
The Effect of Temperature Modulation on the
Onset of Rayleigh-Bénard Convection in a

Dielectric Couple Stress Fluid with
Maxwell-Cattaneo Law

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Award of the Degree of

Master of Philosophy

in

Mathematics

by

Milan Maria Mathew

(Reg. No. 1435303)

Under the Guidance of

S. Pranesh

Professor

Department of Mathematics

CHRIST UNIVERSITY

BENGALURU, INDIA

July 2016



Approval of Dissertation

Dissertation entitled The Effect of Temperature Modulation on the Onset of Rayleigh-
Bénard Convection in a Dielectric Couple Stress Fluid with Maxwell-Cattaneo Law by
Milan Maria Mathew, Reg. No. 1435303 is approved for the award of the degree of Master of
Philosophy in Mathematics.

Examiners:

1.

2.

Supervisor(s):

Chairman:

Date:

Place:Bengaluru

ii



DECLARATION

I, Milan Maria Mathew, hereby declare that the dissertation, titled The Effect of Tempera-
ture Modulation on the Onset of Rayleigh-Bénard Convection in a Dielectric Couple Stress
Fluid with Maxwell-Cattaneo Law is a record of original research work undertaken by me for
the award of the degree of Master of Philosophy in Mathematics. I have completed this study
under the supervision of Dr S. Pranesh, Professor, Department of Mathematics.

I also declare that this dissertation has not been submitted for the award of any degree, diploma,
associateship, fellowship or other title. It has not been sent for any publication or presentation
purpose. I hereby confirm the originality of the work and that there is no plagiarism in any part
of the dissertation.

Place:Bengaluru

Date:

Milan Maria Mathew
Reg. No. 1435303

Department of Mathematics
Christ University, Bengaluru.

iii



CERTIFICATE

This is to certify that the dissertation submitted by Milan Maria Mathew (Reg. No. 1435303)
titled ‘The Effect of Temperature Modulation on the Onset of Rayleigh-Bénard Convec-
tion in a Dielectric Couple Stress Fluid with Maxwell-Cattaneo Law’ is a record of research
work done by her during the academic year 2014 - 2016 under my supervision in partial fulfill-
ment for the award of Master of Philosophy in Mathematics.

This dissertation has not been submitted for the award of any degree, diploma, associateship,
fellowship or other title. It has not been sent for any publication or presentation purpose. I
hereby confirm the originality of the work and that there is no plagiarism in any part of the
dissertation.

Place:Bengaluru

Date:

Dr S. Pranesh
Professor

Department of Mathematics
Christ University, Bengaluru.

Head of the Department
Department of Mathematics
Christ University, Bengaluru.

iv



Acknowledgement

My work would be incomplete without acknowledging all those who have helped and supported
me in the successful completion of this dissertation. It is a pleasure to thank everyone who have
supported me.

First and foremost I thank Almighty God for all the blessings showered on me.

I would like to express my sincere thanks to my guide, Dr S. Pranesh for his guidance and
support all through the work. I am really grateful to him for his valuable suggestions and guid-
ance at every stage of my work. His motivation and encouragement has helped me immensely
in understanding the subject and improving my research skills.

I would like to express my gratitude to Dr (Fr)Thomas C Mathew, Honourable Vice-Chancellor,
Dr (Fr)V. M. Abraham, Pro-Vice-Chancellor, Dr (Fr)K. J. Varghese, Chief Finance Officer,
Dr Anil Joseph Pinto, Registrar, Prof. K. A. Chandrasekharan, Personnel Officer and MPhil
Coordinator, Dr N. M. Nanjegowda, Dean of Science, Dr George Joseph, Associate Dean of
Science and Dr T. V. Joseph, Head of the Department of Mathematics, for having provided me
an opportunity to undertake the research work at Christ University.

I am thankful to the faculty of the Department of Mathematics, Christ University, specially Dr
Sangeetha George and Dr Smita S. Nagouda for sharing their knowledge and time and con-
stantly encouraging me throughout my work. I express my sincere gratitude to Dr R. V. Kiran
who has taken time for me to help in my work.

I thank my friends Divya, Shreelakshmi, Renjitha, Marshall, Rakesh, Neha and Femlin for
sharing a good time during our MPhil course. My sincere thanks to all my friends who have
morally supported me during the completion of this work.

I am grateful to my parents Mr Shaji K George and Mrs Alice Shaji and my sister Mimina
Elizabeth Mathew for encouraging and supporting me from the beginning till the end of my
dissertation. Thank you for being patient and understanding.

Milan Maria Mathew

v



Contents

Approval of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction 1
1.1 Objective and Scope of the Dissertation . . . . . . . . . . . . . . . . . . . . . 1

2 Literature Review 4

3 Basic Equations, Boundary Conditions, Approximations, Scaling and Dimension-
less Parameters 11
3.1 Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Boundary Conditions on Velocity . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Boundary Conditions on Temperature . . . . . . . . . . . . . . . . . . 13
3.3.3 Boundary Conditions on Electric Potential . . . . . . . . . . . . . . . 13

3.4 Scales Used for Non-Dimensionalisation . . . . . . . . . . . . . . . . . . . . . 13
3.5 Dimensionless Parameters: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 The Effect of Temperature Modulation on the Onset of Rayleigh-Bénard Convec-
tion in a Dielectric Couple Stress Fluid with Maxwell-Cattaneo Law 16
4.1 Basic State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Linear Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Method of Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Solution to Zeroth Order Problem . . . . . . . . . . . . . . . . . . . . 22
4.3.2 Solution to First Order Problem . . . . . . . . . . . . . . . . . . . . . 23
4.3.3 Minimum Rayleigh Number for Convection . . . . . . . . . . . . . . . 24

5 Results, Discussions and Conclusions 26

Bibliography

vi



Abstract

Rayleigh-Bénard Convection in a couple stress fluid with electric field is considered in this
research work and the impact of thermal modulation on the onset of convection is studied.
Maxwell-Cattaneo Law is substituted for the traditional Fourier Law. Accordingly, the high
speed for heat exchange which is a consequence of the traditional law is avoided. The Venezian
method is used to arrive at the critical Rayleigh number, wave number and correction Rayleigh
number. The problem is analysed under three different instances of oscillating temperature
field: (a) Symmetric with ϕ = 0, (b) asymmetric with ϕ = π, (c) modulation of temperature
of bottom wall with ϕ = −i∞. It is observed that sub-critical movement happens due to
temperature modulation. It is also found that temperature modulation can advance or postpone
the onset of convection.
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Chapter 1

Introduction

1.1 Objective and Scope of the Dissertation

Conduction, convection and radiation are the three modes of exchange of heat. Convection is
of two types: natural convection and forced convection. Natural Convection happens due to the
migration of fluid particles which occurs due to the difference in density of the fluid. Rayleigh-
Bénard Convection, a kind of convection that takes place naturally in a plane fluid layer results
in the evolution of a special arrangement of convection cells known as Bénard cells.

A stratum of fluid is taken between two parallel plates. Initially the temperature of the bottom
plate and upper plate remains the same and the system is in a state of equilibrium. The tem-
perature of the bottom plate is slightly increased and the heat gets transferred to the fluid by
conduction. Thus there is a temperature difference between both the plates. But this temper-
ature gradient is not strong enough to overcome the thermal conductivity and viscosity of the
fluid and hence there is no movement of particles. But at a certain point of time the temperature
gradient becomes strong enough to overcome the viscous damping force of the fluid and thus
the convection starts. The density of the lower fluid layer decreases and the lighter fluid rises
up. But it looses its heat when it reaches at the top. Hence the gravity tries to pull the cooler
denser fluid from top to bottom. Thus there is a continuous movement of fluid particles which
results in the formation of convection cells. Thus the system is in a state of instability.

A dimensionless parameter called Rayleigh number is used to express the balance between the
gravitational force and the viscous damping force which is given by:

R =
αgρ0d

3∆T

µκ

where, α is the coefficient of thermal expansion, g is acceleration due to gravity, d is the distance
between the plates, ∆T is the difference in temperature, µ is co-efficient of viscosity and κ is
thermal conductivity.
Couple Stress fluid is a critical class of non-Newtonian fluids. It is alluring to study this type of
fluid with suspended particle due to its increasing significance and applications in the modern



technology. Stokes developed the couple stress fluid theory in 1966. The possession of greater
viscosity and the existence of couple stresses together with the classical Cauchy stress is an im-
portant property of such fluids. Couple stresses arises as a result of the mechanical interactions
in a fluid. Polar effects is a distinct feature of this type of fluid. The principle highlight of couple
stress fluid is that it introduces an effect which is independent of size which is not considered
in the classical continuum mechanics. The investigation of the lubrication of synovial joins in
human body is an important application of couple stress fluid. It has many other applications
such as in a bath where the metallic plates are cooled, solidifying the liquid crystals and so forth.

The Fourier law of heat conduction states that the fluctuation of heat inside of a medium varies
proportionally with the temperature gradient that occurs locally in the system. But this law con-
cludes that the heat propagates with a high speed, which is an unphysical result. This motivated
many researchers like Cattaneo[11], Lindsay and Straughan[21], Straughan and Franchi[57],
Puri and Kythe[41], Puri and Jordan [40], Siddheshwar[49], Pranesh and Kiran[36], Pranesh
and Smita[39] to adopt a non traditional law known as Maxwell-Cattaneo law to study Rayleigh-
Bénard Convection.

Maxwell-Cattaneo equation is given by:

τ
d ~Q

dt
+ ~Q = −κ5 T

This equation together with energy equation forms a hyperbolic equation which defines that
heat propagates in a finite speed.

The idea of maintaining a temperature gradient across the boundaries is an effective method of
controlling convection. Temperature gradient is dependent on both space and time in most of
the practical applications. The transient warming or cooling at the limits have led to the origin
of non uniform temperature gradient and subsequently the temperature gradient relies upon both
position and time. This type of problem named as the thermal modulation problem includes a
temperature profile that relies upon both position and time and can be utilized to control the
convection by legitimate alterations of amplitude and frequency of modulation. Venezian[64]
first explored on the impact of such problems on the thermal instability. He found that an ap-
propriate regulation of the boundary temperatures can lead to the advancement or delaying of
convection. Later researchers like Siddheshwar and Pranesh[53], Bhadauria[2], Malashetty and
Basavaraja[23], Pranesh and Kiran[38], Takashima and Ghosh[60] and so forth have explored
thermal modulation problems.

A strong electric field can induce bulk motions in a system. Electro convection is gaining im-
portance since it replaces large switching circuits which consumes space in machines. It is used
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in designing more efficient heat exchangers in jet engines. Electrohydrodynamics were studied
by many researchers like Ezzat and Othman[14], Takashima and Ghosh[14].

The main aim of the study is to investigate on the influence of temperature modulation on the
onset of Rayleigh-Bénard convection in a couple stress fluid in the presence of electric field
with Maxwell-Cattaneo law.
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Chapter 2

Literature Review

The literature relevant to the research topic is reviewed and is given below. Thomson[61] re-
ported the earliest study done on thermal instability. Later a wider description of the convective
flow was given by Bénard[1]. It was Lord Rayleigh[42] who successfully analysed that the
convection occured due to the temperature gradient and hence known as Rayleigh Bénard Con-
vection. This theory was extended to various boundaries by Jeffrey [17] [16]. However the most
complete theory related to the problem was reported by Pellow and Southwell[32]. A very wide
study of the theoretical and experimental investigations was given by Ostrach[30].

Sparrow et al.[58] and Roberts[43] considered the onset of convection which incorporates a
temperature profile which is parabolic in nature. The impact of non uniform temperature profile
in a saturated permeable medium was considered by Nield[29]. The formation of hexagonal
cells and sub critical instabilities were discussed by Ruby[44]. Investigations on Magneto-
convection was carried out by Fermi[15]. The steady linear and non-linear Magneto-convection
in the three-dimensional situation was analysed by Rudraiah[45]. In case of porous medium,
the effect of suction and injection on outbreak of Rayleigh-Bénard convection was studied by
Siddheshwar[50].

The effect of non-linear temperature gradient on Marangoni convection in oscillatory and sta-
tionary states was investigated by Chiang[12], whereas Idris et al. investigated the same for
micropolar fluid. A thermal non-equilibrium model was utilized by Malashetty and Sridhar[25]
to investigate the instability in case of convection in a porous layer saturated with Maxwell fluid.

The literature review pertaining to Rayleigh-Bénard convection in couple stress fluids are re-
viewed as follows.

The couple stress fluid theory was introduced by Stokes[56]. Couple stress fluid theory is
a wider representation of the viscous Newtonian fluids that permits the existence of couple
stresses in the fluid. The idea of couple stress is an after effect of the mechanical interactions
within a fluid medium. There exists a complicated relationship between shear stress and flow
field in a couple stress fluid. The problem of peristaltic flow of couple stress fluid with zero
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Reynold’s number and estimation of wavelength was studied by Srivastava[55]. Under given
conditions he found that, when compared to a Newtonian fluid, the decrease in pressure is more
prominent in a couple stress fluid. The increase in couple stress parameter increments the rise
in pressure.

Sharma and Thakur[47] analysed a stratum of couple stress fluid which was electrically con-
ducting in penetrable medium in the presence of magnetic field. They found that presence of
couple stress and magnetic field delays the convection while the penetrability of the medium
hastens it in stationary convection. They found that oscillatory modes of convection are intro-
duced in the system by magnetic field.

A layer of couple stress fluid in permeable medium which is conducting and heated from below
was considered by Sharma and Shivani[48] in the presence of a uniform magnetic field. They
found that the convection is deferred by couple stress parameter in stationary convection.

Siddheshwar and Pranesh[54] investigated the influence of Rayleigh-Bénard convection in Bous
sinesq Stokes suspension in linear and non-linear analysis. A normal mode solution was used
in linear analysis and a double fourier series representation for the analysis in non-linear case.
The effects of suspended particles on convection is studied by comparing with a clean fluid.

A stratum of couple stress fluid which was heated and soluted from below in a porous medium
was studied by Sunil et al.[59]. Suspended particles in the fluid was also considered. In station-
ary convection, they found that the convection is stabilized by couple stress parameter.

Sharma and Mehta[46] considered the layer of compressible rotating couple stress fluid which
is soluted from below. In the case of stationary convection, they found that the influence of the
viscosity of couple stress fluid on convection depends on the rotation parameter.

Malashetty et al.[27] studied both linear and non-linear stability analysis to study the double
diffusive convection with Soret effects in a couple stress fluid. Linear analysis was carried out
by solution in normal mode and non-linear analysis by the two fold fourier series representa-
tion.They found that the Soret effect stabilizes the system.

Ezzat et al.[13] investigated the effect of magnetic field using boundary layer equations. This
model was used to investigate the effect of free convection streams on the transport of polar
fluid through a penetrable medium which was restricted by plane vertical surfaces.

The effects of dust particles, coriolis force and magnetic field in a couple stress fluid was anal-
ysed by Vivek and Sudhir[19]. In case of stationary convection, coriolis force was found to
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stabilize the system while dust particles destabilize the system. Depending on range of param-
eters, they observed that the couple stress and magnetic field can make the system stable or non
stable. They also found that the oscillatory modes were introduced in the system due to the
influence of magnetic filed and coriolis force.

The peristaltic outflow of a couple stress fluid in porous medium with magnetic field was anal-
ysed by Pande and Chaube[31]. Results obtained have demonstrated that the mean speed of the
flow at the limits can be diminished with rise in couple stress parameter.

The significance of time dependent temperature at the boundaries on the onset of convection in
an electrically conducting couple stress fluid was investigated by Pranesh and Sangeetha[35]. It
was found that convection can be controlled by applying the electric field.

Now we have the literature review pertaining to Rayleigh Bénard Convection using Maxwell
Cattaneo Law.

The Fourier Law of Heat Conduction states that the heat flow inside a system varies pro-
portionally with the temperature gradient in the system. This law concludes that heat prop-
agates with infinite velocity. In order to get rid of this unphysical result, Maxwell[28] and
Cattaneo[11] adopted a non classical law in studying the Rayleigh Bénard Convection. Lindsay
and Straughan[21], Straughan and Franchi[57] also adopted this heat flux model to study the
convection wherein they allowed the thermal waves to be of finite speed.

Lebon and Cloot[20] studied Bénard-Marangoni problem by substituting the Fourier Law by
Maxwell Cattaneo Law. They found that only oscillatory convection is possible when buoyancy
is the single factor of instability. The also studied the consequences when Jaumann derivative
is substituted by extending the work of [57].

Puri and Kythe[41] investigated heat conduction effects in Stokes problem using Maxwell-
Cattaneo Fox model. Maxwell-Cattaneo Fox model was used by Puri and Jordan[40] to study
the wave structure in Stokes second problem in a dipolar fluid. The effect of thickness of the
film and skin friction are also studied.

Siddheshwar[49] studied Rayleigh Bénard Convection in a ferromagnetic fluid of second order
by using Maxwell-Cattaneo law. He found that for heating from above, oscillatory convection
is possible and the Cattaneo number influences the critical Rayleigh number.

Pranesh and Kiran[36] investigated Rayleigh Bénard Magneto Convection in a micropolar fluid
which is electrically conducting where they substituted Maxwell-Cattaneo Law in place of
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Fourier law. The classical Fourier law assumes that the heat propagation is of infinite speed.
They found that the non classical law assumes wave type transport of heat and hence the un-
physical results are avoided.

Rayleigh-Bénard convection in a second order fluid was investigated by Pranesh and Smita[39]
using Galerkin technique with Maxwell-Cattaneo law. The found that the critical eigen values
of the problem is less than that of classical result and over stability is the preferred mode of
convection.

The influence of suction-injection on the onset of Magneto-Convection in a micropolar fluid
was studied by Pranesh and Kiran[37] with the non classical law employing Rayleigh-Ritz
technique. They found that pro gravity suction injection combination stabilizes the system and
anti gravity suction-injection combination destabilizes the system.

The literature review related to temperature modulation is discussed in the following para-
graphs.

Venezian was the first to consider the effect of time dependent temperature in a fluid layer heated
from below. He obtained the solution for small amplitude and found that for small frequency
the system becomes unstable.

Siddheshwar and Pranesh[52] investigated the influence of thermal and gravity modulation on
the onset of magneto-convection in fluids which are weakly conducting with internal angular
momentum. Venezian approach was used to find the critical Rayleigh number. They observed
that modulation of the boundary temperatures can cause sub-critical movement and the system
is stabilized by gravity modulation.

Siddheshwar and Pranesh[53] repeated the previous study for electrically conducting fluid and
the results were presented against the background of the previous work. It was found that the
magnitude of the eigen value is less than that of the previous case.

Malashetty and Basavaraja[23] investigated the influence of temperature/gravity modulation
which is time dependent on the onset of convection in an anisotropic permeable medium filled
with Boussenesq fluid by conducting a linear stability analysis. The technique of perturbation
was used to arrive at the critical Rayleigh number and wave numbers for modulations of slight
amplitude. The change in critical Rayleigh number was expressed in terms of viscosity ratio,
porous parameter, anisotropy parameter and the frequency of the modulation. They found that
the thermal modulation can lead to a stable or instable system while modulation of gravity pro-
gresses the convection. It was also found that the stability of the system can be influenced by a
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small anisotropy parameter.

Bhadauria[2] employed Floquet theory to study the layer of fluid considered between two rigid
boundaries. Only infinitesimal disturbances were considered and the temperature distribution
was comprised of a consistent part and a time dependent oscillatory part.He observed that the
perturbations are either in sync with the temperature field or is with frequency that is half of
the temperature field.Badauria[3] studied the layer of fluid between two inflexible boundaries.
A steady part and an oscillating part was considered for the temperature distribution and very
small disturbances were considered. Critical Rayleigh number was computed numerically for
various estimations of Prandtl number and frequency of modulation.

The stability of a stratum of fluid which was heated from below and cooled from above was
investigated by Bhadauria and Lokenath[9]. Not withstanding the consistent temperature dis-
tinction between the boundaries, a perturbation depending on time was additionally applied. For
various estimations of Prandtl number and frequency, the critical Rayleigh number was figured.

Malashetty and Basavaraja[24] studied the influence of thermal modulation on double diffusive
convection in an anisotropic porous medium saturated by the fluid.A linear stability analysis
was employed for the study. Critical Rayleigh number and wave number was obtained by using
the technique of perturbation. The modulation frequency, viscosity ratio, anisotropy parameter,
porous parameter, Prandtl number, ratio of diffusivity and solute Rayleigh number was used to
model the correction thermal Rayleigh number. It was concluded that the modulation of wall
temperatures can progress or postpone the start of double diffusive convection.

Bhadauria[4] studied the instability in an fluid which is electrically conducting in the presence
of a vertical magnetic field. Both the boundaries were modulated for the distribution of the
temperature. Floquet theory was employed in analysing the integrated effect of modulation and
magnetic field. Magnetic field was found to lead to a stabilized system and the modulation
could influence the convection by legitimate adjustments of frequency.

Malashetty and Swamy[8] investigated the stability of a fluid in porous medium which is rotat-
ing with thermal modulation. The effect of infinitesimal perturbation was analysed using linear
stability analysis. Darcy-Rayleigh number and wave number was computed using the pertur-
bation technique. The change in critical Darcy-Rayleigh number was computed as function of
Darcy-Prandtl number, frequency and Taylor number. It was found that convection is hastened
when the wall temperature is modulated symmetrically and when the bottom wall is modulated
but deferred when the modulated of temperature is asymmetrical.

The consolidated impact of thermal modulation and magnetic field on the commencement of
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convection in a porous medium drenched with electrically conducting fluid was examined by
Bhadauria[7]. Correction Rayleigh number is obtained in terms of Darcy Chandrasekhar num-
ber, frequency of modulation, magnetic Prandtl number and Darcy number. He found that the
magnetic field delays the convection in the system and proper adjustments of frequency of mod-
ulation leads to advancing or delaying the onset of convection.

A stratum of fluid heated from below was examined by Bhadauria et al.[8]. The temperature
gradient comprises of a constant part and an oscillating part. They found that the modulation
near the critical Rayleigh number generated a range of hexagons which were stable.

The thermal instability in a fluid which is electrically conducting was studied by Siddheshwar
and Abraham[51] with boundaries are subjected to time periodic temperatures. They found that
when the temperature modulation was asynchronous, the system is most stable.

Bhadauria and Srivastava[10] studied the instability in a porous medium which was saturated
with electrically conducting fluid with the boundaries modulated and in the presence of a verti-
cal magnetic field. Critical Darcy Rayleigh number was calculated using perturbation method.
The fluid parameters were found to have stabilizing or destabilizing effects and hence convec-
tion can be advanced or delayed.

The impact of thermal and gravity modulation in an anisotropic permeable medium was studied
by Vanishree[63] by employing a linear stability analysis. Perturbation technique was used to
compute the correction Rayleigh number. This problem illustrated a method of regulating con-
vection.

Pranesh[33] using linear stability analysis, studied the impact of electric field and boundary
temperature which is dependent on time in a micropolar fluid. The correction Rayleigh num-
ber was obtained by the regular perturbation technique and eigen values were obtained using
Venezian approach. Temperature field were examined in three cases. He found that the system
is extremely stable when the wall temperatures are modulated asymmetrically.

Pranesh and Sangeetha[35] investigated on the influence of thermal modulation on Rayleigh-
Bénard convection in an electrically conducting couple stress fluid using linear stability analy-
sis. Regular perturbation method was adopted in the computation of correction Rayleigh num-
ber and eigen values were obtained using Venezian approach. Three instances of temperature
field were examined. They noted that the system is of utmost stability when the temperature of
the walls are modulated asymmetrically.

Pranesh and Kiran[38] studied the effect of thermal modulation and magnetic field on con-
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vection where the non classical law was employed. The critical Rayleigh number, correction
Rayleigh number and wave number are computed using Venezian approach. Three cases of
oscillating temperatures are considered. It was found that the system is most stable in out of
phase modulation.

Next we will look into the literature review regarding convection in dielectric fluids.

Takashima and Ghosh[60] investigated electrohydrodynamic instability in a viscoelastic fluid.
It was observed that the fluid layer with thickness not exactly around 0.5 mm give rise to oscil-
latory modes of instability and in this case buoyancy demands more importance than the force
of electrical origin.

Ezzat and Othman[14] analysed the impact of vertical electric field on the thermal instability in
a rotating micropolar fluid. The eigenvalue equation was obtained by the power series method.

Siddheshwar gave an analogy between the electro hydrodynamic and ferro hydrodynamic insta-
bility in Newtonian fluids. It was found that the Rayleigh Bénard problem in dielectric liquids
can be obtained from an analogous problem in ferromagnetic liquids.

Rayleigh-Bénard convection in a liquid which is electrically conducting with time dependent
temperature was investigated by Siddheshwar and Abraham[51]. It was found that the Prandtl
number and dielectric parameters has opposing effect at high frequencies.

The effect of electric field and and non uniform temperature difference were studied by Pranesh
and Riya[34]. They observed that there is a possibility of controlling the instability in convec-
tion in a micropolar fluid by proper adjustments in the electric field.

Pranesh[63] studied the influence of imposed non uniform boundary temperature and electric
field in a micropolar fluid. The study gave an exterior means to control the convection in the
internal state with electric field.

Investigations were carried out by Joseph et al.[18] to study the effects of electric field and
non-uniform temperature gradient on the onset of Rayleigh-Bénard-Marangoni convection in
a micropolar fluid using Galerkin technique. The effect of electric Rayleigh number on the
onset of convection was investigated. They found that convection in micropolar fluid can be
effectively controlled by an electric field which is applied externally.
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Chapter 3

Basic Equations, Boundary Conditions,
Approximations, Scaling and Dimensionless

Parameters

The governing equations, assumptions, boundary conditions, scaling and the dimensionless pa-
rameters considered in this problem are discussed in this chapter.

3.1 Basic Equations

Conservation of mass:
The equation of continuity is given generally by

∂ρ

∂t
+5. (ρ~g) = 0. (3.1)

For a fluid which is incompressible, ρ is constant

⇒5.~q = 0. (3.2)

Conservation of Linear Momentum:

ρ0

(
∂~q

∂t
+ (~q.5)~q

)
= −5 p+ µ52 ~q − µ́54 ~q + ρ~g + (~P .5) ~E. (3.3)

Conservation of Energy:
∂T

∂t
+ (~q.5)T = −5 . ~Q. (3.4)

Maxwell Cattaneo Heat Flux Equation:

τ
[
~Q+ ~ω1 × ~Q

]
= − ~Q− κ5 T. (3.5)

Equation of state:

This equation is obtained from the Taylor series expansion of fluid density considered at the
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reference temperature T0 where the higher order terms are eliminated.

ρ = ρ0 (1− α (T − T0)) . (3.6)

Electrical Equation:

5× ~E = 0, (3.7)

5.
(
ε0 ~E + ~P

)
= 0, ~P = ε0 (εr − 1) ~E. (3.8)

Equation of state for dielectric constant:

εr = (1 + χe)− e (T − T0) . (3.9)

3.2 Approximations

The following assumptions are made in this dissertation.

1. The fluid considered is homogeneous and incompressible.

2. The validity of Boussenesq approximation and hence the equation of continuity becomes

5.~q = 0.

3. The gravity acts vertically downwards.

4. The fluid parameters namely thermal diffusivity, viscosity are all assumed to be constant.

5. The dielectric constant εr can be linearly expressed in terms of temperature.

3.3 Boundary Conditions

3.3.1 Boundary Conditions on Velocity

Relying upon the type of boundary surface whether they are free or rigid, the no slip conditions,
Cauchy’s Stress Principle and mass balance lead to the formation of boundary conditions on
velocity. Here in this problem a free surface with no surface tension is considered.

Therefore the velocity boundary conditions are

w =
∂2w

∂z2
= 0. (3.10)
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3.3.2 Boundary Conditions on Temperature

The limit conditions on temperature are computed by considering the heat conducting property
of the boundaries

Fixed Surface Boundary
In case of high thermal conductivity and large thermal capacity,the temperature is time inde-
pendent and uniform.Therefore at the boundaries,

T = 0 (3.11)

This condition is called isothermal boundary conditions

Temperature Modulation Boundary Conditions
The following conditions are considered at the boundaries since the temperature profile depends
on position and time.

T (0, t) = T0 +
1

2
∆T [1 + ε cosωt] , (3.12)

T (d, t) = T0 −
1

2
∆T [1− ε cos (ωt+ ϕ)] . (3.13)

3.3.3 Boundary Conditions on Electric Potential

The boundary conditions on electric potential is given by

Dφ = 0 at z = 0 and z = 1. (3.14)

3.4 Scales Used for Non-Dimensionalisation

In order to understand the relative importance of each term used, we make the equations dimen-
sionless by the introduction of characteristic quantities. The scales used for non dimensionalia-
tion in this problem are as follows:

Quantity Characteristic quantity used for scaling

Time
d2

κ
Length d
Temperature ∆T

Electric Potential
eE0d∆T

1 + χe
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3.5 Dimensionless Parameters:

The following are the dimensionless parameters that appear in this problem:

1. Rayleigh number:
Rayleigh number is given as:

R =
ρ0αgd

3∆T

µκ
.

Rayleigh Number which was named after Lord Rayleigh gives the relation between the

buoyancy and viscosity of a fluid. Rayleigh number greater than the critical value of the
fluid under consideration marks the onset of convection.

2. Prandtl Number:

Pr =
µ

ρ0κ
.

Prandtl number is the ratio of kinematic viscosity of a fluid to thermal diffusivity of the

fluid. Fluids with high values of Prandtl number are highly viscous and those with lower
values of Prandtl number have higher thermal diffusivity. In case of non Non-Newtonian
fluids, Prandtl number is very high.

3. Cattaneo Number:

C1 =
τκ

2d2
.

It is the ratio of relaxation time to characteristic time.

4. Electric Rayleigh Number:

L =
ε0 (eE0∆Td)2

(1 + χe)µκ
.

It is the ratio of electric force to viscous force.

5. Couple Stress Parameter:

C =
µ́

d2µ
(0 ≤ C ≤ m) .

where, m is a finite positive real number.
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Table 3.1: Nomenclature

d distance between the plates
T temperature
~q velocity
p pressure
µ co-efficient of viscosity
µ́ couple stress viscosity
ρ density of the fluid
~g acceleration due to gravity
~P dielectric polarisation field
~E electric field(
~P .5

)
~E polarisation force

~Q heat flux

ω1 =
1

2
5×~q spin

κ thermal conductivity
α co-efficient of thermal expansion
ε amplitude
ε0 electric permittivity of free space
εr dielectric constant
χe electric susceptibility
∆T Temperature difference between both the plates
ω frequency
φ́ perturbed electric scalar potential
l,m wave numbers in two dimensional plane where a2 = l2 +m2

ϕ phase angle

e = −∂εr
∂T T=T0

52
1 =

∂2

∂x2
+

∂2

∂y2

52 = 52
1 +D2 D =

∂

∂z
, K2

1 = π2 + a2
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Chapter 4

The Effect of Temperature Modulation on the
Onset of Rayleigh-Bénard Convection in a

Dielectric Couple Stress Fluid with
Maxwell-Cattaneo Law

We study the effect of temperature modulation on the onset of Rayleigh-Bénard Convection in
a couple stress fluid in the presence of electric field with non-classical Maxwell-Cattaneo law.

A layer of couple stress fluid is considered between two infinite parallel surfaces and the sur-
faces are seperated by a distance d. Along z-axis, a uniform electric field is applied. A cartesian
system is considered with origin at the lower limit and z-axis vertically upwards. Let the tem-
perature difference between the two boundaries be denoted by ∆T .

The governing equations are:
Continuity Equation:

5.~q = 0, (4.1)

Conservation of Linear Momentum:

ρ0

(
∂~q

∂t
+ (~q.5)~q

)
= −5 p+ µ52 ~q − µ́54 ~q + ρ~g + (~P .5) ~E, (4.2)

Conservation of Energy:
∂T

∂t
+ (~q.5)T = −5 . ~Q, (4.3)

Maxwell Cattaneo Heat Flux Equation:

τ
[
~Q+ ~ω1 × ~Q

]
= − ~Q− κ5 T, (4.4)
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Equation of state:

ρ = ρ0 (1− α (T − T0)) , (4.5)

Electrical Equation:

5× ~E = 0, (4.6)

5.
(
ε0 ~E + ~P

)
= 0, ~P = ε0 (εr − 1) ~E, (4.7)

Equation of state for dielectric constant:

εr = (1 + χe)− e (T − T0) , (4.8)

The temperatures at the walls are dependent on time and are applied externally

T (0, t) = T0 +
1

2
∆T [1 + ε cosωt] , (4.9)

and
T (d, t) = T0 −

1

2
∆T [1− ε cos (ωt+ ϕ)] . (4.10)

We consider three cases for temperature modulation:
case 1:Symmetric(ϕ = 0),
case 2:Asymmetric(ϕ = π),
case 3:Only lower boundary is modulated(ϕ = −i∞).

4.1 Basic State

The fluid considered is assumed to be at rest and is characterized by

~qb = 0, ρ = ρb (z, t) , T = Tb (z, t) , p = pb (z, t) , ~E = ~Eb (z) , ~P = ~Pb (z) (4.11)

On substituting equation (4.11) in the basic equations (4.1)-(4.8) we obtain,

∂qb
∂z

= −ρbg + Pb
∂Pb
∂z

, (4.12)

∂Tb
∂t

= −∂Qb

∂z
, (4.13)

∂Qb

∂z
= −κ∂

2Tb
∂z2

, (4.14)
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ρb = ρ0 [1− α (Tb − T0)] ,

ε05 . ~Eb +5. ~Pb = 0,

εr = (1 + χe)− e (Tb − T0) ,

~Eb =

 (1 + χe)E0

(1 + χe) +
e∆T

d
z

 ḱ,
~Pb = ε0E0 (1 + χe)

1− 1

(1 + χe) +
e∆T

d
z

 ḱ.



(4.15)

Using equation (4.14) in equation (4.13), we get

∂Tb
∂t

= κ
∂2Tb
∂z2

, (4.16)

The solution of equation (4.16) that satisfies the boundary conditions (4.9) and (4.10) is

Tb = T0 +
∆T

2

(
1− 2z

d

)
+ εRe


A (λ) e

λz

d + A (−λ) e

−λz
d

 e−iωt, (4.17)

where,

λ = (1− i)
(
ωd2

2κ

)1

2
, (4.18)

A (λ) =
∆T

2

[
e−iϕ − e−λ

eλ − e−λ

]
and Re represents the real part of the above equation.

4.2 Linear Stability Analysis

Let the fluid be disturbed by a perturbation of negligible magnitude.We have,

~q = ~qb + ~q′, ρ = ρb + ρ′, p = pb + p′, T = Tb + T ′, ~P = ~Pb + ~P ′, ~E = ~Eb + ~E ′, (4.19)

where, the quantities with infinitesimal perturbations are indicated by the prime and the suffix
b represents the basic state.
The components of polarisation field and electric field after perturbation are considered to be(
P ′1, Ṕ

′
2, Ṕ

′
3

)
and (E ′1, E

′
2, Eb (z) + E ′3).

On linearisation, the second part of the equation (4.7) gives

P ′i = ε0χeE
′
i for i = 1, 2. (4.20)
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P ′3 = ε0χeE
′
3 − eε0E0T

′. (4.21)

Equation (4.6) implies that ~E ′ = 5φ′.

Using equation (4.19) in the governing equations (4.1)-(4.8), we get

5.~q′ = 0, (4.22)

ρ0
∂~q′

∂t
= −5 p′ + µ52 ~q′ − µ′54 ~q′ − ρ′gk̂ + Pb.5 ~E ′ + ~P ′.5 Eb, (4.23)

∂T ′

∂t
+ w′

∂Tb
∂z

= −5 . ~Q′, (4.24)

(
1 + τ

∂

∂t

)
~Q′ =

τκ

2

∂Tb
∂z

(
∂~q′

∂z
−5w′

)
− κ5 T ′, (4.25)

Operating divergence on the equation (4.25) and using equation (4.24), we get

(
1 + τ

∂

∂t

)
∂T ′

∂t
+

(
1 + τ

∂

∂t

)
w′
∂Tb
∂z

=
τκ

2

∂Tb
∂z
52 w′ + κ52 T ′,

ρ′ = −ρ0αT ′, (4.26)

ε′ = −ε0eT ′,

5.
(
ε0 ~E

′ + ~P ′
)

= 0, (4.27)

ε0
∂Eb
∂z

+ ε05 . ~E ′ +
∂Pb
∂z

+5. ~P ′ = 0.

Substituting equation (4.26) in equation (4.23),

ρ0
∂~q′

∂t
= −5 p′ + µ52 ~q′ − µ′54 ~q′ + ρ0αT

′gk̂ + Pb.5 ~E ′ + ~P ′.5 Eb, (4.28)

Operating curl twice on equation (4.28) to eliminate pressure and introducing the electric po-
tential φ́ in the resulting equation, we get
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ρ0
∂

∂t

(
52w′

)
= µ54w′−µ′56w′+ρ0αg52

1
~T ′+

ε0e
2E2

0∆T 52
1 T

1 + χe
−∆T

d
ε0eE052

1Dφ
′, (4.29)

Also,

(1 + χe)52 φ′ − eE0DT
′ = 0. (4.30)

The resulting equations after perturbation (4.2),(4.29) and (4.30) are non dimensionalised em-
ploying the following scaling parameters

(x∗, y∗, z∗) =

(
x′

d
,
y′

d
,
z′

d

)
, t∗ =

t′

d2/κ
, w∗ =

w′

κ/d
, T ∗ =

T ′

∆T
,

φ∗ =
φ′

eE0d∆T/ (1 + χe)
, (4.31)

After dropping the asterisk, we obtain

1

Pr

∂

∂t

(
52w

)
− L52

1 T + L
∂

∂z

(
52

1φ
)

= R52
1 T +54w − C56 w, (4.32)

(
1 + 2C1

∂

∂t

)
∂T

∂t
+

(
1 + 2C1

∂

∂t

)
w
∂T0
∂z

= C152 w
∂T0
∂z

+52T, (4.33)

52φ− ∂T

∂z
= 0. (4.34)

The non-dimensional parameters are given as:

Pr =
µ

ρ0κ
(Prandtl Number)

L =
ε0 (eE0∆Td)2

(1 + χe)µκ
(Electric Rayleigh Number)

R =
ρ0αgd

3∆T

µκ
(Rayleigh Number)

C =
µ́

d2µ
(Couple Stress Parameter)

C1 =
τκ

2d2
(Cattaneo Number)

After non dimensionalisation,
∂Tb
∂z

becomes
∂T0
∂z

, where

∂T0
∂z

= −1 + εf (z) , (4.35)
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f (z) = Re
{[
A (λ) eλz + A (−λ) e−λz

]
e−iωt

}
,

and A (λ) =
λ

2

[
e−iϕ − e−λ

eλ − e−λ

]
.

Equations (4.32) to (4.34) are solved with respect to the conditions:

w =
∂2w

∂z2
= T =

∂φ

∂z
= 0 at z = 0, 1 (4.36)

T and φ are eliminated from equations (4.32) to (4.34), we get a differential equation of the

form:

{[
1

Pr

∂

∂t
−52 + C54

] [(
1 + 2C1

∂

∂t

)
∂

∂t
−52

]
54

}
w

=

{[
L52

152 − L52
1

∂2

∂z2
+ R52

152

] [
C152 ∂T0

∂z
−
(

1 + 2C1
∂

∂t

)
∂T0
∂z

]}
w. (4.37)

The boundary conditions on w for solving equation (4.37) in the absence of dimension is:

w =
∂2w

∂z2
=
∂4w

∂z4
=
∂6w

∂z6
=
∂8w

∂z8
= 0 at z = 0, 1.

4.3 Method of Solution

For the basic temperature distribution (4.35), the eigenvalue R and eigenfunction w in (4.37)

departs from the temperature profile
∂T0
∂z

= −1 by values of order ε. The eigenvalues and
eigenfunction in equation (4.37) is expanded in the form:

(R, w) = (R0, w0) + ε (R1, w1) + ε2 (R2, w2) + .........

The above expansion is substituted in equation (4.37). A following equations are obtained by
equating the coefficients of like powers of ε

L1w0 = 0. (4.38)
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L1w1 =

{[
C152 −

(
1 + 2C1

∂

∂t

)][
L52

152 − L52
1

∂2

∂z2
+ R052

152

]}
fw0+[

−C152 +

(
1 + 2C1

∂

∂t

)]
5252

1R1w0. (4.39)

L1w2 =

[
C152 f −

(
1 + 2C1

∂

∂t

)
f

]{[
L52

152 − L52
1

∂2

∂z2

]
w1+

[R0w1 + R1w0]52
152

+

[
C152 −

(
1 + 2C1

∂

∂t

)]
52

152 [R1w1 + R2w0] . (4.40)

where

L1 =

[
1

Pr

∂

∂t
−52 + C54

] [(
1 + 2C1

∂

∂t

)
∂

∂t
−52

]
54 −[

1 + 2C1
∂

∂t
− C152

]
52

1

[
L
(
52 − ∂2

∂z2

)
+ R052

]
. (4.41)

4.3.1 Solution to Zeroth Order Problem

The zeroth order problem is the Rayleigh Bénard problem in the absence of thermal modulation.
The velocity perturbation in the vertical direction w0 which represents the minimal mode of
convection is given by:

w0 = sin (πz) exp [i (lx+my)] . (4.42)

Substituting equation (4.42) into equation (4.38) we get,

R0 =
K6

1K
2
1 (1 + CK2

1) + L (π2 −K2
1) a2 (1 + C1K

2
1)

K2
1a

2 (1 + C1K2
1)

, (4.43)

where K2
1 = π2 + a2.

In equation (4.43), if L = 0, C = 0 and C1 = 0, we get the expression for classical Rayleigh
problem.

If L = 0 and C1 = 0, the expression (4.43) reduces to the expression obtained by Siddheshwar
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and Pranesh[54].

If C = 0, the expression (4.43) reduces to the expression obtained by Pranesh and Kiran[38].

4.3.2 Solution to First Order Problem

We have

L1w1 =
{[[
−1− C1K

2
1

] [
La2K2

1 − La2π2 + a2K2
1R0

]]
f +

[
1 + C1K

2
1

]
a2K2

1R1

}
w0.

(4.44)
For the existence of a solution for the above equation, the orthogonality condition must hold

for the null space of the operator L1 and the right hand part of the equation (4.44) must be
independent of time. The only consistent term that appears on the right hand part of equation
(4.44) is R1 52 52

1 sin (πz) due to the sinusoidal variation of f and hence R1 = 0. Thus it is
implied that all the odd coefficients R1 = R3 = ........ are zero in equation (4.39).

Fourier series expansion is applied and the right hand side of the equation is expanded to solve
equation(4.44). w1 is obtained by inverting the operator L1 term wise and we get:

w1 = −A1

(
La4 + R0a

2K2
1

)
Re
{∑ Bn (λ)

L1 (ω)
e−iωt sin (πz)

}
, (4.45)

where

A1 =
(
1 + C1K

2
1

)
,

Bn (λ) = A (λ) gn1 (λ)A (−λ) gn1 (−λ) (4.46)

=
(2nπ2λ2)

[(
e−λ − eλ

)
+ (−1)n

(
e−λ−iφ − eλ−iφ

)]
(eλ − e−λ)

[
λ2 + (n+ 1)2 π2

] [
λ2 + (n− 1)2 π2

] , (4.47)

L1 (ω) =

[(
K2

1 + CK4
1

) (
K2

1 − 2C1ω
2
)
− ω2

Pr

]
K4

1

+
(
−La2 − R0K

2
1

)
a2
(
1 + C1K

2
1

)
−

iω

{[(
K2

1 + CK4
1

)
+

1

Pr

(
K2

1 − 2C1ω
2
)]
K4

1 + 2C1a
2
(
−La2 − R0K

2
1

)}
. (4.48)

The equation for w2 becomes,
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L1w2 = A1R2a
2K2

1w0 − A2

[
La2 +K2

1R0

]
a2fw1 (4.49)

where

A2 = C1K
2
1 + 1− iω (2C1) (4.50)

Equation (4.49) shall not be solved, but is used in determining R2. Thus by using Venezian[64]
method, the expression for correction Rayleigh number is obtained as:

R2 = −(La2 +K2
1R0)

2
a2

2K2
1

Re
∑ |Bn (λ)|2 |A2|2

|L2 (ω)|2

[
L2 (ω) + L∗2 (ω)

2

]
, (4.51)

where,

L2 (ω) = L1 (ω)A∗2.

A∗2 and L∗2 (ω) are the conjugates of A2 and L2 (ω).

4.3.3 Minimum Rayleigh Number for Convection

The Rayleigh number R, eigenvalue corresponding to the eigen function w is obtained will
remain time bounded. R is expressed in terms of horizontal wave number a and amplitude ε and
hence we write

R (a, ε) = R0 (a) + ε2R2 (a) + ........ (4.52)

The critical value of thermal Rayleigh number is calculated up to O (ε2), by computing the
values R0 and R2 at a = a0. When R4 is to be evaluated, a2 is taken into account where R2 is
minimized by a = a2. The critical value of R2 expressed as R2c is evaluated by replacing a = a0

in the expression of R2 where a0 is the value at which the minimum value of R0 given by (4.43)
is obtained.
Evaluation of R2c is done for three cases:

Case 1:The wall temperatures are modulates symmetrically with phase angle ϕ = 0. In this
case Bn (λ) = bn or 0 corresponding to even or odd values of n respectively.

Case 2:The wall temperatures are modulated asymmetrically with the phase angle ϕ = π.
In this case Bn (λ) = 0 or bn corresponding to even or odd values of n respectively.

Case 3:Only the lower wall is modulated and the temperature of the upper plate remains con-

stant with phase angle ϕ = i∞. Here Bn (λ) =
bn
2

for all integer values of n.
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where,

bn =
4nπ2λ2[

λ2 + (n+ 1)2 π2
] [
λ2 + (n− 1)2 π2

] . (4.53)

In dimensionless form equation (4.18) can be written as:

λ = (1− i)
(ω

2

)1

2 , (4.54)

and hence

|bn|2 =
16n2π2ω2[

ω2 + (n+ 1)4 π4
] [
ω2 + (n− 1)4 π4

] . (4.55)

Using equation (4.55) for Bn (λ) in (4.51), the expression for R2c is obtained as:

R2c = −(La2 +K2
1R0)

2
a2

2K2
1

Re
∑ |Bn (λ)|2 |A2|2

|L2 (ω)|2

[
L2 (ω) + L∗2 (ω)

2

]
. (4.56)

In equation (4.56), the summation remains valid for even values of n in first case, odd values of
n in second case and all values of n in the third case. In all three instances, the infinite series
given in equation (4.56) converges quickly.
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Chapter 5

Results, Discussions and Conclusions

The effect of thermal modulation on the onset of convection in a couple stress fluid in the pres-
ence of electric field is examined by making use of linear stability analysis. The expression that
depicts the critical value of correction Rayleigh number is evaluated in terms of frequency of
modulation. R2c has been evaluated in three cases: Case 1: Symmetric temperature field with
the phase angle ϕ = 0. Case 2: Asymmetric temperature field with phase angle ϕ = π.Case 3:
When modulation is applied to the temperature of the lower wall only with ϕ = i∞.

We assume that the amplitude of modulation is very small when compared to the steady differ-
ence in temperature that has been imposed on the system. The results obtained are validated
depending on the value of frequency ω. If the value of frequency is small, the period of modu-
lation becomes large and hence the disturbance grows to a greater extend. For large values of
frequency, R2c tends to zero that is the effect of modulation becomes negligible. As a result,
only moderate values of frequency are taken into consideration in this study.

The results has been presented in the figures.The effect of R2c on the stability of the system is
given by the sign of R2c. A positive R2c implies that it stabilizes the system.

The effect of symmetric temperature field on the convection in a couple stress fluid for various
parameters are depicted in figures 5.2-5.5. Figure 5.2 is the plot of correction Rayleigh number
versus frequency for various values of couple stress parameter C. From the figure we observe
that increase in C increases the value of R2c. Since the fluid contains suspended particles,
increase in couple stress parameter increases the viscosity of the fluid thereby stabilizing the
system.

Figure 5.3 shows the plot of correction Rayleigh number versus frequency for various values of
electric Rayleigh number L. We observe that as L increases, R2c also increases. The Electric
Rayleigh number L given by the ratio of polarisation electric force to gravitational force stabi-
lizes the system.

The plot of correction Rayleigh number versus frequency for various values of Prandtl number
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Pr is shown in figure 5.4. It is observed that R2c decreases with increase in Pr. Therefore we
can conclude that increase in the viscosity of the fluid destabilizes the system.

The plot of correction Rayleigh number versus frequency for various values of Cattaneo num-
ber C1 is depicted in figure 5.5. It is observed that increase in Cattaneo number decreases R2c.
Thus C1 has a destabilizing influence on the system.

From the above figures we also observed that for small values of ω, say up to ωc, R2c increases
and there after it decreases that is when ω<ωc, the system is stable and when ω>ωc, the system
is unstable. For large values of ω, R2c becomes zero.

Figures 5.6-5.9 and 5.10-5.13 respectively are the plots for asymmetric modulation and lower
wall modulation for various parameters.We observe that the results in these cases are quantita-
tively similar to that of symmetric modulation.

Following are the conclusions drawn from the study.

1. System is most stable when the temperature field is asymmetric.

2. Symmetric temperature field and lower wall modulation leads to sub-critical motion.

3. Modulation disappears in case of large frequency.

4. The results of the study shows that the convection in couple stress fluid with Maxwell-
Cattaneo law can be controlled.

5. Maxwell-cattaneo law involve a wave type of heat propagation and does not suffer from
the unphysical result of infinite transport of heat.The Fourier law over predicts the critical
Rayleigh number when compared to that predicted by non-classical law.Over stability is
the preferred mode of convection.

27



Figure 5.1: Physical Configuration
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Figure 5.2: Plot of correction Rayleigh number R2c versus frequency ω for various values of
couple stress parameter C for in phase modulation.
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Figure 5.3: Plot of correction Rayleigh number R2c versus frequency ω for various values of
electric Rayleigh number L for in phase modulation.
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Figure 5.4: Plot of correction Rayleigh number R2c versus frequency ω for various values of
Prandtl number Pr for in phase modulation.
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Figure 5.5: Plot of correction Rayleigh number R2c versus frequency ω for various values of
Cattaneo number C1 for in phase modulation.
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Figure 5.6: Plot of correction Rayleigh number R2c versus frequency ω for various values of
couple stress parameter C for out of phase modulation.
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Figure 5.7: Plot of correction Rayleigh number R2c versus frequency ω for various values of
electric Rayleigh number L for out of phase modulation.
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Figure 5.8: Plot of correction Rayleigh number R2c versus frequency ω for various values of
Prandtl number Pr for out of phase modulation.
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Figure 5.9: Plot of correction Rayleigh number R2c versus frequency ω for various values of
Cattaneo number C1 for out of phase modulation.
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Figure 5.10: Plot of correction Rayleigh number R2c versus frequency ω for various values of
couple stress parameter C for lower wall modulation.
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Figure 5.11: Plot of correction Rayleigh number R2c versus frequency ω for various values of
electric Rayleigh number L for lower wall modulation.

38



Figure 5.12: Plot of correction Rayleigh number R2c versus frequency ω for various values of
Prandtl number Pr for lower wall modulation.
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Figure 5.13: Plot of correction Rayleigh number R2c versus frequency ω for various values of
Cattaneo number C1 for lower wall modulation.
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