for tracking the test execution

progress

 Introduced new database tool -TTT - for tracking the individual test status

 Improved hardware utilisation using VM ware and through machine sharing option

 New GUI interface

 Central console for analysing the test logs and reports

7.8 Recommendations
Based on the work done by the team in the test execution and management area, below are some

of the recommendations to testing engineers. This can apply to any software testing project where

there is a scope of automation and efficiency improvement.

 Know your efficiency to know what to improve

 Institute risk based testing for catching defect in early test cycle

 Setup regression frame work as early as possible and move repeatedly executing system

test scenarios to regression

 Introduce light weight test automation

 Use IBM Rational Build Forge, that you can easily integrate into your current

environment and support major development languages, scripts, tools, and platforms

 Try to exploit the maximum existing investments while adding valuable capabilities

around process automation, acceleration, notification, and scheduling.

 Automate your install verification test (IVT) so that you can run the IVT for each and

every build without manual intervention

 Introduce proper test tracking system using easily understandable graphical approach

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

54

8. Summary and Conclusions

This thesis followed a case study approach in a database environment. Throughout the research,

team focused on identifying the limitation of the existing environment and suggested how we can

improve the test effectiveness by using various tools, theories, standards etc. The investigations

gave results showing possibilities for increasing the test efficiency. At the end of implementation

stage, team got an appreciation certificate for saving a minimum of one person year of effort

(Refer appendix – I).

8.1 Outputs of the research
Following are the major outputs of the research work:

 Introduced a new simple approach called test point method for easy tracking of the test

execution progress

 Implemented a multi threading algorithm for simulating the customer environment for test

execution

 Introduced a new algorithmic solution for solving the issues in system management with

a title of “Generating index for data stored in a conf file: A new way of System

management”

 Reduced manual intervention for the system test and thus saved approximate one

personal year of test execution time

 Introduced new tool called TIAT for install and download

8.2 Publications
Following are the publications prepared during the thesis work: Property of Christ University.

Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

55

 Effective testing: An investigative approach for improving test efficiency (International

Journal of Scientific & Engineering Research, Volume 3, Issue 2, February-2012-ISSN

2229-5518)

 Software Test Automation Process –STAP – (Presented a paper in eit-12- National

conference)

 Effective testing: A customized hand book for testing professionals and students- has been

accepted for publication in IJSER, which will be published in IJSER Volume 3, Issue 5,

May 2012

 Generating index for data stored in a conf file: A new way of System management: This

algorithm Published in IBM developer works article

 Effective testing: A combinatorial approach for improving test efficiency – Wrote a paper

and waiting for submitting to an international conference on testing

8.3 Validation of hypothesis
From the project results we validate the hypothesis as follows

 Manual intervention for running the test suites: After evaluation of the existing test setup

we came to know that the reason for the less test efficiency is due to manual execution of

the test suites and for reducing the same we decided to integrate all the test suites in an

automation frame work and selected the Rational build forge for the same.

 Manual download and installation of DB and indexing tool drivers: Install verification of

each build for the DB and indexing tool was very repetitive and time consuming task. The

team was spending around 2-3 person months for install test. We decided to automate the

same and introduced a new tool TIAT for the same.

 Parallel execution of different scenarios on different machines from central point: We

investigated the existing lab setup of the test environment and came to know that the CPU

utilisations of the various machines are very less. For improving the test efficiency we

introduced instance level and processor level parallelism.

 Scheduled execution of multiple scenarios: Due to manual execution of the test suites,

most of the time, during nights and weekends the machines were free. We implemented a

scheduled execution for addressing the issue. With this mechanism we are able to improve

the hardware utilisation during nights and other non office hours.

 Tracking the test status for multiple service packs: Introduced a new tool called Test

Tracking Tool for point wise tracking of the each service packs.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

56

 Tracking the test progress for each service pack: Introduced a test point method for proper

tracking of the test progress using graphical method.

 Tracking the test status of the individual test team members: Test tracking tool has an

option for individual tracking of the tester.

8.4 Future work
Following are the areas that we planned for further investigations related to efficiency

improvements of the testing:

 Effective testing using combinatorial testing approaches

 Reliability analysis of real time system

 Issues in test management for outsourced testing projects

 Issues in Knowledge transfer

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

57

Appendix I: Test script sample

This portion contain the scripts that are used for setting up the customer environment (Refer
7.4.2)

[Environment setup: Common to database machine and remote client]

Export Server= <sever machine>

. ttcsetup nse svt R2-3

[DB2 communication]

db2set DB2COMM=TCPIP

export SvceName=DB2_"$DB2INSTANCE"

db2 Update DBM CFG Using SvceName $SvceName

db2stop

db2start

[On remote clients]

db2 Catalog TCPIP Node $Server Remote $Server Server $Port Number

Eg: - db2 Catalog tcpip node node3 remote sunspool.in.ibm.com server 60000

db2 Catalog Database A819UPD At Node $Server

db2 Catalog db A819UPD at node node3

db2 Terminate

db2 List Node Directory

db2 List DB Directory

[On database machine]

mkdir -m 777 -p "$TTC_DATAROOT"/nsesvt/indices/"$USER"/A819UPD

mkdir -m 777 -p "$TTC_DATAROOT"/nsesvt/work/"$USER"/A819UPD

testall -noabortonfail -suite: index_update_1000x

[On remote clients: Run queries and check output]

export Parallel Queries=25

db2 Connect To A819UPD User nseqlwe Using test@123

rexx /svttest/ttcR1/nsesvtR2-3/tools/lnb_test_tools/longLastQuery_aix_special.rex $Parallel

Queries $Prefix

[On database machine: Check for locks while queries are running]

Open a new server session and do the ttcset up

Check for locks periodically:
Property of Christ University.

Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

58

rexx /svttest/ttcR1/nsesvtR2-3/tools/lnb_test_tools/lockManagerCheckPlusPlatform.rex

<number of loops> <sleep time interval> <platform (Unix or windows)>

Eg:- rexx $TTC_ROOT/tools/lnb_test_tools/lockManagerCheckPlusPlatform.rex 1000 10

Unix

[On database machine: Check for locks after the test is done]

rexx /svttest/ttcR1/nsesvtR2-3/tools/lnb_test_tools/lockManagerCheckPlusPlatform.rex 1 0

Unix

[On remote clients: Check output files for NSE errors]

grep -in CTE21 /ttcdata/"$Prefix"_mass_search_special* > /ttcdata/"$Prefix"_CTE21.txt

grep -in CTE0116 /ttcdata/"$Prefix"_mass_search_special* > /ttcdata/"$Prefix"_CTE0116.txt

grep -in CTE0119 /ttcdata/"$Prefix"_mass_search_special* > /ttcdata/"$Prefix"_CTE0119.txt

grep -in CTE0157 /ttcdata/"$Prefix"_mass_search_special* > /ttcdata/"$Prefix"_CTE0157.txt

[Cleanup activities]

[On remote clients]

db2 Uncatalog Database A819UPD

db2 Uncatalog Node $Server

db2 Terminate

[On database machine]

export DB2DBDFT=A819UPD

db2 Disconnect All

db2text Drop Index Admin.Index For Text

db2text Disable Database For Text

db2text Stop

db2 Deactivate Database $DB2DBDFT

db2 Drop Database $DB2DBDFT

Script to create one long lasting process to run queries

/**/
/* Script to create one long lasting process to run queries */
/* Done by Abdul Rauf 31/01/2012 */
/* Syntax: longLastQuery_aix_special.rex */
/**/
parse arg queryLoops myId.

QueryThreads = queryLoops

if queryThreads = '' | myId = ''then do

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

59

 say "Please enter number of threads"

 say "Syntax is longLastQuery_aix_special.rex <number of threads> <my Userid>"

end

/* trace 'ia' */
i = queryThreads
USER = myId
do while i>0
/* "`sh -c 'db2 -tvf /svttest/ttcR1/nsesvtR2-3/db2_search/mass_search_extended.tvf
1>/ttcdata/"||USER||"_mass_search_extended.out"||i
"2>/ttcdata/"||USER||"_mass_search_extended_err.out"||i "'` &" */
 "`sh -c 'db2 -tvf /svttest/ttcR1/nsesvtR2-3/db2_search/mass_search_special.tvf
1>/ttcdata/"||USER||"_mass_search_special.out"||i
"2>/ttcdata/"||USER||"_mass_search_special_err.out"||i "'` &"
 say "This is the:" i "run"
 i=i-1
end
exit

Sample content of the mass_search_special.tvf

-- DB2 Net Search Extender Test
-- Version: 9.1
-- Usage: Call from the operating system command line:
-- db2 -tvf search
-- For Windows NT: first enter the db2 command line environment
-- with db2cmd command

connect to A819UPD user db2admin using test@123;

-- 1. Query

 SELECT count (FILENAME)
 FROM AXML.MASS
 WHERE CONTAINS (CLOB_DOC, '"Tippettstudio"') = 1;

-- 2. Query
 SELECT count (FILENAME),
 NUMBEROFMATCHES (CLOB_DOC, '"Tippettstudio"')
 FROM AXML.MASS;

-- 3. Query
 WITH TEMPTABLE (DocSeqNo,score)
 AS (SELECT DocSeqNo,
 SCORE (CLOB_DOC,'"Tippettstudio"')
 FROM AXML.MASS)

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

60

Appendix II: Screen shots

This section will give an idea about the various screens of the regression test environment

Screen 1- Build forge project screen

Screen 2- Build forge project execution screen

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

61

Screen 3- Executed job status screen

Screen 4- Server added to regression environment

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

62

Screen 5- Suite wise execution status

Screen 6- Log display screen

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

63

Screen 7- Log summary

Screen 8- Project wise execution summary

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

64

Screen 9 - Build duration Vs Build instance graph

 Build instance

Screen 10 - Scenario runtime graph

 Step Average Duration

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

65

Screen 11 – Sample capacity report

Projects

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

66

Appendix III: Recognition certificate

 Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

67

Appendix IV: Paper presentation certificate

 Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

68

References

[1] Cem Kaner, Jack Falk, Hung Quoc Nguyen, ‘Testing Computer Software’ 2nd Edition,

2001, ISBN: 81-7722-015-2.

[2] Boris Beizer, ‘Software Testing Techniques’, 1st Reprint Edition, 2002, ISBN: 81-7722-

260-0.

[3] Booz Allen Hamilton, Gary McGraw, ‘Software Security Testing’, IEEE SECURITY &

PRIVACY, 2004, PP 1540-7993.

[4] ‘Test Plan Template’ (IEEE 829-1998 Format), 2001, Software Quality Engineering -

Version7.0.

[5] Toshiaki Kurokawa, Masato Shinagawa, ‘Technical Trends and Challenges of Software

Testing’, Science & Technology Trends, 2008 – Quarterly review no.29.

[6] IBM Rational build forge V 7.13 – Information Center document.

[7] Viraj Kumbhakarna, ‘A Practical Approach to Process Improvement Using Parallel

Processing’, PharmaSUG2011 - Paper PO03.

[8] Lars-Ola Damm, ‘Evaluating and Improving Test Efficiency’, Master Thesis, Software

Engineering, June 2002, Thesis no: MSE-2002-15.

[9] K. Burr and W. Young, ‘Combinatorial Test Techniques: Table-Based Automation, Test

Generation, and Test Coverage’, Proc. Int’l Conf. Software Testing, Analysis, and

Review (STAR), 1998; http://aetgweb.argreenhouse.com/papers/1998-star.pdf .

[10] Rick Kuhn, Yu Lei and Raghu Kacker, ‘Practical Combinatorial testing: Beyond Pair

 wise’, 2010 \http://csrc.nist.gov/groups/SNS/acts/itpro-final.pdf .

[11] D. Richard Kuhn, Raghu N. Kacker, Yu Lei, ‘Practical Combinatorial testing’, NIST

 Special Publication 800-142.

[12] Elfriede Dustin, http://www.combinatorialtesting.com, December 2011.

[13] Ambler S.W., ‘Introduction to Test Driven Development, 2006’.

 http://www.agiledata.org/essays/tdd.html, December 2011.

[14] Binder R., ‘Testing Object-oriented Systems’, Addison-Wesley, 1999.

[15] Marciniak, J., ‘Encyclopedia of Software Engineering’, John Wiley & Sons Inc, 1994,

 ISBN 0-471-54004-8.

[16] IEEE Std. 610.12-1990, ‘Standard Glossary of Software Engineering Terminology’,

 1990.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

69

[17] A Nagappan , ‘Linux Desktop Testing Project – LDTP tutorial’

 http://ldtp.freedesktop.org, August 2011.

[18] IBM , ‘Federated Integration Test (FIT)’

 http://salwiki.rtp.raleigh.ibm.com./confluence/display/fit, August 2011.

[19] SQS Software Quality Systems AG, ‘Software test automation –White paper’, August

 2010.

[20] Rex Black, ‘Advanced Software Testing vol.1’, Fifth Indian Reprint ,2011,

 ISBN: 13-978-81-8404-698-4.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

70

Acknowledgements

Many people contributed to this dissertation in innumerable ways, and I am grateful to all of

them. First and foremost, I would like to express my sincere gratitude to my advisor V Balaji

for the continuous support of my Mphil study and research, for her patience, motivation,

enthusiasm, and immense knowledge. Her guidance helped me in all the time of research and

writing of this thesis.

I would like to thank Mohammed Shaffi - Project Manager - IBM India, who has given an

opportunity for conducting the case study in IBM Lab.

I wish to express my sincere thanks to Nikunja B Das -Test Engineer - IBM India, who helped

in automation works for making the regression test environment available for this work

My sincere thanks to Saleema. J.S for her valuable advice and friendly help. Her extensive

discussions around my work was very helpful for this study

During this work I have collaborated with many colleagues for whom I have great regard, and

I wish to extend my warmest thanks to all those who have helped me with my work in the

Department of Computer Science, Christ University – Bangalore – India

I owe my loving thanks to my parents, Ahammed Kutty and Fathima, who have been a

constant source of support

My wife Sajna P.V and my son Muhammad Razi, has been, always, my pillars, my joy and

my guiding light, and I thank them.

Last but not the least, I would like to thank God Almighty for giving me the chance, the

strength and patience for doing this research work.

Property of Christ University.
Use it for fair purpose. Give credit to the author by citing properly, if your are using it.

