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Abstract

Rayleigh-Bénard Convection in nanofluids is considered in this research work and the impact of
non-uniform temperature gradients on the onset of convection is studied.The Galerkin technique
is used to arrive at the Rayleigh number and wave number.The problem is analyzed under three
different velocity boundary combinations namely free-free, rigid-free and rigid-rigid boundaries
with isothermal, iso-nano concentration conditions and the eigenvalue is obtained for each of
these cases.A linear stability analysis is performed using normal mode method. The influence
of several parameters on the onset of convection has been investigated. One linear and five non-
linear temperature profiles are employed and their comparative impact on onset of convection
is summarized.
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Chapter 1

Introduction

1.1 Objective and Scope of the Dissertation

The science that deals with the behavior of fluids in motion or at rest and the correlation of

fluids with solids or other fluids along the boundaries is characterized as Fluid Mechanics.This

branch of science has varied applications and is widely used in everyday actions as well as in

the designing of the advanced engineering systems.

An average house is an exposition hall filled with fluid mechanics applications.The plumbing

methods for cold water, natural gas and sewage as well as refrigerators, heating and air con-

ditioning systems are also modeled on the basis of fluid mechanics.Automobile industry also

makes use of several efforts of fluid mechanics. All mechanisms connected with carriage of fuel

from fuel tank to the cylinders are reviewed using concepts of fluid mechanics. In addition to

these hydraulic brakes, power steering, lubrication systems, cooling systems and even the tires

are customized on the basis of this branch of science. Various studies and observations have

concluded that fluid mechanics methods play a major role in evaluation and invent of aircraft,

rockets, submarines, biomedical devices, buildings, bridges etc.

The circulation system of the body is functioning as a fluid system. Artificial hearts, heart-lung

machines, breathing aids and other such methods are dependent on the basic fluid mechanics

standards. Various natural wonders such as rain cycle, weather patterns, winds, ocean waves,

currents in large bodies and rise of ground water to the top of trees are also conducted by ideals

of fluid mechanics.



Due to the relevance in many natural and industrial applications, much progress has been made

in understanding the idea of convection in fluid mechanics over the last century. Convection

is the joint, concerted movement of cluster of molecules within fluids through combination of

advection and diffusion. In addition convection is an important means of transferring mass in

fluids.The difference in temperature leads to density variation in fluids which give rise to natural

convection. Bulk fluid movement occurs as cooler and denser particles fall down and sink while

hotter and lighter components on the base layer rise up.

Rayleigh-Bénard convection is a kind of natural convection, in which a particular pattern of

convection cells are developed by the fluid and it is named as Bénard cells. And this type of

convection occurs due to the heating of a plane horizontal fluid layer from below. As a result

of its analytical and the experimental relevance, the Rayleigh Bénard convection is one of the

highly recommended convection phenomena.

In 1900, Henri Bénard [5], a French physicist, carried out an experiment for the first time

through which the features of Rayleigh Bénard convection can be obtained.The investigational

arrangement consists of a layer of liquid between two planes which are parallel to each other.

On comparing with the dimension of horizontal layer, the height is small. In the beginning

the temperatures of both the bottom plane and the top plane are the same. The temperature of

the liquid will be same as that of its surrounding and hence the liquid will lead towards equi-

librium. Gradually, thermal energy starts conducting through the fluid since there is a slight

increase in temperature of the bottom plane. This results in density increase at the top layer

than that of underneath layer. Finally, the system is heavy at the bottom but convective motion

does not necessarily sets in because thermal diffusivity and viscosity of the fluid will oppose

convective movement. If the fluid is adequately heated, then convective motion ensues steadily.

The microscopic random movement of fluid particles will impulsively become well arranged

on a macroscopic level, after the convection in established and as a result hexagonal Bénard

convection cells will be formed.
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Rayleigh [33] in 1916 investigated the theory for the condition for instability incorporating two

free surfaces. Gravity acts on the fluid and tries to pull the cooler, denser liquid from the top to

the bottom, since there is density gradient between both the plates. On the contrary the viscous

damping force in the fluid opposes the gravitational force. Thus a non-dimensional parameter

known as Rayleigh number is used to calculate the balance of these two forces and is given by,

R =
βgρ0d

3∆T

µκ

where, β is the coefficient of thermal expansion, g is acceleration due to gravity, d is the dis-

tance between the plates, ∆T is the difference in temperature, µ is co-efficient of viscosity and

κ is thermal conductivity.

It is summarized that the gravitational forces become more prevailing as the Rayleigh num-

ber increases. When the critical Rayleigh value is approached, the instability occurs and the

convection cells emerge. As convection takes place for lower values of temperature gradients,

studies reveal that it has got wide several applications in varied sectors such as bio-chemical

reactions, environmental science, geophysics, manufacturing processes and so on.

Nanofluids, are the common heat conducting fluids containing nanometer sized(typically less

than 100 nm) particles suspended in them. Materials, such as oxide ceramics (Al2O3, CuO),

nitride ceramics(AlN, SiN), carbide ceramics (SiC, TiC), metals (Cu,Ag, Au), semiconductors

(TiO2, SiC) and carbon nanotube are used as nanoparticles in carrier fluid. Liquids like water,

ethylene glycol and oil have been used as base liquids in nanofluids. A new dimension is opened

for an efficient way of advancing the heat transfer performance of common fluids using these

nano particle suspensions.

The constantly increasing requirement of heat removaling techniques involving electronic chips,

laser applications or other high energy devices has challenged the efficiency of heat transfer

techniques. The conventional fluids put a fundamental limit on heat exchange processes due
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to their poor thermal conductivity. Several factors hinder the efficiency of usual techniques of

heat transfer. Comparative studies on heat conducting competence show that the customary heat

transferring liquids are less efficient than metals.

The idea of increasing transfer of thermal energy in fluids by dispersing millimeter or micrometer-

sized particles in liquids was carried out by Maxwell [22] as well as various other scientists and

engineers for more than a century. On the contrary, a number of drawbacks were exhibited by

these slurries with micro to millimeter sized suspensions. Primarily, the tendency of these par-

ticles to rapidly settle in fluids under gravity brings fouling and several other issues. Another

major problem in using such large particles is the increase in the pumping power. Furthermore,

these suspensions can clog the tiny channels and small flow passages of the emerging miniatur-

ized devices. In addition to these, erosion of components occurs due to the abrasive action of

the particles and their momentum transfer requirement increases the pressure drop significantly.

Hence it is observed that from the view of technological considerations these slurries cannot be

used as heat transfer fluids even though they have higher conductivities.

Finally, it was observed that the disadvantages of slurries with micron or bigger size particles

can be solved using nanometer dimensioned particles. Also the production of nano sized par-

ticles is made possible using recent progress in nanotechnology and associated manufacturing

procedures. The Argonne National Laboratory conducted a series of research works and mate-

rialized this concept and Choi [12] was the first person to name the fluids with nanometer sized

suspensions as nanofluids.

This discovery of nanotechnology-based fluids with improved heat transfer characteristics is re-

ally significant because these fluids display thermal properties finer to those of their base fluids

or usual particle fluid suspensions. The advantage of using nano particle suspended fluids is

that there are no issues of clogging and increase in pressure drop due to the miniature particle

size and their small volume fraction. As a result of the large surface area of the nanoparticles

the non equilibrium effect between fluid and solid as well as the sedimentation problem has
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reduced whereas the stability of the particles is increased. Therefore by reducing the particles

to nanometer dimensions the troubles of customary slurries can be eradicated. These features

have made nanofluids potential for cooling application such as energy intensive laser and X-ray

applications, super conducting magnets, high speed computing systems, fiber manufacturing

processes and high-speed lubrication applications.

The non uniform temperature profile finds its source in transient heating or cooling along the

boundaries so that the basic temperature gradient is explicitly dependent on position and time.

Few applications of nonuniform temperature gradient can be observed in geophysics due to the

source of heat and due to the non uniform heating imparted by the sun to the several latitude

zones around the world as well as oceanic and continental surfaces. Majority of the industrial

problems consist sudden heating or cooling leading to non uniform temperature gradients.

The number of studies conducted in convective heat transfer area is restricted compared to that

in the area of thermal conductivity of nanofluids. Hence,the main intent of the study is to exam-

ine the effect of non-uniform temperature gradients on the onset of Rayleigh-Bénard convection

in nanofluids.
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Chapter 2

Literature Review

The literature relevant to the theme of the dissertation is briefly reviewed below.The aim of this

survey is to highlight the background literature pertaining to the topic under discussion. The

literature related to nanofluids is discussed in following paragraphs.

The heat transfer characteristics of fluids containing nanosize particles were studied by Putra et

al.[31] They placed a cylinder horizontally and experimented the onset of convection by heat-

ing and cooling the cylinder at opposite ends. Nanofluids exhibited apparently complex nature

on examining the declination of conduct of heat in them. Several studies on finding the cause

of deterioration led to the conclusion that various factors like the material of the nanoparticle,

concentration of these particles , geometry of cavity etc play a vital role.

Choi et al.[13] studied the reformed Maxwell model and gave an explanation on the drawback

of using spherical shaped particles. Consecutively to understand the effect of liquid/ solid in-

terface, the Hamilton Crosser representation was broadened for non-spherical shaped particles.

Along with this, a new model was suggested for three-phase suspension, which is formulated

in terms of the thermal conductivity, concentration and experimental shape factor. Also the

thermal conductivity limit on the basis of experimental shape factor is clarified by renovated

Hamilton Crosser model.

Buongiornos [10] studies dealt with the seven slip mechanism in nanofluids and in turn the con-

vection in them. Among the various slip mechanisms, Brownian diffusion and thermophoresis

are of great relevance.For momentum,mass and heat transport,he formulated a four equation,
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double-component, non-homogeneous equilibrium model on the basis of his observations . A

comparative study was also undertaken among nanoparticle and time and length of turbulent

eddies ,which gave a clear view that convection of nanoparticles along with the fluid is ho-

mogeneous when turbulent eddies are present. As an impact of this,the turbulence intensity is

vague. For the strange increment in values of heat transfer coefficient in nanofluid a detailed

alternative clarification was given. He made a finding that nanofluid characteristics vary drasti-

cally between the layers of boundary as an impact of thermophoresis and temperature gradient.

Because of these effects viscosity decreases between boundary layer for the heated fluid and

thus the heat transfer will be enhanced. In order to give an explanation to these effects he also

created a correlation structure.

Tzou [40] gave an overview on the nanofluids thermal instability and the nature of Brown-

ian motion as well as thermophoresis. An observation was made that the nanofluids critical

Rayleigh number value is less in magnitude than that of a regular fluid. He found that on adding

highly promoted turbulence, nanofluids energy bearing capacity will raise, which in turn leads

to higher heat transfer coefficient. Making use of non dimensional analysis the dominating

groups are extracted. Additionally the methods of weighted residual and eigen function expan-

sion were made use to obtain approximate solution of Rayleigh number.

Nield and Kuznetsov [23] examined nanofluid layer saturated with Porous medium and analyti-

cally observed the convection in them using a model developed on the effects of thermophoresis

and Brownian diffusion. For studying the influence of Porous medium they employed Darcy

model. To analyze the outcome of LTNE between the solid matrix, fluid and particle phases, a

three- temperature model was taken into account. The conclusion obtained was that the local

thermal non-equilibrium (LTNE) has minimal impact when they considered dilute nanofluids

unlike certain other cases where this effect is important.

An analytical approach was used by Nield and Kuznetsov [24] in porous nanofluid layer to ob-

serve the convection onset. For this model of nanofluid, thermophoresis and brownian diffusion
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effects are used. In this work the Brinkman model for Porous medium is considered. Several

observations were made by them as follows: for usual nanofluid (with high values of Lewis

number), the buoyancy force along with nanoparticle conservation equations is the cause of

main effect and also the impact of nanoparticles on the equation of thermal energy is because of

the effect of second order. Another conclusion was made that ,an increase or decrease in critical

Rayleigh number value can be achieved by a significant change in nanoparticles distribution i.e.

the value will vary if the nanoparticle concentration is heavy at top or heavy at bottom . Another

important finding was that if the nanopaticle distribution is bottom heavy then convection will

set as oscillatory motion.

Wen et al.[42] produced an overview on the applications of nanofluids in the area of heat trans-

fer based on analytical study. Studies were also done on the drawbacks of nanofluids, because

eliminating these demerits can help in attaining progress and growth in this area.

Wong and Leon [43] have highlighted the remarkable range of applications of nanofluids which

will make it highly demandable in current and future scenario. In their studies the main concern

is on the controllable and extremely improved heat transfer characteristics of these fluids. Also

the distinctive properties are highlighted such that they can be used for advanced applications.

Nield and Kuznetsov [25] considered how the theory of double diffusion has an impact on the

convection onset in nanofluids with saturated porous media. For carrying out their studies they

made use of binary fluid that is, salt water was chosen to be the base fluid. To study the effect

of porous media Darcy model is applied. The equations on thermal energy constitute regular as

well as cross diffusion terms. For understanding the oscillatory and non-oscillatory cases, the

Galerkin technique was incorporated.

Yadav et al.[44] carried out an experiment on Rayleigh-Bnard convection in nanofluids and no-

ticed the linear stability. On the contrary due to the effects of thermophoresis and Brownian

motion, they had to bring in the nonlinear motion in the heat transfer in nanofluid.
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Consecutively to obtain the exact solution of a layer of nanofluid confined between free-free

boundaries the Galerkin technique was applied. Also the calculations using numerical methods

were applied to figure out the value of critical Rayleigh number and plots of graphs were also

obtained to give clarification to the impact of various parameters. They were also able to attain

the situations that lead to over stability.

Nield and Kuznetsov [26] observed porous layer of nanofluid and made an analytical investi-

gation on vertical flow consequence on the commencement of its convection. Their observa-

tions helped in comprehensing the dependency of critical Rayleigh number on factors such as

Brownian motion and thermophoresis. This study was undertaken for both oscillatory and non-

oscillatory cases,including and excluding through flow.

Bhadauria and Agarwal [6] considered a porous layer of nanofluid with coriolis force and ob-

served the linear and nonlinear instability while conducting thermal energy. In the momentum

equation,they regarded the Brinkman term as well as the term due to Coriolis force and also

integrated the effects due to Brownian motion and thermophoresis. For carrying out linear and

nonlinear studies normal mode method and Fourier series with truncated representation were

incorporated respectively. Oscillatory as well as stationary modes of convection were exper-

imented. Analyzing the weak nonlinear method the thermal as well as concentration Nusselt

numbers were calculated. The nature of concentration and thermal Nusselt numbers are defined

by finite amplitude equations and various numerical methods are implied to find the solutions

for them. Lastly the outcomes are represented graphically.

The linear and nonlinear cases of onset of convection in porous nanofluids was examined by

Bhadauria et al.[7].The equation of momentum used in this study constituted Brinkman model.

Effects of Thermophoresis as well as Brownian motion were taken into consideration. Nor-

mal mode technique and truncated representation of Fourier series were performed for linear

analysis and nonlinear study respectively. To visualize the impact of several parameters on

convection onset graphs were depicted. The weak nonlinear analysis helped in formulating the
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concentration and the thermal Nusselt numbers. The equation of finite amplitude was evaluated

using the numerical method and henceforth the thermal and the concentration Nusselt numbers’

natures were summarized.

Bhadauria and Agarwal [8] observed the porous, rotating layer of nanofluid using thermal non-

equilibrium model and studied the linear effect as well as nonlinear impact on the commence-

ment of convection. The properties of porous medium was summarized with the help of Darcy

model. Three types of temperature models were used for this study. Normal mode technique

was employed for understanding linear stability and truncated representation of Fourier series

substantiated the nonlinear theory.

Sheu [35] initialized the studies on viscoelastic nanofluid with porous medium and observed

how the convection sets in. The constitutive equation of Oldroyd-B type is used in describing

the flow pattern of nanofluids with viscoelastic effect. The effect of several parameters on the

system stability was considered in depth. An observation was made by him that in both top

heavy and bottom heavy distribution of nanoparticles the oscillatory mode can occur. An im-

portant conclusion was that unlike stationary mode several processes like Brownian diffusion,

viscoelasticity and so on triggers the convection to commence in oscillatory mode.

Timofeeva et al.[39] examined a complicated nanofluid system and presented the systematic

theory associated with it. A system of three phases such as solid phase, interfacial phase and

liquid phase constituted,the suspension of nanoparticle .These phases gave considerable con-

tributions to the properties of system since it has enormously great ratio of surface-to-volume.

Additionally the impact of several nanofluid parameters in heat transfer was also estimated in

this article.

Yu and Xie [47] recapitulated the advance in the study of nanofluids till then as follows; prepa-

ration method, evaluation methods for stabilizing nanofluid system and mechanisms to improve

the nanofluids stability. The immense range of nanofluids applications in diverse fields are also
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mentioned in the article. Eventually various prospects for research in nanofluids are also sug-

gested.

Saidur et al.[34] has summarised the remarkable range of applications of nanofluids as well as

has posed the various challenges in this field of research. On the basis of past literature they

reviewed the nanofluids thermal conductivity and observed that it is very high. Also they found

that on comparing with regular fluid nanofluids exhibit strong dependence on temperature when

particle concentration is minimal.This property is considered as the prime factor for the im-

mense applications of nanofluids in current scenario. Meanwhile this paper also mentions few

industrial challenges that are hindering the usage of nanofluids.

Nield and Kuznetsov [27] performed the linear stability theory in a porous nanofluid layer and

extended the same for the Horton-Rogers-Lapwood problem. They observed the dependency

of viscosity and thermal conductivity of the nanofluid on the nanoparticle concentration. The

impact of thermophoresis and Brownian motion was also employed. An observation was made

that the nanoparticle concentration is stratified when Brownian motion is associated with it and

as a result thermal conductivity and viscosity also gets stratified. They took a sample of dilute

nanoparticles and hence they treated the porous layer of fluid as weak heterogeneous layer that

will vibrate perpendicularly to viscosity and conductivity. This technique helped in obtaining

the analytical solution approximately.

The features of double- diffusive convection in a porous layer of nanofluid was summarized by

Agarwal et al.[1]. Nanofluid was prepared making use of binary fluid. The proposed model for

studying nanofluids included Brownian diffusion and thermophoresis effects. Thermal energy

equation was composed of cross diffusion and diffusion terms. The technique of normal mode

was performed to understand linear stability and the nonlinear theory was comprehensed using

truncated representation of Fourier series. Analysis of linear theory was done by calculating

critical Rayleigh number and investigation of non linearity was based on Nusselt number.
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The internal heating impact on the onset of the Darcy Brinkman convection in a layer of porous

nanofluid was carried out by Yadav et al.[45]. The BrinkmanDarcy model based equation char-

acterized the nanofluid motion, under the condition that viscosity of fluid varies from effec-

tive viscosity. To obtain the solution of eigenvalue problem linear theory was considered and

Galerkin method was employed. Graphs were plotted to show how different parameters affect

the stability of the system.

Mahian et al.[21] examined how nanofluids can be applied in solar thermal systems. For the

conservation of environment and since fossil fuels are non-renewable, these days researchers

are motivated to utilize the solar energy as an alternate energy source. Through their study

these researchers have mentioned advantages like the effect of nanofluid on various solar de-

vices. They also investigated the application of nanofluids in solar cells, thermal storage system,

photovoltaic system and so on.Meanwhile the challenges faced by nanofluids in this area were

also taken into consideration.

Yadav et al.[46] studied various properties of the convection in a layer of electrically conduct-

ing nanofluid under the application magnetic field and considered linear theory for the study.

The model was inclusive of the effects of Brownian diffusion as well as thermophoresis.For

free-free, rigid-rigid and rigid- free boundaries the analytical solution of eigenvalue problem is

formulated. Galerkin technique was used for obtaining numerical solution. Their experiments

were conducted on aluminium water nanofluid and they presented the numerical solution .

Gupta et al.[14] investigated convection in a layer of nanofluid with vertical magnetic field and

expressed the solution using linear stability theory. An assumption was made that the nanopar-

ticles are distributed as bottom heavy. An explaination was given on system stability and was

proposed that the system is more stable when the mode is oscillatory rather than stationary,

The density gradient fluctuates with the variation of density,this is due to the bottom heavy

distribution of nanoparticles and also it occurs due to bottom heating of nanofluid. They sum-

marized that the buoyancy effect coupled with nanoparticles conservation lead to phenomenon
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of instability and thermophoresis and Brownian motion to the thermal energy equation have no

contribution at all. Both the oscillatory and stationary convections were analysed using normal

mode technique. And the stabilizing effect of magnetic field on both convective modes was

noticed.

Mahajan and Arora [19] employed linear theory on a layer of magnetic nanofluid with coriolis

force for understanding the convection in it. The model developed by them to study the features

of nanofluid included the influence of magnetophoresis, Brownian diffusion and thermophore-

sis. The eigen value problem is solved using Chebyshev Pseudospectral method. The result

is obtained for the following boundary conditions: rigid-rigid, free-free, and rigid-free. They

treated ester and water based magnetic nanofluids. In this paper they have investigated how

the onset of convection is affected by rotation, magnetic field, and modified particle density

increment . An interesting observation was made that the magnet mechanism will overcome

the buoyancy mechanism if the thickness of fluid layer is 1mm. It was also noticed that in an

environment of microgravity the magnetic nanofluids are more flexible on the onset of convec-

tion. They summarized for all the three boundary conditions, the temperature gradients should

be high so that the convection will start.

Agarwal and Bhadauria [2] analysed characteristics of Newtonian nanofluids. Linear as well as

non linear stability was examined. The significant growth in the value of critical Rayleigh num-

ber for linear theory was observed if the nanoparticle distribution is bottom heavy. In addition

to this weak nonlinear theory provided the thermal and concentration Nusselt numbers. A com-

parative study was undertaken between nanofluid and binary fluid convections by introducing

Soret effect for both cases.

Bhadauria and Kiran [9] observed heat transfer in nanofluids and formulated a mathematical

model to manage the heat transfer in them. The five mode Lorenz model was used in evaluating

weak nonlinear theory. They obtained the expression for Nusselt number. They noticed the

dependency of transport of the heat and the convection modulation. On observing the effect of
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internal Rayleigh number the finding was that there should be increase in nanoparticle and heat

transfer.

Rana et al.[32] investigated double-diffusive convection in porous layer of nanofluid under cori-

olis force. Studies on porous medium was carried out using Darcy model. Binary fluid such as

salty water was treated as base fluid for the experiments on nanofluids. A finding was made that

the solute gradient and rotation has stabilizing effect on stationary convection. When thermal

stability of nanofluid layer was reviewed, it was analysed that rotation has a major role. This is

made use in machineries with rotating force.

The influence of rotation on the onset of thermal instability in a layer of Newtonian nanofluid

was examined by Agarwal and Bhadauria [3].For understanding the unsteady state ,non-linear

analysis was employed and thus evaluated the thermal and concentration Nusselt number val-

ues .They noticed that the rate of heat and mass transfer is stabilized by rotation and further the

onset of convection is also stabilized. The findings were summarized as follows that the onset

of convection is delayed for rotating system on comparing with nonrotating system.

Mahajan and Sharma [20] investigated magnetic nanofluid with less permeability and noticed

the onset of convection in it. The consequences of magnetophoresis, Brownian diffusion, and

the thermophoresis on nanofluids were evaluated using this model.The Chebyshev pseudospec-

tral method provided the solution for eigenvalue problem. The results were formulated for vari-

ous boundary surface conditions. In addition to this, experiments were conducted to summarize

how various parameters like permeability, modified particle density increment and magnetic

field affect the stability of system under consideration. On examinining high flexibility was

displayed by magnetic nanofluid at the onset of convection. Finally, it was presented that all

types of boundary conditions require high value of temperature gradient is required such that

the convection starts.
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Umavathi [41] conducted a study on porous layer of nanofluid under the effect of modulating

temperature. Three types of temperature modulation were set at the boundaries.The perturba-

tion method with small amplitude was employed for evaluating the wave numbers as well as

the critical Rayleigh number.Also on investigation it was noticed that if the wall temperature is

modulated periodically the system can be stabilized or destabilized . The analysis led to the fact

that the stabilizing effect is comparatively more for nanofluids than regular heat transfer fluid.

Kiran [18] summarized the properties of the thermal convection in the porous, viscoelastic

nanofluid under vibration effect. The constitutive equation of the Oldroyd-B type were proposed

for comprehensing the rheological natureof viscoelastic nanofluid. The non-uniform vertical

vibrations of the system was varying periodically with time,when the system was oscillating

vertically. Inorder to investigate the heat and mass transfer truncated representation of Fourier

series was incorporated to study nonlinear theory. The summary of the study was that inorder

to organize heat and mass transport in the system the gravity modulation should be employed

effectively .

Siddheshwar and Meenakshi [38] treated nanofluids as a single phase system and proposed a

model for them after investigating the onset of RayleighBnard convection. Various properties

were reviewed based on their studies. They formulated a tri-modal Lorenz model on presuming

small scale convections and Boussinesq approximation . In addition to this the GinzburgLan-

dau equation was also derived from the generalized Lorenz model. Using the convective modes

amplitudes the heat transport was estimated and was presented analytically. An observation

was made that the presence of nano size particles has enhanced the heat transport enhancement.

Comparitive study was made to see the increment in heat transport in Newtonian nanofluids as

that of regular Newtonian liquids.

Kakac and Pramuanjaroenkij [17] presented various benefits of producing thermal systems with

nanofluids and highlighted the probablity of using it in heat transfer enhancement. Two cate-

gories are given emphasis in this paper. The first category is the one in which base fluid and
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nanoparticle is assumed to be single mixture and is termed as single-phase modeling. The other

one is called as two-phase modelling in which nanoparticles characteristics and base fluids are

treated separately.

Shivkumara and Dhananjaya [36] considered the porous, rotating nanofluid layer and observed

the thermal convective instability. Along the concentration of nanoparticles they employed

physically realistic boundary combinations. For numerical solution of generalized eigenvalue

problem Galerkin technique was used. The values of Critical Rayleigh numbers, frequencies

and wave numbers were estimated for checking over stability.

The literature pertaining to non-uniform temperature gradient is reviewed as follows.

Siddeshwar and Pranesh [37] employed one linear and five non-linear temperature gradients on

a micropolar fluid system and investigated the convection onset. On applying Galerkin method

they calculated the eigen value of the problem for various boundary surface combinations. In

addition to this, the comparative study led to the observation that micropolar fluid Rayleigh

number is more when compared to that of newtonian fluid.

In a micropolar fluid the impact of the six non-uniform temperature profiles on BénardMarangoni

convection was summarized by Idrisa et al.[15]. Linear theory was considered by them to ob-

tain the solution and hence they examined the functionality of several parameters on the fluid

system. The highlight of the study was that by opting the appropriate temperature profile the

convection can be managed.

Pranesh and Riya Baby [29] considered micropolar fluids subjected to electric field and refer-

ence state steady temperature profiles and highlighted their impact on Rayleigh-Bnard convec-

tion. They assumed that microrotation vanishes at the boundaries. Authors have substantiated

how several fluid parameters and electric Rayleigh number affect the micropolar fluid system.
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Pranesh and Arun Kumar [28] examined a layer of micropolar fluid constrained to double dif-

fusive convection and they highlighted the effect of non-uniform basic temperature gradient on

convective motion of this fluid layer. Using linear stability theory they presented in detail how

various micropolar parameters have an impact on the onset. For carrying out the comparative

study one linear and five non linear temperature profiles were employed and finally the results

were graphically depicted. The study was summarized that the fluid containing suspensions

,heated and soluted from below exhibited high stability in comparison with the classical fluid

without suspended particles.

Joseph et al.[16] performed Galerkin technique to obtain the solution for the problem on the

onset of Rayleigh-Bnard-Marangoni convection in micropolar fluid subjected to electric field

and non-uniform basic temperature gradient. They proposed linear stability analysis for car-

rying out this study.Micropolar fluid parameters effects and electric Rayleigh number impacts

were observed . Varied non-uniform temperature profiles are reviewed and their comparative

influence on onset is evaluated.
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Chapter 3

Basic Equations, Boundary Conditions,

Approximations and Dimensionless Parameters

The governing equations, assumptions, boundary conditions and the dimensionless parameters

considered in this problem are discussed in this chapter.(See Ritu [4])

3.1 Basic Equations

The governing equations associated with the problem are as

follows:

Conservation of mass:

∂ρ

∂t
+5. (ρ~q) = 0 (3.1)

For an incompressible fluid, ρ is constant,from equation (3.1),we get

5.~q = 0 (3.2)

Conservation of Linear Momentum:

The Navier-Stoke’s equation under the Boussinesq approximation is,

ρf [
∂~q

∂t
+ (~q.5)~q] = −5 p+ µ52 ~q − ρ~gk

For a small volumetric fraction Φ,the nanofluid density is given as,
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ρ = Φρp + (1− Φ)ρf

On using the equation of state, ρf = ρ0f [1− β(T − T1)],we get,

ρf [
∂~q

∂t
+ (~q.5)~q] = −5 p+ µ52 ~q − [Φρp + (1− Φ)ρf (1− β(T − T1))]~g (3.3)

Conservation of Energy:

The heat transport equation for the nanofluid is,

ρfcf [
∂T

∂t
+ (~q.5)T ] = κ52 T + ρpcp[DB(5Φ)(5T ) +

DT

T1
(5T )2] (3.4)

Conservation of Nano Particle:

In the absence of chemical reaction,conservation of nanopaticle can be written as,

∂~Φ

∂t
+ (~q.5)~Φ = DB 52 ~Φ +

DT

T1
52 T (3.5)

3.2 Approximations

The following assumptions are made in solving this problem.

1. The fluid is incompressible and homogeneous.

2. The Boussinesq approximation.

3. The gravity acts vertically downwards.

4. Thermal diffusivity and viscosity are assumed to be constants.

5. There are no chemical reactions and negligible external forces in the nanofluid.

6. The nanofluid under consideration is a dilute mixture (φ << 1).

7. Local thermal equilibrium are assumed between base fluid and nanoparticles.
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3.3 Boundary Condition

3.3.1 Boundary Conditions on Velocity

To obtain the boundary conditions on velocity, Cauchy’s Stress Principle,the no slip conditions

and mass balance are considered and they are also dependent on the nature of the surfaces at

boundary of the fluid,whether they are free or rigid.In this problem the following boundary

surfaces are employed.

1. Both the boundaries of the fluid are free.

2. Lower boundary is rigid and upper boundary is free.

3. Both the boundaries of the fluid are rigid.

The velocity boundary conditions of free surfaces at the boundaries are

w =
∂2w

∂z2
= 0. (3.6)

The velocity boundary conditions of rigid surfaces at the boundaries are

w =
∂w

∂z
= 0. (3.7)

3.3.2 Boundary Conditions on Temperature

The temperature boundary conditions are formulated on the basis of the heat conducting prop-

erty of the boundaries.

Uniform and time independent temperature is observed if thermal capacity is large and thermal

conductivity is high.Hence along the boundary surfaces the condition on temperature is given by

T = 0 (3.8)

This condition is known as isothermal boundary condition or fixed surface temperature condi-

tion.
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3.3.3 Boundary Conditions on Volumetric Fraction of

Nanoparticles

The boundary conditions on volumetric fraction of nanoparticles are defined as follows

φ = φ0, atz = 0

φ = φ1, atz = d

where, φ0 > φ1


(3.9)

φ0 > φ1 represents the bottom heavy condition.

3.4 Dimensionless Parameters:

The following are the dimensionless parameters that occur in this problem:

1. Rayleigh number:

Ra =
ρ0β(T0 − T1)gd3

µκ

Rayleigh number gives the relation between the buoyancy and dissipative force of vis-

cosity and thermal conductivity. The convection sets in when Rayleigh number is greater

than certain critical value.

2. Prandtl Number:

Pr =
µ

ρ0κ

Prandtl number is the ratio of kinematic viscosity to thermal diffusivity.

3. Basic Density Rayleigh Number:

Rm =
[ρpφ1 + ρc(1− φ1)]gd

3

µκ
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Basic density Rayleigh number is the ratio of density of the nanofluid to the dissipation

force of viscous and thermal.

4. Concentration Rayleigh Number:

Rn =
(ρp − ρc)(φ0 − φ1)gd

3

µκ

Concentration Rayleigh number is the ratio of the volumetric fraction of nanoparticle to

the dissipation force of viscous and thermal.

5. Modified Diffusivity Ratio:

NA =
DT (T0 − T1)
DBT1(φ0 − φ1)

It is the ratio of thermophoretic diffusion coefficient to Brownian diffusion coefficient.

6. Modified Particle Density Increment:

NB =
ρpCp(φ0 − φ1)

ρfCf

It is the ratio of specific heat of particle to the specific heat of fluid.

7. Lewis number:

Le =
κ

DB

The Lewis Number (Le) is defined as the ratio of the Schmidt Number (Sc) and the

Prandtl Number (Pr).It is also the ratio of thermal diffusivity and molecular diffusivity.
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Table 3.1: Nomenclature

Symbol Meaning

d Distance between the plates

T Temperature

~q Velocity

p Pressure

µ Co-efficient of viscosity

~g Acceleration due to gravity

ρf Fluid density

ρp Nanoparticle mass density

ρ0 Density at reference temperature

DB Brownian diffusion coefficient

DT Thermophoretic diffusion coefficient

Cf Specific heat of nanofluid

Cp Specific heat of nanoparticle

κ Thermal conductivity

β Co-efficient of thermal expansion

φ Nanoparticle volume fraction

φ0 Nanoparticle volume fraction at lower plate

φ1 Nanoparticle volume fraction at upper plate

t Time

T0 Temperature at the lower plate

T1 Temperature at the upper plate

∆T Temperature difference between both the plates

l,m wave numbers in horizontal directions where a2 = l2 +m2

∇ Vector Differential Operator

∇2 Three dimensional Laplacian Operator
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Chapter 4

The Effect of Non-Uniform Temperature Gradients

on the Onset of Rayleigh-Bénard Convection in a

Nanofluid

In this chapter,the effect of the non-Uniform temperature gradients on the onset of Rayleigh-

Bénard convection in nanofluids is studied.The linear analysis is done using normal mode anal-

ysis and the eigen values are obtained by Galerkin procedure.

4.1 Mathematical Formulation

A nanofluid layer is considered between two parallel surfaces of infinite length, separated by

a distance d,as shown in figure 5.1.In the analytical formulation all thermophysical nanofluid

properties are treated as constants.Let the temperature at the lower and upper boundaries be

denoted by T0 and T1 respectively where T0 > T1.Also the nanofluid under consideration is

assumed to be incompressible.

The governing equations of the problem are: (See Ritu [4])

Continuity Equation:

5.~q = 0 (4.1)
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Conservation of Linear Momentum:

ρf [
∂~q

∂t
+ (~q.5)~q] = −5 p+ µ52 ~q − [Φρp + (1− Φ)ρf (1− β(T − T1))]~g (4.2)

Conservation of Energy:

ρfcf [
∂T

∂t
+ (~q.5)T ] = κ52 T + ρpcp[DB(5Φ)(5T ) +

DT

T1
(5T )2] (4.3)

Conservation of Nanofluid particle:

∂~Φ

∂t
+ (~q.5)~Φ = DB 52 ~Φ +

DT

T1
52 T (4.4)

The quantities in (4.1)-(4.4) are as defined in chapter 3.The basic equations are solved sub-

ject to the boundary conditions given below.At the boundaries the temperature as well as the

volumetric fraction of the nano particles are supposed to be constants.

1. Free-Free Isothermal Iso-nano concentration:

w =
∂2w

∂z2
= 0, T = T0, φ = φ0, atz = 0

w =
∂2w

∂z2
= 0, T = T1, φ = φ1.atz = d

 (4.5)

2. Rigid-Rigid Isothermal Iso-nano concentration:

w =
∂w

∂z
= 0, T = T0, φ = φ0, atz = 0

w =
∂w

∂z
= 0, T = T1, φ = φ1, atz = d

 (4.6)

3. Rigid-Free Isothermal Iso-nano concentration:

w =
∂w

∂z
= 0, T = T0, φ = φ0, atz = 0

w =
∂2w

∂z2
= 0, T = T1, φ = φ1, atz = d

 (4.7)
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4.2 Non-Dimensionalisation

The equations (4.1)-(4.4) are non-dimensionalised making use of following definitions.

(x∗, y∗, z∗) = (
x

d
,
y

d
,
z

d
), t∗ =

κt

d2
, p∗ =

d2p

ρfκ2

~q∗ =
d~q

κ
, φ∗ =

φ− φ1

φ0 − φ1

, T ∗ =
T − T1
T0 − T1

 (4.8)

Substituting equation (4.8)into the governing equations and on neglecting asterisks the follow-

ing non-dimensionalized equations are obtained.

∇.~q = 0 (4.9)

1

Pr

[
∂~q

∂t
+ (~q.∇) ~q

]
= −∇p+∇2~q −Rnφ+RaT −Rm (4.10)

∂T

∂t
+ (~q.∇)T = ∇2T +

NB

Le
(∇φ.∇T ) +

NANB

Le
(∇T.∇T ) (4.11)

∂φ

∂t
+ (~q.∇)φ =

1

Le
∇2φ+

NA

Le
∇2T (4.12)

The non-dimensional parameters Pr, Rm, Rn, Ra, NA, NB, Le in equations (4.9)-(4.12) are as

defined in chapter 3.

The boundary conditions given by equations (4.5)-(4.7) in dimensionless form can be written

as

1. Free-Free Isothermal Iso-nano concentration:

w = D2w = 0, T = 0, φ = 1, atz = 0

w = D2w = 0, T = 0, φ = 0, atz = 1

 (4.13)
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2. Rigid-Rigid Isothermal Iso-nano concentration:

w = Dw = 0, T = 0, φ = 1, atz = 0

w = Dw = 0, T = 0, φ = 0, atz = 1

 (4.14)

3. Rigid-Free Isothermal Iso-nano concentration:

w = Dw = 0, T = 0, φ = 1, atz = 0

w = D2w = 0, T = 0, φ = 0, atz = 1

 (4.15)

4.3 Basic State

The basic state of the fluid is assumed to be at rest and is given by

~q = 0, T = Tb(z), p = pb(z), φ = φb(z),
−d
∆T

dTb
dz

= f (z) (4.16)

On substituting equation (4.16) in the equations (4.9)-(4.12) we obtain the following equations,

−dPb(z)

dz
−Rnφb(z) +RaTb(z)−Rm = 0 (4.17)

d2Tb
dz2

+
NB

Le

(
dφb

dz
.
dTb
dz

)
+
NANB

Le

(
dTb
dz

.
dTb
dz

)
= 0 (4.18)

1

Le

d2φb

dz2
+
NA

Le

d2Tb
dz2

= 0 (4.19)

On using the order of magnitude analysis,the second and third terms in (4.18) are small and

this can be discarded.Therefore,we have

d2Tb
dz2

= 0 (4.20)
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And also on substituting (4.20) in (4.19),we obtain

d2φb

dz2
= 0 (4.21)

On integrating equations (4.20) and (4.21) and on using boundary condition the following equa-

tions are obtained.

Tb(z) = 1− z (4.22)

φb(z) = 1− z (4.23)

4.4 Linear Stability Analysis

On imposing infinitesimal perturbations on the basic state,we obtain

~q = ~qb + ~q′, p = pb + p′, T = Tb + T ′, φ = φb + φ′, (4.24)

here,the quantities with prime are the perturbations and quantities with suffix b denote the basic

state values.

Using equation (4.24) in the equations (4.9)-(4.12) and also using the solutions of basic state,the

following linearised equations governing perturbed state are obtained.

5.~q′ = 0 (4.25)

1

Pr

∂~q′

∂t
= −∇p′ +∇2~q′ −Rnφ

′ +RaT
′ (4.26)

∂T ′

∂t
− w′f(z) = ∇2T ′ (4.27)

∂φ′

∂t
− w′ = 1

Le
∇2φ′ +

NA

Le
∇2T ′ (4.28)
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where f (z) is the non-dimensional basic temperature gradient,which is non-negative and find

its source in transient heating or cooling along the boundaries.The various non-uniform temper-

ature gradients considered in this dissertation are defined below.

Table 4.1: Non-Uniform Temperature Gradients

Basic temperature Profiles Model f (z)

Linear Rc1 1

Heating from below Rc2


1

ε
, 0 ≤ Z < ε

0, ε < Z ≤ 1

Cooling from above Rc3

 0, 0 ≤ Z < 1− ε
1

ε
, 1− ε < Z ≤ 1

Step function Rc4 δ(z − ε)

Inverted parabolic Rc5 2 (1− z)

Parabolic Rc6 2z
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Operating curl twice on (4.26) to eliminate pressure and considering only the z component,the

following equation is obtained.

(
1

Pr

∂

∂t
−∇2

)
∇2w′ = Ra∇2

1T
′ −Rn∇2

1φ
′ (4.29)

where∇2
1 is the two dimensional laplacian operator.

4.5 Method of Solution

4.5.1 Normal Mode Analysis

To obtain solution of stationary convection and the unknown fieldsw′,T ′,φ′,we use normal mode

analysis and obtain the following.(See Chandrasekhar [11])


w′

T ′

φ′

 =


W (z)

T (z)

φ(z)

 ei(lx+my) (4.30)

where l and m are horizontal wave number in x and y direction.

Using the equation (4.30) in equations (4.27),(4.28) and (4.29) we obtain,

(D2 − a2)2W = a2RaT − a2Rnφ (4.31)

−Wf(z) = (D2 − a2)T (4.32)

−W =
1

Le

(D2 − a2)φ+
NA

Le

(D2 − a2)T (4.33)

where,D = d
dz

and a2 = l2 +m2 is the dimensionless wave number.

30



4.5.2 Galerkin Technique

For solving the set of differential equations (4.31)-(4.33), Galerkin technique is applied.To ob-

tain the solution,multiply equation (4.31) by W ,equation (4.32) by T and equation (4.33) by φ

and integrate the resultant equations with respect to z between the limits 0 and 1.

Also let W = AW1, T = BT1, φ = Cφ1 where W1, T1, φ1 are trial functions satisfying the

boundary conditions and A,B,C are constants.

On substituting and simplyfying we obtain the expression for Rayleigh number Ra.

Ra =
1

a2X7

[
−X2 ∗X1

X6

+

(
X4 ∗X2

1
Le
∗X5 ∗X6

− NA ∗X3

X5

)
∗ a2RnX4

]
, (4.34)

Where,

X1 =< W1(D
2 − a2)2W1 >,

X2 =< T1(D
2 − a2)T1 >,

X3 =< φ1(D
2 − a2)T1 >,

X4 =< φ1W1 >,

X5 =< φ1(D
2 − a2)φ1 >,

X6 =< f(z)T1W1 >,

and X7 =< W1T1 >.

The following boundary conditions are considered,to find the critical Rayleigh number .

1. When both boundaries are free,isothermal and isonano concentration:

The boundary conditions are:

w = D2w = 0, T = 0, φ = 0, atz = 0, z = 1 (4.35)
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The trial functions satisfying the boundary conditions (4.35) are:

W1 = sinπz,

T1 = z − z2,

φ1 = z − z2


(4.36)

2. When both boundaries are rigid,isothermal and isonano concentration:

The boundary conditions are:

w = Dw = 0, T = 0, φ = 0, atz = 0, z = 1 (4.37)

The trial functions satisfying the boundary conditions (4.37) are

W1 = z2(1− z)2,

T1 = z − z2,

φ1 = z − z2


(4.38)

3. When upper boundary is free,isothermal and isonano concentration and lower bound-

ary is rigid,isothermal and isonano concentration:

The boundary conditions are:

w = Dw = 0, T = 0, φ = 0, atz = 0

w = D2w = 0, T = 0, φ = 0, atz = 1

 (4.39)

The trial functions satisfying the boundary conditions (4.39) are

W1 = z2(1− z)(3− 2z),

T1 = z − z2,

φ1 = z − z2


(4.40)
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On substituting the trial functions (4.36),(4.38) and (4.40) in equation (4.34) and integrating we

obtain the required expression for critical Rayleigh number,which attains its minimum at a2c for

given f (z).
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Chapter 5

Results and Discussions

The impact of non-uniform temperature gradients on the onset of Rayleigh-Bénard convection

in nanofluids is investigated using linear stability analysis.Galerkin technique is used to obtain

the eigen value of the problem and is a function of concentration Rayleigh number Rn,Lewis

number Le,modified diffusivity ratioNA.The range of values ofRn,Le andNA used to calculate

the critical Rayleigh number are taken according to Pranesh and Ritu Bawa [30].The following

boundary combinations are considered in the present study.

1. Free-free,isothermal and iso-nano concentration.

2. Rigid-rigid,isothermal and iso-nano concentration.

3. Rigid-free,isothermal and iso-nano concentration

The criteria of stability is evaluated in terms of critical rayleigh number using linear stability

theory.Below the critical Rayleigh number,the system is stable,wheras above this value the sys-

tem is unstable and convection sets in.The results summarized in this problem are depicted in

the figures (5.2)-(5.10)

One linear and five non-linear basic temperature profiles are used in this study.We find that

Rc4 < Rc2 < Rc3 < (Rc1 = Rc5 = Rc6) for symmetric boundaries and Rc4 < Rc3 < Rc2 <

Rc6 < Rc1 < Rc5 for non-symmetric boundaries. (Refer Table 4.1 for notations). It is observed

that step function and linear are the most destabilizing and stabilizing profiles in the case of

symmetric boundaries.Step function and inverted parabolic are the most destabilizing and sta-

bilizing profiles in non-symmetric boundaries.
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Figures (5.2)-(5.4)are the plots of Rayleigh number Ra versus concentration Rayleigh number

Rn,Lewis number Le and modified diffusivity ratio NA respectively in the case of free-free

isothermal and iso-nano concentration boundaries for different non-uniform temperature pro-

files.

From the figure (5.2), it is observed that as the value of concentration Rayleigh number Rn

increase,Ra also increase and hence stabilizes the system indicating delay in the convection

onset. Positive values of Rn are taken which indicates that density of particle decreases up-

wards.The reason for the stabilizing effect of Rn is that because of the increase in nanoparticle

concentration and difference in temperature between the plates,energy gets transfered among

fluid and nanoparticles,which in turn delays the convection.

The effect of Lewis number Le on the stability of the system is given by figure (5.3).The large

values of Le are chosen in this problem because Le is inversely proportional to brownian dif-

fusion coefficient DB which takes small values.Therefore increase in Le,ie. the decrease in the

brownian diffusion coefficient leads to increase in Ra hence stabilizing the system.

The effect of modified diffusivity ratio NA on system stability is depicted in figure(5.4). From

the figure we observe that increase inNA decreases the value ofRa. The reason is that sinceNA

is directly proportional to thermophoresis diffusion coefficient DT ,whenever NA increase,DT

also increses and reduces Ra. Hence the increment in modified diffusivity ratio leads to system

destabilization.

Figures (5.5-5.7) and (5.8-5.10) respectively are the plots for Rayleigh number Ra versus vari-

ous parameters like concentration Rayleigh number Rn,Lewis number Le and modified diffu-

sivity ratio NA in the cases of rigid-rigid and rigid-free isothermal and iso-nano concentration

boundaries for different non-uniform temperature profiles.We observe that the results in these

cases are quantitatively similar to that of free-free isothermal and iso-nano concentration bound-

ary.
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From the figures it is observed that,RFF
ac < RRF

ac < RRR
ac ,where the superscripts denotes the

various boundary combinations.
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Figure 5.1: Physical Configuration
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Figure 5.2: Plot of concentration Rayleigh numberRn versus Rayleigh numberRa for different
temperature profiles for free free isothermal boundary.

38



Figure 5.3: Plot of Lewis number Le versus Rayleigh number Ra for different temperature
profiles for free free isothermal boundary.
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Figure 5.4: Plot of modified diffusivity ratio NA versus Rayleigh number Ra for different tem-
perature profiles for free free isothermal boundary.
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Figure 5.5: Plot of concentration Rayleigh numberRn versus Rayleigh numberRa for different
temperature profiles for rigid rigid isothermal boundary.

41



Figure 5.6: Plot of Lewis number Le versus Rayleigh number Ra for different temperature
profiles for rigid rigid isothermal boundary.
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Figure 5.7: Plot of modified diffusivity ratio NA versus Rayleigh number Ra for different tem-
perature profiles for rigid rigid isothermal boundary.
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Figure 5.8: Plot of concentration Rayleigh numberRn versus Rayleigh numberRa for different
temperature profiles for rigid-free isothermal boundary.
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Figure 5.9: Plot of Lewis number Le versus Rayleigh number Ra for different temperature
profiles for rigid-free isothermal boundary.
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Figure 5.10: Plot of modified diffusivity ratio NA versus Rayleigh number Ra for different
temperature profiles for rigid-free isothermal boundary.
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Chapter 6

Summary and Conclusions

In this research work, the effect of the non-uniform temperature

profiles on the onset of Rayleigh-Bénard convection in a nanofluid is investigated.The bottom

heavy distribution of nanoparticles are considered.Linear theory based on normal mode analysis

is considered in the study.The expression for Rayleigh number in terms of Rn,Le,NA and f (z)

are obtained using Galerkin method.The following are the conclusion drawn from the study.

1. In the case of nanofluids more amount of heat is required compared to Newtonian fluid.

2. Step function and linear profile are the most destabilizing and stabilizing temperature

gradients in the case of symmetric boundaries.

3. Step function and inverted parabolic are the most destabilizing and stabilizing temperature

gradients in the case of non-symmetric boundaries.

4. Concentration Rayleigh number Rn and Lewis number Le stabilizes the system.

5. Modified diffusivity ratio NA destabilizes the system.

6. Onset of convection can be controlled by using the appropriate non-uniform temperature

profile.

7. As a general result,we observe that R(Nano fluid)>R(Newtonian fluid) and

RFF
ac < RRF

ac < RRR
ac .
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