
SECURE AUTHENTICATION FRAMEWORK FOR

CLOUD

A thesis submitted to the Christ University for the award of the degree of

DOCTOR OF PHILOSOPHY

IN

COMPUTER SCIENCE

By

SUMITRA BINU

(Register Number: 1145007)

UNDER THE SUPERVISION OF

Dr. Pethuru Raj, Infrastructure Architect,

IBM Global Cloud Center of Excellence, Bengaluru

Dr. Mohammed Misbahuddin, Senior Technical Officer,

Center for Development of Advanced Computing, Bengaluru

Centre for Research

 Christ University, Bengaluru-560029

MAY 2016

i

DECLARATION

I, Sumitra Binu, hereby declare that the thesis titled “Secure

Authentication Framework for Cloud” submitted to Christ University,

Bengaluru in partial fulfilment of the requirements for the award of the

Degree of Doctor of Philosophy in Computer Science is a record of original

and independent research work done by me under the supervision of

Dr. Pethuru Raj, Infrastructure Architect, IBM Global Cloud Center of

Excellence and Dr. Mohammed Misbahuddin, Senior Technical Officer,

Centre for Development of Advanced Computing. I also declare that this

thesis or any part of it has not been submitted to any other

University/Institute for the award of any degree.

Place: Bengaluru

Date: Sumitra Binu

ii

CERTIFICATE

This is to certify that the thesis titled “Secure Authentication Framework

for Cloud” submitted by Sumitra Binu to Christ University, Bengaluru in

partial fulfilment of the requirements for the award of the Degree of Doctor

of Philosophy in Computer Science is a record of original research work

carried out by her under our supervision. The content of this thesis, in full or

in parts, has not been submitted by any other candidate to any other

University for the award of any degree or diploma.

Place: Bengaluru Dr. Pethuru Raj

Date: Infrastructure Architect,

IBM Global Cloud Center of Excellence

Place: Bengaluru Dr. Mohammed Misbahuddin

Date: Senior Technical Officer,

 Center for Development of Advanced Computing

Additional Director/Associate Director

Centre for Research, Christ University, Bengaluru-560029

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to bow my head before god almighty,

without whose blessings nothing would have been possible. No words can

articulate me deepest gratitude to you my Lord for the inspriration, strength

and guidance I have received.

Interdependence is certainly more valuable than independence. This thesis is

the result of five years of work whereby I have been accompanied and

supported by many great minds and good hearted people. It is a pleasant

aspect that I now have the opportunity to express my gratitude for all of

them.

I am deeply indebted to my enthusiastic supervisor, Dr. Pethuru Raj

Chelliah, Infrastructure Architect, IBM Global Cloud Center of Excellence,

Bangalore, for his valuable guidance and motivation. I would like to express

my sincere gratitude to Dr. Pethuru Raj for the continuous support of my

research, for his patience and motivation.

I really deem it as a special privilege to convey my prodigious and

everlasting appreciation and thanks to my co-supervisor, Dr. Mohammed

Misbahuddin, Senior Technical Officer, Center for Development in

Advanced Computing, Bangalore. His overly enthusiasm and integral view

on the research and his mission for providing “only quality work”, has

helped me immensely in coming out with this thesis. I owe him lots of

gratitude for mentoring me, encouraging my research and for allowing me to

grow as a researcher and for guiding me right from selection of topic to

completion of this work.

iv

I express my sincere thanks to Dr. Fr. Thomas C Mathew, Vice-Chancellor,

Christ University and Dr. Fr. Abraham V M, Pro Vice-chancellor, Christ

University for providing me an opportunity to undertake the research work

and for their support and encouragement all through my research. I am

grateful to Dr. Fr. Varghese, Finance Officer and Dr. Anil Pinto, Registrar,

Christ University for their encouragement.

I would specially like to thank Dr. Shivappa Gudennavar, Associate

Director, Center for Research, Christ University, Bangalore, for his valuable

guidance, timely support and motivation for making this thesis a successful

one. I am extremely appreciative to Dr. Gudennavar for his willingness to go

through my work, and for being so dedicated to his role as the Associate

Director for research. I am grateful to Dr. Tony Sam George, Associate

Director, Center for Research, Christ University, Bangalore for his

encouragement.

I express my profound gratitude to Prof. Joy Paulose, Head of the Computer

Science department, Christ University, Bangalore, for his unbeilavable

support, critical inputs and valuable suggestions. I would particularly like to

thank Dr. Fr. Jossy P George, Director, Christ Institute of Management, Pune

and Dr. Nachamai, Associate Professor, Christ University, Bangalore for

providing me advises and inputs that helped me in staying on track. I take

this opportunity to thank Dr. Srikantaswamy, Christ University, for his

support during the initial period of my research work.

I profusely thank Dr. Bindiya Varghese, Head of the Computer Science

Department, Rajagiri College of Social Sciences, Kochi, and Dr. P.X Joseph

for rendering me invaluable support and thought provoking inputs during the

course of this thesis work.

v

I specially thank my fellow-research scholar Mrs. Sreeja for her support,

encouragement and constant willingness to help.

My heartfelt gratitude to my family. Words cannot express how grateful I am

to my mother-in-law, father-in-law, my mother, father, brother, sister-in-law

and my little niece, Ms. Ganga for all the support and prayers for me that has

sustained me thus far. I would also like to thank all my friends especially

Mrs. Deepti Thushar, and my ex-colleagues who supported me in my work

and incented me to strive towards my goal.

My deepest gratitude is to my beloved husband Mr. Binu Rajendran, for his

unwavering belief in me and who was always my support in the moments

when there was no one to answer my queries. No words are enough to

express my appreciation for him, without whose support I would not have

achieved what I set out to do. My prodigious gratitude to my daughter Ms.

Gayathri whose love, care and patience instilled in me all the energy that was

needed to get me going ahead in full strength despite various pressures. My

husband and daughter are the most important people in my world and I

dedicate this thesis to them.

vi

Abstract

The growing popularity of cloud based services is prompting organizations

to consider shifting applications and data onto cloud. However,

organizations dealing with highly sensitive information are apprehensive of

moving its applications & data to public cloud owing to concern about

security of its information. It is hence incumbent on service providers that

only legitimate Users will access its services and resources in cloud.

Verifying authenticity of remote users is a necessary pre-requisite in a cloud

environment before allowing access to secure resources/services/

applications. The simplest & most commonly used user authentication

mechanism is password based authentication. However, Users tend to choose

easy to remember password, and many a times use same password for

multiple accounts, which makes it often the weakest link in security.

Furthermore, service providers authenticating Users on the basis of

password, stores password verification information in their databases and

such authentication schemes with verification table are known to be

vulnerable to various attacks.

From the perspective of authentication requirements, service providers in a

cloud environment can be broadly categorized into two. Those service

providers dealing with highly sensitive information and working in a

regulated environment can be grouped into category one – as in those

offering services for sectors like health care, finance. These providers require

a strong and secure authentication mechanism to authenticate its users,

without any additional functionality. Similarly, there is a second category of

service providers dealing with secure information but operate in a

vii

collaborative environment – as providers providing their applications

bundled through a web portal. To provide the Users with a seamless

authentication experience, while accessing multiple services during a

session, the second category of service providers prefer to have Single Sign-

on functionality.

Two-factor authentication technology overcomes the limitations of password

authentication and decreases the probability that the claimant is presenting

false evidence of its identity to verifier. If different service providers set up

their own two-factor authentication services, Users have to do registration

and login process repeatedly. Also, Users accessing multiple cloud services

may be required to hold multiple authentication tokens associated with

various service providers.

Authentication factors such as crypto-tokens and smart cards with

cryptographic capabilities have been vastly used as a second authentication

factor. However, Users are required to always carry these authentication

tokens which make it cumbersome from practical usability perspective. Also

its usage involves cost thus restricting its adoption to corporate

environments. The authentication process can be made more user-convenient

if the authentication factor chosen is such that it is commonly used by all

types of Users. Leveraging the use of mobile phone as an authentication

factor can help address issue of user convenience at no extra cost while

improving the security of authentication schemes.

Though, there has been an increasing focus on strengthening the

authentication methods of cloud service users, there is no significant work

that discusses an authentication scheme that can be adopted by the two

categories of cloud Service Providers.

viii

Taking cognizance of aforesaid issues related to secured authentication in

cloud environment, this research focused on designing secure Two-Factor

authentication schemes that can be adopted by the two categories of service

providers. This research carried out in different levels, proposes

authentication architecture and protocols for the two categories of service

providers.

At the first level, research proposes Direct Authentication architecture for

cloud Service Providers who prefer to authenticate its users by using a strong

authentication mechanism and does not require Single Sign-On (SSO)

functionality. For those Providers who prefer to provide its user with a SSO

functionality the research proposes Brokered Authentication architecture.

The next level of research focuses on proposing User Authentication

Protocols for both Direct Authentication Service Providers (DASPs) and

Brokered Authentication Service Providers (BASPs). The research proposes

use of strong, Two-Factor Authentication Protocols without Verifier Table.

The suggested protocols, provides Users with flexibility of using a Password

and either a Crypto-token or a Mobile-token to authenticate with Service

Providers. The proposed approach eliminates the requirement of the User to

remember multiple identities to access multiple services and provides the

benefit of a higher level of security on account of second authentication

factor and non-maintenance of verifier table at server.

Access to different services offered by multiple service providers using a

single authentication token requires interoperability between providers. Also,

the Service Providers will have to address the task of issuing the second

authentication factor to Users. As a result, the research intends to propose the

utilization of proposed two-factor authentication scheme within a specific

ix

environment which includes a trusted entity called an Identity Provider

(IdP), with whom Users and Service Providers will be registered. The IdP is

responsible for issuing and managing the second authentication factor.

In brokered authentication, the IdP playing the role of an authentication

broker also provides Single Sign-on functionality. The Security Assertion

Markup Language (SAML) is used by BASPs and the IdP to exchange

authentication information about Users.

A major objective of this research is to propose an authentication model that

can be adopted by both categories of service providers. Hence, this research

proposes an authentication framework for cloud which supports an

integrated authentication architecture that provides the service providers with

the flexibility to choose between direct and brokered authentication. The

integrated two-factor authentication protocol, which does not require the

server to maintain a verifier table, supported by the frame work allows users

to do a single registration and access services of both direct & brokered

authentication service providers using the same crypto-token/mobile-token.

To verify claims about security strengths of the proposed authentication

protocols, security analysis is done using theoretical intuition. The proposed

protocols are found to offer desirable security features such as resistance to

replay attack, stolen verifier attack, guessing attack, user impersonation

attack etc. To verify the efficiency of the proposed protocols, the

communication and computation costs are compared with similar schemes

and it is seen that the costs are comparable. To validate the resistance of

protocols to authentication attacks, they are analyzed using automated

verification tool called ‘Scyther” and the protocol strength is verified by “no

attacks” results.

x

TABLE OF CONTENTS

Declaration .. I

Certificate.. II

Acknowledgements.. III

Abstract .. VI

List of Tables .. XIII

List of Figures ... XIV

1. Introduction .. 1

1.1 MOTIVATION ... 3

1.2 CURRENT ISSUES ... 7

1.3 REQUIREMENTS TO BE ADDRESSED .. 8

1.4 RESEARCH OBJECTIVES ... 9

1.5 ORGANIZATION OF THESIS ... 10

2. Literature Survey .. 11

2.1 BASICS OF CRYPTOGRAPHY ... 11

2.1.1 Hash Functions ... 15

2.1.2 Symmetric Cryptography ... 18

2.1.3 Public Key Cryptography ... 20

2.1.4 Digital Certificates .. 22

2.1.5 Message Authentication Code .. 22

2.1.6 Hash Based Message Authentication Code(HMAC) 24

2.1.7 Password Based Encryption(PBE) 27

2.2 CLOUD COMPUTING FUNDAMENTALS .. 28

2.2.1 Cloud Computing Characteristics .. 29

2.2.2 Cloud Participants .. 30

2.2.3 Service Delivery Models .. 31

2.2.4 Deployment Models ... 34

2.2.5 Cloud Computing Benefits and Limitations 35

2.2.6 Cloud Security .. 39

2.3 AUTHENTICATION ... 53

2.3.1 Single Factor Authentication .. 55

2.3.2 Two-Factor Authentication .. 59

2.3.3 Single Sign-on Using SAML Standard 66

2.3.4 Authentication Models for Service Providers 72

xi

2.4 REMOTE USER AUTHENTICATION ... 79

2.4.1 Remote User Authentication Schemes 80

2.4.2 Authentication Schemes without Verifier Tables 88

2.4.3 Authentication Schemes for Cloud..................................... 104

2.4.4 Authentication Using Mobile Phone 124

2.4.5 Security Attacks on Authentication Protocols 127

2.4.6 Scyther – An Automated Tool for Protocol Verification ... 132

3. Direct Authentication Scheme Without Verifier Table 141

3.1 DIRECT AUTHENTICATION SCHEME ... 145

3.1.1 Identity Provider and Service Providers Association 146

3.1.2 Proposed Direct Authentication Architecture 147

3.1.3 Crypto-Token Based Direct Authentication Protocol without

Verifier Table .. 151

3.1.4 Mobile-Token Based Direct Authentication Protocol without

Verifier Table .. 173

4. Brokered Authentication Scheme Without Verifier Table 200

4.1 BROKERED AUTHENTICATION SCHEME .. 200

4.1.1 Identity Provider and Service Providers Association 201

4.1.2 Proposed Brokered Authentication Architecture 203

4.1.3 A Strong Single Sign-on User Authentication Scheme for

Cloud Based Services .. 207

4.1.4 A Mobile Based User Authentication Scheme without

Verifier Table for Cloud Based Services .. 229

5. Secure Integrated Framework For Authentication In Cloud 255

5.1 FRAMEWORK ARCHITECTURE .. 257

5.2 INTEGRATED AUTHENTICATION MODEL FOR CLOUD 265

5.3 PROPOSED INTEGRATED-FRAMEWORK PROTOCOL 266

5.3.1 Registration Phase - Service Provider 267

5.3.2 Registration Phase - User ... 268

5.3.3 Login and Authentication Phase ... 270

5.3.4 Password Change Phase ... 276

5.4 ANALYSIS OF PROPOSED INTEGRATED-FRAMEWORK PROTOCOL 278

5.4.1 Security Analysis .. 278

5.4.2 Efficiency Analysis .. 283

5.4.3 Formal Analysis .. 285

xii

6. Conclusions ... 294

6.1 PRESENT WORK ... 294

6.2 LIMITATIONS OF STUDY AND FUTURE ENHANCEMENTS 297

Bibliography .. 300

Publications and proceedings .. 326

xiii

List of Tables

Table 2.1 Comparison of Direct and Brokered Authentication .. 77

Table 3.1 Notations Used in the Protocol (Direct&Crypto-Token) .. 153

Table 3.2 Comparison of Computational Efficiency with Other Protocols 166

Table 3.3 Notations Used in the Protocol (Direct&Mobile-Token) ... 175

Table 3.4 Comparison of Computational Efficiency with Other Protocols 187

Table 4.1 Notations Used in the Protocol (Brokered&Crypto-Token) .. 208

Table 4.2 Comparison of Computational Efficiency with Other Protocols 220

Table 4.3 Notations Used in the Protocol (Brokered & Mobile-Token) 230

Table 4.4 Comparison of Computational Efficiency with Other Protocols 243

Table 5.1 Notations Used in Proposed Integrated-Framework Protocol 267

Table 5.2 Comparison of Computational Efficiency with Other Protocols 285

xiv

List of figures

Figure 2. 1 SHA-256 Mapping of Input Messages to Corresponding Message Digests 18

Figure 2. 2 Simplified Model of Symmetric Encryption ... 19

Figure 2.3 HMAC Structure... 27

Figure 2. 4 Crypt-Token... 61

Figure 2. 5 Smart Card ... 62

Figure 2.6 RSA SecurID .. 63

Figure 2. 7 Google Authenticator .. 64

Figure 3. 1 Crypto-Token/Mobile-Token Deployment and Direct Authentication at SP 146

Figure 3. 2 Direct Authentication - Registration Redirect ... 149

Figure 3.3 Direct Authentication – Login and Authenticate to each SP 150

Figure 3.4 Registration and Authentication Process Flow .. 150

Figure 3.5 Registration Phase of Direct Authentication Using Crypto-Token 154

Figure 3.6 Login and Authentication Phase of Direct Authentication Using Crypto-Token 157

Figure 3.7 Password Change Phase of Direct Authentication Using Crypto-Token 159

Figure 3.8 Scyther Analysis of Direct Authentication Using Crypto-Token 169

Figure 3.9 Registration Phase of Direct Authentication Using Mobile-Token 178

Figure 3.10 Login and Authentication Phase of Direct Authentication Using Mobile-Token.... 180

Figure 3.11 Password Change Phase of Direct Authentication Using Mobile-Token 182

Figure 3.12 Scyther Analysis of Direct Authentication Using Mobile Token 193

Figure 4. 1 Brokered Authentication - Registration and Authentication Process Flow 207

Figure 4.2 Registration Phase of Brokered-Authentication Using Crypto-Token 209

Figure 4.3 Login and Authentication Phase of Brokered Authentication Using Crypto-Token .. 213

Figure 4.4 Password Change Phase of Brokered Authentication Using Crypto-Token.............. 214

Figure 4.5 Scyther Analysis of Brokered Authentication Using Crypto- Token 224

Figure 4.6 Registration Phase of Brokered-Authentication Using Mobile-Token 233

Figure 4.7 Login and Authentication Phase of Brokered Authentication Using Mobile-Token .. 235

xv

Figure 4.8 Password Change Phase of Brokered Authentication Using Mobile-Token 237

Figure 4.9 Scyther Analysis of Brokered Authentication Using Mobile Token 248

Figure 5.1 Framework Architecture ... 257

Figure 5.2 Registration and Authentication Process Flow for Framework 266

Figure 5.3 User Registration Phase of Integrated-Framework Protocol 270

Figure 5.4 Login and Authentication Phase of Integrated-Framework Protocol 275

Figure 5.5 Password Change Phase of Integrated-Framework Protocol 277

Figure 5.6 Formal Analysis of Integrated-Framework Protocol .. 289

1

 CHAPTER 1

 1. INTRODUCTION

Cloud computing, an emerging paradigm of Information Technology has

off-late gained a lot of attention of both the industry and researchers. The

ever increasing spread of resources on the Internet and the rapidly growing

service providers have enabled cloud computing systems to grow as an

“anything-as-a-service (XAAS)” model for distributed network

environments. The much appreciable ability to abstract the intricacies of

implementation and complexities of delivering services enables cloud

computing technology to be applied in a completely different manner

compared to traditional distributed systems. The use of virtualization

technology to support resource pooling and sharing makes cloud resources

highly scalable.

Organizations collaborating with other organizations to fulfill its business

objectives, pharma companies that assimilate a lot of research data,

government organizations offering e-governance services, financial

institutions dealing with highly sensitive but voluminous data, etc. would

like to shift their operations into cloud, so that they can benefit from

ubiquitous access to resources, to scalability, to reduction in capital

expenditure etc. However, the concerns related to security of information

stored in the cloud are a major deterrent for many organizations from

adopting cloud. According to a survey by International Data Corporation

(IDC), 87.5% of the decision makers/influencers ranging from IT

executives to CEOs cite “Security” as the top most challenge to be dealt

with in every cloud service (Gens 2009).

2

The major reason for non-adoption of Public Cloud by organizations

dealing with sensitive information is the lack of confidence in its

information security. Many existing Public Clouds such as Amazon Web

Services, Salesforce.com and Google App Engine have been victims of

various attacks (Brian 2014, Entrust 2014, Darren 2014).

Authentication is one of the most important attribute for ensuring

information security. An authentication mechanism which ensures that

only valid users have access to data/information will help mitigate this

concern to a great extent.

The simplest and the widely accepted mechanism for authenticating viz.

Password based authentication, has many limitations that further

corroborate these concerns. Today most of the cloud service providers

protect the sensitive information residing with them with mere user name

and password related to the Users account with provider, which renders

the user authentication more critical in combating threats like unauthorized

access and identity theft.

The ever increasing number of cloud based applications and services have

raised another issue – about the number of accounts a User needs to

maintain. Users of multiple applications have to manage many

logins/passwords which is often difficult as the User may not be able to

remember every identifier associated with each cloud service. Hence,

Users tend to choose easy to remember passwords or use the same

password for multiple accounts often leading to easy compromise of user

accounts. Also a majority of Service Providers require the Users to store

their account information in the Cloud and this information is accessible to

3

the providers and their employees. This makes the authentication system

susceptible to Insider attack and Stolen Verifier attack.

Cloud computing technology has created greater convenience by allowing

sharing of resources, facilitating collaborative work environment, 24*7.

However, the shared environment of Public Cloud and accessing of

services over the Internet, raise questions about potential unauthorized

access to cloud resources.

User authentication being the preliminary mechanism to ensure access

control and the entry point for any network, including the Internet, there

has been an increasing focus on deployment of strong authentication

mechanisms to ensure utmost safety of user accounts maintained by cloud

service providers. Strengthening the authentication includes ensuring

security at client side, of data in transit and at server, besides offering

strong two-factor authentication methods to verify the authenticity of

Users accessing resources in the cloud.

1.1 MOTIVATION

Authenticating Users in a trustworthy and manageable manner is a vital

and necessary requirement for organizations that adopt Cloud based

services. Ease of implementation and cost effectiveness have prompted

almost every new Cloud service to choose password based authentication

methods for authenticating its end user. However, password authentication

mechanisms could lead to major data breaches as had happened in the case

of Utah Department of Technology Services (DTS) (Nicole 2012). On

March 30 2012, hacker group from Eastern Europe succeeded in accessing

the servers of DTS, compromising 181,604 Medicaid recipients and Social

4

Security Numbers of 25,096 individual clients. The hacker was able to

retrieve the password of the system administrator, and gain access to the

personal information of thousands of users. Though Utah DTS had proper

access control mechanisms in place to secure sensitive data, a flaw in the

authentication system rendered the system vulnerable to attack. In

addition, the explosive growth of cloud services and web applications has

made it near impractical for users to manage dozens of passwords for

accessing different cloud services. Nevertheless, a majority of cloud

service providers require the User to store the password at the service

provider’s end. Passwords of users are stored in a password verification

table, making the system susceptible to security concerns like insider

attack, stolen-verifier attack and denial-of-service attack. For example, on

October 13th 2014, the Software-as-a-Service (SaaS) provider, Dropbox

was victimized to a major security breach incident in which attackers

managed to leak hundreds of passwords for various Dropbox accounts

(Buchanan 2014). Dropbox claimed that hackers had stolen passwords

from other sites and used them to login to Dropbox accounts as many

customers use the same credentials for multiple services (Macmillan and

Yadron 2014). Hence from a usability point of view, password

authentication for cloud services faces a tremendous risk. These concerns

clearly point out to the requirement of strengthening the authentication

process and adopting a mechanism that eliminates the requirement of

storing authentication credentials at the service provider’s end.

Two-factor authentication technology which requires the User to provide

more than one authentication information will drastically reduce the

probability of the requestor presenting a fake identity. A two-factor

5

authentication mechanism will make it difficult for the attackers to

override the user authentication of cloud systems, since, in addition to

guessing the user’s password correctly, they also will have to acquire the

second authentication factor.

The physical token, RSA SecurID (RSA Inc. 2015) and the software

application, Google Authenticator (Google Inc. 2015) are among the

popular two-factor solutions in cloud systems. Behind the scene, both the

RSA physical token and the google Authentication software application

shares secret seed with its corresponding authentication server. Coviello

(2011) in his open letter to RSA customers says that a compromise of the

servers of RSA SecurID, resulting in the exposure of secret seeds will

enable the attacker to compute any pseudorandom authentication code,

rendering RSA SecurID not fully secure to be utilized as a second

authentication factor for cloud services. Also, the User will need to carry

multiple devices to access services of different service providers since

each service will be having a different secret seed (Zhu et al. 2014).

Authentication factors such as crypto-tokens and smart cards with

cryptographic capabilities have been vastly used as a second

authentication factor in many schemes for authenticating remote users.

Ability to store authentication credentials, resistance to tampering of the

stored contents and capability for computations make these tokens a

preferred choice as a secure two-factor authentication mechanism.

However, Users are required to always carry these authentication tokens

which make it cumbersome from practical usability perspective. Also its

usage involves cost thereby restricting adoption of these schemes to

corporate environments. The authentication process can be made more

6

user-convenient if the authentication factor chosen is such that it is widely

used even by a layman user. This feature can be addressed by making use

of a user owned device as an authentication factor. Last few years have

seen the spread of mobile phone as a necessary personal gadget rather than

an optional communication device. Leveraging the use of mobile phone

as an authentication factor can help address issues of user convenience at

no extra cost while improving the security of authentication schemes.

Service providers, offering their services from a cloud environment can be

broadly categorized into two from the perspective of their authentication

requirements. A set of service providers dealing with highly sensitive

information and working in a controlled and regulated environment, such

as those providing services for healthcare sector, can be grouped into one

category. These service providers require a strong authentication

mechanism to authenticate its Users. However, they do not require any

additional functionality such as Single sign-on. Similarly, there are another

category of service providers that deal with secure information but operate

in a collaborative environment. Service providers whose applications are

bundled through a web portal, SaaS services such as Ace project for

project management and Assembla for code management which are

simultaneously used by organizations for collaborative project

management etc. can be grouped under the second category. If each of

these providers has its own independent user management mechanism,

then the Users will have to go through multiple registrations and multiple

authentication processes. To provide the users with a seamless

authentication experience, the second category of service providers prefer

to have a Single Sign-on functionality by which the Users can authenticate

7

to one of the service provider and can access multiple services without re-

entering the credentials. However, if different service providers decide to

offer its own two-factor authentication services, then the service providers

will have the additional burden of issuing and managing the tokens. In

addition, Users accessing multiple cloud services may be required to hold

multiple authentication tokens associated with various service providers

and may need to experience multiple registration and login process. If a

single authentication token is to be used to access different cloud services,

then it requires the involvement and interoperability between different

service providers, owing to which the deployment of such strong

authentication solutions is currently very limited (Stienne et al. 2013).

1.2 CURRENT ISSUES

In view of the aforesaid, the following salient shortcomings in the

prevalent authentication schemes have been identified.

i.Password based authentication alone is not sufficient to ensure secure

access to cloud resources/services/applications.

ii.Password based authentication requires the service providers to store the

password information in a verification table, which leads to insider

attack, stolen verifier attack etc.

iii.Prevalent two-factor authentication mechanisms used by service

providers are not fully secure to be used as a second authentication

factor.

iv.Lack of availability of an authentication mechanism, without verifier

table, that uses a mobile token as the authentication factor.

v.Category 1 service providers preferring to adopt two-factor authentication,

will have the added responsibility of registering Users and of issuing &

8

managing the tokens. Users will need to go through multiple registration

processes and carry multiple authentication tokens to access multiple

services.

vi.Category 2 service providers, preferring to adopt two-factor

authentication, will have the added responsibility of registering users and

issuing & managing the tokens. Users will need to go through multiple

registration processes and carry multiple authentication tokens to access

multiple services. Users will have to undergo multiple authentication

processes to access different services simultaneously, in the same session.

vii.Lack of availability of an authentication model, without verifier table,

that provides the service providers with the flexibility to directly

authenticate its Users or delegate the authentication of its users to a third

party, so as to achieve Single sign-on functionality.

1.3 REQUIREMENTS TO BE ADDRESSED

The above discussed issues related to authentication in a cloud

environment motivated research to laydown the requirements to be

addressed as follows: (a) an authentication architecture for direct

authentication (b) an authentication architecture using third party Identity

Provider (IdP) for brokered authentication (c) Two-Factor authentication

protocols using Crypto-token and Mobile-token thus eliminating the need

to maintain a verifier table at the server (d) a solution to the problem of

service providers having to issue the tokens, and Users managing a

multitude of tokens to access multiple services (e) a secure authentication

framework for Direct and Brokered authentication.

9

1.4 RESEARCH OBJECTIVES

Primary goal of this research is to design, analyze and implement a secure

authentication framework for cloud services, strong enough to overcome

the limitations of currently prevalent mechanisms and be capable of

providing a flexible authentication model to service providers. To achieve

strong authentication, focus is to design two-factor authentication

protocols without verifier tables. The target users of the proposed

authentication model can be users accessing cloud services, and service

providers facing an increasing need for cost effective solutions ensuring a

more secure access to vast and sensitive data repository.

Considering the above required features for an efficient

authentication framework, the following objectives are defined:

 To design the authentication architectures for direct authentication and

brokered authentication.

 To design separate secure Two-factor authentication protocols without

verifier table using Crypto-token/Mobile-Token for both direct

authentication and brokered authentication environments.

 To analyze security of the proposed authentication protocols against

common attacks on authentication schemes.

 To validate the proposed schemes through formal analysis methods.

 To propose an authentication framework for Cloud which supports an

integrated authentication architecture that provides the service providers

with the flexibility to choose between direct and brokered

authentication.

10

1.5 ORGANIZATION OF THESIS

The Thesis is organized into six chapters. Chapter 1 provides an

introduction to the topic of research along with an articulation of the

motivation as well as research objectives.

Chapter 2 covers the literature survey which includes fundamentals of

Cryptography, Cloud Computing and Authentication. It also includes the

existing research in similar areas and its limitations, a description of

common attacks on authentication protocols and a brief description of

Scyther tool which is used for formal analysis of the protocols.

Chapter 3 elaborates on the authentication scheme for Direct

Authentication. Chapter contents include the authentication architecture

for direct authentication, Two-factor authentication protocol using crypto-

token and mobile-token and the analysis of the proposed protocols.

Chapter 4 discusses the authentication scheme for Brokered

Authentication. Chapter contents include the authentication architecture

comprising of a centralized identity provider which provides a Single

Sign-on functionality, Two-factor authentication protocol using crypto-

token and mobile-token and analysis of the proposed protocols.

Chapter 5 presents the Authentication framework and its components.

Integrated authentication architecture, integrated Two-Factor

authentication protocol, and security, efficiency & formal analysis of the

integrated protocol are included in the chapter.

Chapter 6 states a brief conclusion of the research work along with its

limitations and possible future enhancements.

11

CHAPTER 2

2. LITERATURE SURVEY

2.1 BASICS OF CRYPTOGRAPHY

Prior to the introduction of data processing equipment’s, security of

valuable assets of an organization was ensured through physical and

administrative procedures. Personnel screening procedures carried out by

the human resources department, before hiring an employee can be cited

as an example for the administrative procedure adopted to ensure security.

Similarly, sensitive documents were protected by storing them in strong

filing cabinets with combination locks.

The introduction of computers as data processing equipment’s have

contributed a lot towards efficient storage and processing of data. This

automated processing of data also raised the need to have automated tools

for protecting the sensitive information stored in the computers. Another

major change that raised serious concerns about security was the

introduction of communication networks and distributed systems which

demands security of data in transit as well.

The rapid growth of Internet and related technologies such as Web 2.0,

Cloud Computing etc. and the conveniences they offer have seen a wide

spread adoption of these technologies by the corporate as well as by

laymen. With due recognition to the fact that Internet has revolutionized

communications, it should also be understood that the conveniences and

uses offered by Internet and related technologies, come at the price of new

perils. In the past few years, due to the rapid increase of information

transmitted electronically, online fraud has been identified as a major

12

source of revenue for criminals all over the globe. Hence detecting and

preventing these nefarious activities have become a top priority for every

major organization. It can be observed that almost everything that can be

done offline has an online counterpart such as booking tickets online,

paying bills online etc. All these applications have certain common

requirements which includes protection from identity theft, data theft,

assurance of privacy, confidentiality etc.

Information security plays a crucial role in safe guarding the resources and

services that are available online. Confidentiality, Integrity and

Availability are cited as the three security objectives for information

systems, by the NIST (2004). These three concepts often referred to as the

CIA triad are discussed in the following paragraphs.

Confidentiality: Maintaining confidentiality restricts unauthorized

personnel from accessing sensitive data and ensures that authorized people

are permitted access. A breach of confidentiality results in unauthorized

disclosure of information.

Integrity: Maintaining integrity ensures that the data retains its

consistency, trustworthiness and accuracy throughout its life cycle. A

violation of integrity leads to unauthorized deletion or modification of

information.

Availability: Availability property assures that authorized people are

provided with a reliable and timely access to information. A breach of

availability results in the disruption of access to a resource or the

disruption of use of an information or a system providing information.

13

In addition to the three major security objectives discussed above, few

more security concepts are considered relevant by some in the security

field. These concepts include authenticity and accountability which can be

explained as follows:

Authenticity: Authenticity property verifies that a person is who he claims

to be and that an incoming message received by a system came from a

valid and trustworthy source. This property enables the sender and the

receiver to verify each other’s identity and also the origin of the

information.

Accountability: Enforcement of accountability property allows identifying

the entity who caused an action. Accountability property, which supports

non-repudiation, intrusion detection and prevention etc., allows us to trace

a security breach to the corresponding entity responsible for the breach

and execute a legal action (Stallings 2011).

Non-repudiation: The enforcement of non-repudiation property assures

that a participant involved in a transaction cannot refute or deny a

communication that they originated or received. This property enables a

receiver to prove that a message received by him was sent by the alleged

sender and vice-versa (Stallings 2011).

The need to achieve these security aspects arise when it is necessary to

protect information flowing across a communication channel, being

accessed and manipulated by an adversary thereby affecting its

confidentiality, authenticity, integrity etc. To achieve the CIA triad and the

other security objectives, cryptographic mechanisms are employed.

14

Cryptography is the science of using complex mathematics and logical

principals for securing data by transforming into a form that is not legible

to unauthorized users. Application of Cryptographic mechanisms such as

encryption and hashing enable us to store sensitive information or transmit

it across insecure networks without worrying about breach of

confidentiality, authenticity, integrity and so on. The origin of the

Cryptographic science can be traced back to Babylonian era during 3000

B.C (Thawte 2013). However, the usage was confined mostly to sending

messages related to military operations during war times. History of

cryptography speaks about the Roman emperor, Julies Caesar who used to

send encrypted messages to his generals. While sending messages he

didn’t trust his messengers and hence he used to transform the original

message by substituting each letter of the alphabet with the letter

appearing after three places. For instance, the message “hello, how are

you” will be encrypted or transformed into “KHLLR KRZ DUH BRX”.

Until recently, cryptography was considered only as encryption and

decryption. Encryption is the process of performing various substitutions

and transformations on the plain text to generate the corresponding cipher

text or encrypted text and the reverse process is termed decryption. The

introduction of computers has extended the use of cryptography into the

digital world to protect sensitive information by ensuring their

confidentiality and integrity. With the advancement in time and the

widespread use of Internet for online transactions, various innovative

techniques such as microdots, merging words with images etc. have been

proposed for securing or hiding information in storage or transit. Thus

cryptography can be viewed as all the techniques adopted to protect the

15

integrity or secrecy of digital information by converting them into a form

that can be understood only by authorized users. There are three classes of

approved cryptographic algorithms based on the number of keys that are

used in conjunction with the algorithm. This includes symmetric key

algorithms, public key algorithms and hash functions (Barker et al. 2012).

The following sub section discusses the techniques used by cryptosystems

to achieve the security objectives introduced in the section 2.1.

2.1.1 Hash Functions

A hash function takes as input, a block of data of varying length and

generates an output of fixed length (Stallings 2011). The input is referred

to as the message and the output is called the hash or digest of the message

which is a fingerprint of the message. For eg. Given a message ‘M’ and

the hash function ‘H’, the hash value ‘h’ of the message is calculated as h

= H(M). Hash functions are one way functions, which makes it practically

infeasible to retrieve the original message given its message digest. An

efficient hash function should meet the criteria that the application of the

hash operation will produce digests that are random in nature and are

evenly distributed. Thus a change to a single bit or bits in the original

message ‘M’ will produce a drastic change in the original message digest.

The type of hash function used for security applications is known as

cryptographic hash function and this is an algorithm that satisfies the

following properties (Stallings 2011).

Consistency: The consistency property of hash functions assures that the

same input message to a hash function always produces the same hash

result as the output. Thus irrespective of the number of attempts you make

16

and regardless of the time, a particular input will always be mapped to the

same hashed result, provided you are using the same hash function and

case sensitiveness is considered.

One-way Property: This property assures that hash functions are

irreversible. Therefore, given a hash value ‘h’ of a message ‘M’, it is

computationally infeasible to derive the original plain text message ‘M’

from ‘h’. In other words, it is not possible to find a data object or a

message that map to pre-specified hash result.

Collision-free property: The uniqueness or collision-free property of hash

functions assures that it is computationally infeasible to find two different

data objects or messages that map to the same hash value. This means, it is

computationally not possible to find two different messages ‘M1’ and

‘M2’ such that H(M1) = H(M2) = h, where ‘H’ is the hash function and

‘h’ is the message digest. This property is required to overcome the

problem of cryptographic hash collisions.

Pre-image resistance: This property assures that given a hash value ‘h’, it

is infeasible to find a message ‘M’ such that h = H(M). The pre-image

resistance property is related to the one-way property.

Second pre-image resistance: This property of hash functions assures that

given an input message ‘M1’, it is computationally infeasible to find

another message ‘M2’ such that H(M1) = H(M2).

These properties of hash functions are indicative of the fact that an

adversary cannot modify or replace an input message without changing its

corresponding message digest. This makes data integrity as the principal

objective of hash functions. Cryptographic hash function does not require

17

keys and virtually all cryptographic hash functions takes a variable length

message as input to which compression functions are applied in an

iterative manner to produce a fixed length output.

Cryptographic hash functions are used by cryptosystems for checking data

integrity, authenticity, non-repudiation and for password verification by

storing hashed passwords in the verification table at the server. A vast

majority of authentication systems stores hashed passwords or password

digests in the verification table maintained by the server and during login

operation, the digest of the password submitted by the user is verified

against the stored password digest.

There are many hash functions that have been proposed by researchers,

though a few among them such as MD4, MD5, HAVAL-128, RIPEMD

etc. were proved to be susceptible to collision attack (Xiaoyun et al. 2004).

Until recently MD5 and SHA-1 were the most commonly used

cryptographic hash functions (Cryptographic hash function, Wikipedia)

and reports on attacks on MD5 (Schneier 2004) (Alexander et al. 2008)

and weaknesses of SHA-1 (Xiaoyun et al. 2005) have prompted

organizations to upgrade their security applications to use the next

versions of SHA viz. SHA-2 and SHA-3 standard (NIST 2013). The

outputs generated by SHA-256 hashing algorithm for various input

messages are depicted in figure 2.1.

18

Figure 2. 1 SHA-256 Mapping of Input Messages to Corresponding

Message Digests

2.1.2 Symmetric Cryptography

Symmetric key or shared key or secret key (Stallings 2011) cryptography

is a form of cryptosystem, which uses a single key for both the encryption

and the decryption process. This encryption mechanism requires both the

sender and the receiver to share the same secret key value. In symmetric

encryption, the sender transforms plain text into the corresponding cipher

text by using a symmetric encryption algorithm such as AES. The plain

text to be encrypted and a secret key shared with the receiver is given as

inputs to the algorithm which produces the corresponding cipher text as

the output. The cipher text is transmitted to the receiver across a

communication channel. At the receiver, the same algorithm is used for

decryption by giving the received cipher text and the shared secret key as

inputs to obtain the corresponding plain text. Symmetric key encryption is

19

much faster compared to asymmetric key encryption which uses two

different key values. A simplified model of symmetric encryption to

achieve confidentiality and authenticity is depicted in Figure 2.2.

Figure 2. 2 Simplified Model of Symmetric Encryption

Here confidentiality property is achieved since the unauthorized person

John, who does not possess the key ‘KAM’ is unable to read the intercepted

message. A few examples of popular symmetric algorithms include AES

otherwise known as Rijndael (Joan and Vincent 2003), RC4 (Rick wash),

3DES (Hamdan 2010). Though symmetric key encryption is simple and

faster in terms of computation, key distribution is a matter of concern

(Blumenthal, 2007) since the communicating parties must use the same

key for secure communication. Another limitation is the fact that a

compromise of the shared key will result in the disclosure of all messages

encrypted using this shared key. Also this encryption mechanism has

scalability issues since ‘k’ secret keys are required to communicate with

‘k’ different people.

20

Though symmetric encryption can be efficiently used to achieve

confidentiality, authenticity and integrity, it cannot be used to provide

non-repudiation. For eg. If Ann sends a message to Mary encrypted using

the shared key ‘KAM’ and later denies that she did not send the message,

then there is no way in which Mary can prove that the encrypted message

was created by Ann. This is because Mary also possesses the same shared

key ‘KAM’ and Ann can very well argue that Mary herself might have

created the message. The absence of a third party witness who could

establish that Ann and Mary shared a secret key, makes it difficult to

prove that Ann is the originator of the message. This limitation of

symmetric key cryptography is addressed by asymmetric or public key

cryptography.

2.1.3 Public Key Cryptography

Asymmetric key Cryptography otherwise known as Public key

cryptography is a form of cryptosystem in which two different, related key

values are used to perform the encryption and decryption process.

Asymmetric encryption which was proposed by the researchers Diffie and

Hellman (1976), is based on complex mathematical techniques such as

finding the factors of the product of two large prime numbers as opposed

to substitutions and permutations, used by symmetric encryption

algorithms. In asymmetric encryption, the sender transforms the data to be

protected (plain text) into the corresponding cipher text by using an

asymmetric encryption algorithm such as RSA. The plain text to be

encrypted and one of the keys in the key pair is given as inputs to the

algorithm which produces the corresponding cipher text as the output. The

cipher text is transmitted to the receiver across a communication channel.

21

At the receiver, the same algorithm is used for decryption by giving the

received cipher text and the other paired key as inputs to obtain the

corresponding plain text. One key in the key pair which is publicly

available either via a public directory or via public key certificates is

known as the Public key and the other key, which is a secret is known, as

the private key.

The two related keys of asymmetric key cryptography which aids in

performing encryption and decryption, signature generation and

verification satisfies the property that with the knowledge of the public

key, it is mathematically infeasible for an adversary to determine the

corresponding private key.

Popular examples of public key algorithms include Diffie-Hellman key

exchange algorithm which provides key distribution and secrecy, Digital

Signature algorithm (DSA) (NIST 2013) which provides digital signatures

and RSA (Rivest et al. 1978) which provides key distribution, secrecy and

signatures. Though public key cryptography (PKC) addresses the

weaknesses such as key distribution, scalability and non-repudiation,

associated with symmetric key cryptography, it has got its own limitations.

Major weakness of PKC is that the large key size and high computational

complexity of asymmetric algorithms (Blumenthal 2007) makes it

extremely slow compared to symmetric key algorithms. Also a public key

infrastructure is required to implement public key algorithms. Hence to

achieve the best of both symmetric and asymmetric cryptosystems,

symmetric encryption is applied to encrypt large volumes of data and

symmetric encryption keys are encrypted using asymmetric ciphers.

22

Asymmetric key or public key cryptography aids in achieving

Confidentiality, Authenticity, Integrity and non-repudiation.

2.1.4 Digital Certificates

A digital certificate is a major Public Key Infrastructure (PKI) component

that provides a mechanism for exchanging public keys between the

participating entities without contacting a public key authority (Stallings

2011) (PKI, Wikipedia). A public key digital certificate issued to an entity

contains information that binds a public key and the identity information

of the owner of the public key. The certificates issued by a trusted third

party commonly known as a certificate authority also includes information

such as certificate serial number, validity period of the certificate, issuer

name etc. along with a digital signature of the certifying authority

(Stallings 2011). The digital signature is created by generating a digest of

the contents of the certificate and then signing the hash using the private

key of the certifying authority. The digest and the public key of the

certifying authority, enables the clients to validate the certificate.

Generally, X.509 formats are followed for the creation of digital

certificates (Housley et al. 1999).

2.1.5 Message Authentication Code

Message authentication also called as data-origin authentication is a

procedure adopted by cryptographic systems to validate the origin of a

message and protect the integrity of a message during transit. Message

authentication enables a message to be conveyed to the receiver by the

sender with the assurance that the original message cannot be altered

without the change being detected by the receiver.

23

The functions that are used to generate an authenticator, a value used to

authenticate a message, can be grouped into following three classes:

Hash Function: A function that takes a variable length message as input

and based on the hashing algorithm used, produces a message digest

having fixed length as output. The generated hash value is used as the

authenticator.

Message Encryption: The message is encrypted using a symmetric key or

one of the keys of an asymmetric key pair. The resulting cipher text serves

as an authenticator, since the message can be decrypted only by the shared

key or the other key in the key pair, which ascertains the identity of the

origin.

Message Authentication Code (MAC): A function that takes a variable

length message and secret key as input and produces a fixed-length MAC

value which serves as the authenticator. MAC values are used more

commonly in scenarios where only authentication is needed or when we

want authentication to persist longer than encryption. The MAC function

requires two inputs viz. a secret key shared only between the sender and

recipient of the message and a plain text message whose MAC value is to

be calculated. A secure MAC function should satisfy the following

requirements (Stallings 2011):

 If the adversary observes the authenticator MAC (K, M) and the

original message M, then it should be computationally infeasible for the

adversary to create another message M’ such that

MAC (K, M’) = MAC(K, M)

24

 The probability that two randomly chosen messages M and M’ have

the same authenticator, ie. MAC (K, M) = MAC(K, M’) is 2-n where n is

the number of bits in the MAC value . This condition is satisfied if the

authenticator MAC (K, M) is distributed uniformly.

 The authentication algorithm used to calculate the authenticator,

should not be weaker with respect to specific bits or parts of the message

than others. If this requirement is not satisfied then an opponent who

knows M and MAC (K, M) can make variations on the known “weak

spots” and arrive at a new message whose tag matches with the known tag.

Thus if M’ is a message obtained by applying some transformations on M

such as inverting bits, ie. M’=f(M), then Pr[MAC(K,M)=MAC(K,M’)] =

2-n.

Several proposals have been put forward to incorporate a secret key into a

proven hash algorithm to generate a MAC value based upon hash. Among

the approaches that were proposed as part of keyed hashing for message

authentication, the approach that received wide acceptance was HMAC,

proposed by Bellare et al., (Bellare et al. 1996).

2.1.6 Hash Based Message Authentication Code(HMAC)

Hash based Message Authentication Code (HMAC): HMAC is a keyed

hash message authentication code and is an authentication technique that

generates a MAC value using a cryptographic hash function that takes a

secret shared symmetric key and the message as inputs (FIPS 2002).

HMAC is used to verify both the integrity and authenticity of a message.

A major design objective of HMAC implementation is to allow for easy

25

replicability of an existing hash function module with a new one, in case a

faster or more secure hash function is required or is designed.

HMAC Algorithm: Figure 2.3 illustrates the working process of HMAC

(Stallings 2011). Following are the variables used to generate a MAC

value by HMAC.

MD = Hash function or Message digest used (MD5, SHA-1 etc.)

M = message whose MAC hash value is to be computed

L= number of blocks in message M

n = length of the hash code produced by the hash function

b = number of bits in each block

IV = initial value input to hash function

K = Secret key or the shared symmetric key in HMAC.

ipad (inner padding) = A string 00110110 (36 in hexadecimal) repeated

b/8 times where b is the number of bits in each block

opad (outer padding) = A string 01011100 (5C in hexadecimal) repeated

b/8 times where b is the number of bits in each block

Given these terms, HMAC value can be expressed as

HMAC (K, M) = MD[(K+ ⊕ opad) || MD[(K+ ⊕ ipad) || M]

The algorithm illustrated in figure 2.3 can be explained as follows:

Step1: Key length and b should be equal. Therefore, the algorithm

includes three different scenarios, based on the length of the key K

Scenario 1: length of K is less than length of b. Here K has to be expanded

by adding zero bits to its left until the length of k becomes equal to b. Thus

26

if K = 150 bits and b = 512, then 362 bits of zero value will be appended

to K. The new value is called modified K represented as K+.

Scenario 2: If k and b are of same length then step 2 will be executed

Scenario 3: If key length is greater than the length of b then, K needs to be

trimmed by passing it through a hash function chosen for the HMAC

calculation. The hash function produces a key K (digest) containing n bits.

The key K is then padded with (b-n) bits to make its length equal to b.

Step 2: The transformed key K+ and ipad are XOR-ed to produce the b-bit

block S1.

Step 3: The original message M is appended to the S1, the output of step

2. In other words, S1||M is computed.

Step 4: The hash function (MD5, SHA-1 etc.) is used to calculate the hash

of the output of step 3. ie. MD (S1||M) is calculated. The result may be

called as H.

Step 5: K+ and opad are XOR-ed (exclusive-OR) to generate the b-bit

block S2.

Step 6: The message digest calculated in step 4 ie. H, is appended to S2.

In other words, S2||H is calculated.

Step 7: The hash function used by HMAC is used to calculate the digest

of the value generated in step 6. ie. MD(S2||H) is calculated. The result is

the final MAC value of the message M.

27

Figure 2.3 HMAC Structure

2.1.7 Password Based Encryption(PBE)

Password based encryption (PBE) enables secure encryption of files using

key values generated from the user’s password. There are situations in

which a user would prefer to encrypt her file using simple and easy to

remember password which serves as the encryption key. Simultaneously

she needs the confidence that the file is secure from unauthorized access.

One possible way to achieve this is by performing the encryption using the

public key of the user and decrypting using the corresponding the private

key. However, public key cryptography requires the secure storage of

private key. A compromise of the private key can result in a breach of

confidentiality of user data.

The above discussed requirement and problems can be addressed by

Password Based Encryption (PBE). A PBE algorithm generates a secret

symmetric key based on the password provided by the user and a

28

randomly generated salt value (Atreya 2000). A salt value generated by a

pseudo random number generator is used to strengthen the PBE algorithm

by addressing the issue of dictionary attacks commonly applicable to

password tables. The concatenation of the salt value with the password

prevents dictionary attacks or pre-computation attacks. A PBE algorithm

generates a digest of the password and the salt which can then be used as a

cryptographic key for the subsequent encryption process.

2.2 CLOUD COMPUTING FUNDAMENTALS

Cloud computing is “gracefully losing control while maintaining

accountability even if the operational responsibility falls upon one or more

third parties” (CSA 2009). Cloud computing is an evolving computing

model that concentrates on delivering computing resources over the

Internet, in a shared manner that allows on-demand scalability, self-service

and typically a pay-for-usage pricing model. This emerging computing

model has evolved from the recent advances in existing technologies such

as distributed systems, hardware virtualization, Web 2.0, service-oriented

computing, utility computing and system automation.

Among the plethora of definitions attempting to address the cloud concept,

from various perspectives, the widely accepted definition is the one

published and standardized by National Institute of Standards and

Technology (NIST). As per the NIST’s working definition published in

January 2011, “Cloud Computing is a model for enabling ubiquitous,

convenient, on-demand network access to a shared pool of configurable

computing resources (e.g. networks, servers, storage, applications, and

29

services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction” (Mell and Grance

2011). Cloud computing can also be perceived as a cost-effective model

that promotes collaboration, enhances agility, availability and scalability

simultaneously providing a different way to acquire and manage IT

resources, contributing to cost reduction through optimized and efficient

computing. This distributed computing model has five essential

characteristics, three service delivery models and four deployment models

(Mell and Grance 2011) which will be discussed in later sections. To

better understand the scope of cloud computing and related concepts, the

characteristics, participants, service delivery and deployment models,

benefits and limitations, and security issues in cloud, are discussed in the

following sections.

2.2.1 Cloud Computing Characteristics

Cloud computing has five indispensable characteristics (Mell and Grance

2011), the definition and scope of which are discussed in this section.

• On-Demand Self-Service: A consumer of cloud services can obtain

services, on a need basis, at the Infrastructure, Platform and Application

level through the self-managed interfaces without interacting with the

service provider.

• Broad-Network Access: Cloud services are available over the

Internet and accessible using standard mechanisms such as HTTP and

SOAP that promote use by thin or thick client platforms such as mobile

phones, PDAs, laptops etc.

30

• Resource Pooling: The computing resources such as storage,

processor cycles, memory, network equipment’s, network bandwidth,

virtual machine instances etc. ,owned by the provider are pooled and

shared to cater to the requirements of multiple customers using a multi-

tenant model. Divergent physical and virtual resources are dynamically

assigned and re-assigned to the consumer, on a need basis, in a time-

sharing manner.

• Rapid Elasticity: As demand increases, computing resources can be

rapidly provisioned to quickly scale out and as demand decreases, scaling

in can be achieved by releasing the provisioned resources. Resource

pooling helps to attain elasticity and three major features of elasticity

include linear scaling, on-demand utilization and pay-as-you-go.

• Measured Service: Cloud systems control and optimize the usage of

resources by making use of a metering capability at some level of

abstraction appropriate to the type of service. For example, in IaaS,

charges are often calculated based on the number of CPU cycles

(processor by the hour), storage occupied (storage by the day), IP address

allocated, number of virtual servers, network data transfers etc.

2.2.2 Cloud Participants

A cloud model has four main participants (Zarandioon 2012):

• Cloud Provider: A cloud provider is the organization that offers the

cloud computing system. Cloud provider entity holds the responsibility of

managing everything required to make the cloud service available.

31

• Cloud Consumer: A cloud consumer can either own a cloud service or

consume a service available in the cloud. An application or individual who

accesses and uses a cloud service is referred to as cloud consumer.

• Cloud Broker: A cloud broker acts as a mediator between service

provider and consumer and provides the cloud consumer with services that

caters to his requirements in the most appropriate manner.

• Cloud Auditor: A cloud auditor is a third party acting independently to

provide an appraisal of security, availability and privacy level of a certain

cloud service. This is done by examining the service stack of the cloud

service and ensuring that the security clauses mentioned in the

corresponding service level agreements (SLA) are satisfied. SLA’s include

the details and scope of auditing process.

2.2.3 Service Delivery Models

The definition of cloud computing provided by the U.S. National Institute

of Standards and Technology (NIST) (Mell and Grance 2011) segregates

cloud computing into three different models based on services provided.

These models viz. Infrastructure-as-a-Service (IaaS), Platform-as-a-

Service (PaaS), Software-as-a-Service (SaaS) and a few service providers

offering these services are discussed in this section.

The three different services can be viewed as the multiple layers of

services and each layer characterizes an entity that provides services to the

layer above it and achieves some function by consuming services offered

by the layer below it.

Software-as-a-Service: The SaaS layer provides the customer, with the

capability to use an application owned by a provider and deployed on

32

cloud infrastructure. The provider, who deploys the application in the

cloud, controls the operating system, network and storage. The intricacies

involved the management of physical settings are transparent to the SaaS

consumers. The proper streamlining of applications and maintenance

provided by SaaS model contributes to increased efficiency of operations

and reduction in cost to be paid by customers. Some popular SaaS

providers include (Lewis 2010):

 Google Apps: The most popular application of Google Apps is the

web-based e-mail client viz. Gmail which does not require the customer to

install or configure their e-mail client. Google docs for document

management, Google Calendar etc. are among the other SaaS services

provided by Google Apps.

 Zoho.Com: This SaaS provider offers a variety of products in the

SaaS space which includes Zoho Writer, Zoho Sheet, Zoho Show, Zoho

CRM etc. These web based applications are meant to cater to the

requirements of small businesses.

Platform-as-a-Service: The PaaS layer appears below SaaS layer in the

separation stack and here the customer represents a software developer.

This model, allows consumers to develop their customized applications

using the platforms, frameworks and program development tools provided

as a service by the PaaS provider. Thus, using the resources of PaaS

providers, the customers are able to create and host large scale

applications than they would be able to handle as an individual. In the case

of PaaS, the customers have full control over the applications created and

deployed by themselves, but not over the underlying cloud infrastructure.

Some PaaS examples include (Lewis 2010):

33

 Force.Com: Force.com offered by Salesforce.com, provides users

with a computing platform which can be used by developers to build

applications using AppExchange components or they can develop their

own customized applications.

 Google App Engine: This service offered by Google, provides users

with a complete stack of development tools for developing their custom

application which can be executed on the underlying infrastructure

provided by Google. This service provides Software Development Kits

(SDKs) for programming in Python and Java.

Infrastructure-as-a-Service: This layer which is the last layer of the

service stack, provides the customer with the physical infrastructure

needed to offer their customized services. The ownership of the physical

resources such as networking equipment, connectivity and physical

hardware resides with the service provider while the customer would have

control over anything including operating system, above those resources.

The consumer will be typically allowed to create virtual machines on the

physical resources and run his own operating systems and applications.

Thus the IaaS consumer does not manage or control underlying cloud

infrastructure but has control over operating systems, storage and

deployed applications. A few popular services in this category are (Lewis

2010):

 Amazon Elastic Compute Cloud (EC2): EC2 provides users with an

exclusive virtual machine known as Amazon Machine Image (AMI) that

can be installed and executed on the infrastructure supported by EC2.

34

 Amazon Simple Storage Service (S3): This service provides users

with data storage infrastructure that is highly-scalable, durable and secure.

2.2.4 Deployment Models

The cloud deployment models are categorized into four, on the basis of the

masses who can access these resources. The four deployments models can

be explained as follows (Mell and Grance 2011):

Public Cloud: Public cloud infrastructure and services are those that are

accessible to the general public via an internet connection on a pay-for-

service basis. Users need not invest on hardware to use the service and can

scale their use on demand. The responsibility of setting up and managing

the infrastructure and pooling in the resources as required by the user lies

with the organization selling the cloud service. Examples for public clouds

are:

 Amazon web services, Google.

Private Cloud: Private cloud infrastructure and services are dedicated for

the operations of an organization. The resources are deployed inside a

firewall and the user organization controls access to its resources. The

software and hardware infrastructure required to set up and maintain the

private cloud is owned by the user organization.

 Compute clouds owned by universities for the execution of

scientific experiments with the intention of keeping potentially sensitive

data within the university can be cited as an example for a private cloud.

Community Cloud: Community cloud infrastructure and services are

shared by several individuals or organizations having specific needs or

35

shared concerns such as mission, interest, security requirements, policy

requirements etc. Community cloud has its place in between private and

public cloud. As in the case of private clouds, it can avoid network

bandwidth, security exposures and the usage can be restricted. As with

Public cloud, setting up is made simple for individuals and it efficiently

uses shared resources pooled in by different participating organizations.

 Example: To store and manage information related to residents of

Karanataka, government organizations of Karnataka can share computing

resources and computing infrastructure offered by cloud.

 Example: A health care cloud which offers HIPAA compliant

services to the institutions under the umbrella of health care.

Hybrid Cloud: Hybrid clouds are a combination of two or more clouds.

Standard and proprietary technologies are used to connect the individual

clouds in a hybrid cloud to facilitate portability of application and data.

In certain cases, an enterprise will have a private cloud but might also use

a public cloud, for meeting certain security requirements or as a backup or

to handle peaks of load or as a test bed. A commonly observed usage

scenario of hybrid cloud by organizations is, the hosting of non-critical

information in the public cloud and hosting of sensitive, business-critical

information in their private cloud which is completely under their control.

2.2.5 Cloud Computing Benefits and Limitations

The following features of Cloud computing can be viewed as the key

attractions for the adoption of this emerging computing model (Lewis

2010).

36

Elasticity: The resources can be dynamically acquired and released by the

users and the cloud service provider transparently manages the utilization

of resources as per changing requirement. Physical resources are allocated

to the consumers on a need basis, and hence the cloud services can scale

on demand.

Scalability: Cloud service consumers have access to a resource pool that

scale based on their demand.

Availability: Services offered by cloud are accessible to users 24*7

through different devices, via an Internet connection.

Accessibility and Usability: Cloud consumers have access to a virtually

unlimited pool of shared resources. This enables them to develop large

scale applications requiring huge amount of resources which may not be

available within a regular organizational environment.

Mobility: The cloud services and resources can be accessed from

anywhere around the globe, via an Internet connection, without regard to

where the services are hosted.

Collaboration: Shared environment provided by the cloud enables users to

work simultaneously on common data and information. In a cloud

environment there are potentially no format incompatibilities when

everyone is sharing applications and documents. Therefore, the

collaborating users do not have to worry about the incompatibility of the

documents created by independent users.

Cost-effectiveness: Purchasing of expensive hardware and software can be

avoided by availing these as a service from a cloud service provider. Also,

37

sharing of physical resources enhances its utilization and contributes to

cost reduction.

Lower Infrastructure Costs: The users of cloud services need not invest on

buying and maintaining infrastructure as they are owned and operated by

the service provider. This cloud feature of “no upfront investment”,

contributes to reduced CAPEX and OPEX.

Pay-as-you-go Pricing Model: Billing model based on consumption of

services, makes cloud services affordable for start up firms and small &

medium enterprises (SMEs). The consumers will have to pay only for the

unit of resources they have consumed as opposed to paying for the entire

resource as applicable in a traditional environment.

Easy Maintenance: Cloud providers undertake the responsibility of non-

functional requirements such as maintenance of hardware and software,

thereby enabling the cloud service consumers to focus on their core

business requirements.

 Virtualization: Hardware virtualization technology is used by IaaS

providers for resource pooling. Irrespective of how the available resources

are maintained in physical devices, each user has an illusion that he is

accessing the resources from a single location. Users are made to feel that

they have access to an infinite resource pool and are transparent to the

underlying intricacies of sharing resources among the different users.

Thus, virtualization of shared resources enables a provider to serve a

greater number of users by using a limited number of physical resources.

38

Risk Reduction: Services offered by cloud can be used by organizations to

do a test run of their ideas and concepts before making huge investments

on new technology and infrastructure.

Despite its many attractions there are certain key concerns that can prevent

the whole-hearted adoption of cloud computing. The limitations of cloud

and how they act as barriers (Lewis 2010) are discussed in the subsequent

paragraphs.

Security: Once the data is shifted from the boundaries of the organization

to the premises of the service provider, the owners lack control over the

data and they are worried about unauthorized access to their data.

Interoperability: Cloud service providers use proprietary standards and

Application Programming Interfaces (APIs) for rendering their services,

which makes it difficult to move hosted services from one vendor to

another, resulting in vendor lock-in. There is a need to define common

standards, to facilitate interoperability between service providers.

Latency: The cloud services being accessed via the Internet, the bandwidth

constraints of Internet will introduce latency into communications between

customer and provider.

Platform or Language Constraints: Some cloud providers support certain

specific platforms and languages, which may not meet the requirements of

the user. Some PaaS offerings may have their particular programming

language to be used by developers or their specific API.

Regulations: There are concerns regarding the storage location of data by

the cloud service providers, data protection, privacy of stored information

39

etc. For e.g., as per U.S. PATRIOT ACT, the U.S government can access

any data stored in the country, without requiring the consent of the data

owner (Whittaker 2011). Some cloud service providers having their data

centers in U.S and organizations considering a shift of their sensitive data

to cloud should consider these regulations.

Reliability: To tackle emergency situations and disasters, cloud service

providers should have back up and disaster recovery plans to bring the

system up and back into operations with minimum down time. Lack of

such planning and the use of commodity hardware many a times leads to

failure of the cloud infrastructure.

Resource Control: Depending on the provider, the amount of control that a

user can have over service provider and its resources will vary.

2.2.6 Cloud Security

In the recent past, the imploring features of cloud computing has

motivated the amalgamation of cloud environment in the industry. As a

consequence, there has been a lot of research on cloud and related

technologies by both the industry and academia. The pay-as-you-go

pricing model of cloud combined with on-demand delivery of scalable

services has paved the way for a new enterprise computing model,

wherein the on-premises infrastructure are shifted to off-premise data

centers, accessed over the Internet and managed by cloud hosting

companies. However, amount of security offered by a new computing

technology, plays a major role in deciding its level of acceptance and

despite its advantages, the shift to this computing paradigm raises several

security concerns. This makes “cloud security” the primary topic of

40

research in the realm of cloud. In addition to the security concerns

contributed by web technologies and the Internet, architectural features of

cloud poses security risks, which should be addressed immediately to

promote cloud adoption.

As per a report by Gartner (Gartner 2012) (Vmware 2012), the cloud

system infrastructure services market is heading for a strong growth and

the world-wide growth is estimated to vary from $4.3 billion in 2011 to

$24.4 billion in 2016. As per the forecast of Cisco (2015), by 2019, 56

percent of the cloud workloads will be in data centers in public cloud,

which is 30 percent increase from 2014. These forecasts pinpoints where

businesses and Information Technology industry is heading: towards a

future dominated by cloud computing.

Despite the fact that the characteristics and attractions of cloud are well

understood from a business perspective, the security state of cloud

computing still lacks clarity. Although, there is a growth in cloud

computing which implies that many businesses have adopted this

computing model, there are several security issues which are preventing

organizations from migrating their sensitive data onto cloud. Ambrust et

al. (2009) in their report have mentioned hearing multiple times “My

sensitive corporate data will never be in the cloud”. Security,

Interoperability and Portability have been identified by NIST, as the major

barriers for a whole hearted adoption of cloud (NIST 2012). In addition, a

survey was conducted in 2009 (Gens 2009), by International Data

Corporation (IDC), a market research and analysis firm, to identify the

most disturbing cloud issues. The results of the survey which was attended

by masses belonging to varied levels from IT executives to top CEOs,

41

highlight that security is the major concern as it ranked first with 87.5% of

the votes, 12.9 % more than the study of the previous year (Gens 2008).

Security being identified as the major barrier for a broader adoption of

cloud, many researches both from academia and industry have done

several surveys in this area of knowledge and published many

commendable works which will be discussed in this section.

Jensen et al. (2009) discusses the technical security issues arising from

using cloud services and the intrinsic technologies used to frame these

cross-domain, inter-connected collaborations. The work discusses various

technologies such as WS-Security and TLS that are used and combined to

secure cloud computing systems. Authors explore the issues with the

application of XML Signature and Web Services Security Framework,

relevance of browser security in cloud applications and analyze the impact

of flooding attacks on cloud systems.

Takabi et al. (2010) have recognized cloud computing as an unrestrainable

force because of its potential benefits. The authors thrust upon the need to

have relevant mechanisms to handle the security and privacy concerns in

cloud environment. Security challenges with respect to identity

management, access control, policy integration, trust and service

management are explored in the work, leading the authors to propose an

exhaustive security framework for cloud computing.

Zhou et al. (2010) produced a detailed study on the privacy and security

concerns experienced by many cloud service providers. The article

discusses the five goals availability, confidentiality, integrity, control and

42

auditing to ensure security of cloud computing systems and provides few

strategies to achieve these goals.

IaaS security issues were explored in a very elaborate manner by Vaquero

et al. (2011). The study covers in detail the security concerns derived from

the multitenant environment induced by the virtualization technology. The

work presents the most widely accepted cloud threats and relates these

with three different domains of the IaaS model viz. the machine

virtualization domain, the network virtualization domain and the physical

domain. As a conclusion of their analysis, authors have identified that,

most reported systems as part of securing the components present in a

data-center shared by multiple-tenants, employ encryption mechanisms

and access control techniques.

Subashini and Kavitha (2011) specifically studied security issues

pertaining to various service delivery models in cloud. The security issues

in the scope of the three models are analyzed individually, with a greater

number of issues relevant to the SaaS model. Authors conclude their work

by including a few security solutions proposed by researchers in this area

and by proposing a framework that provides “security as a service” to the

applications.

Hsin-Yi Tsai et al. (2011) in their work explores the security issues in

different service delivery models from the perspective of Virtualization.

The issues were discussed based on security bench marks of

confidentiality, integrity and availability.

43

Bhadauria et al. (2011) explored the security threats applicable to cloud

computing with the focus of the work on various network and application

level threats such as cross-site scripting, SQL Injection attack, etc.

Ahuja and Komathukattil (2012) presented a survey on some common

threats such as data confidentiality, insecure interfaces, malicious insiders,

shared technology issues and the associated risks to clouds. The study

revealed that there is a lack of well -defined procedure for extending the

current access control mechanisms used by organizations up into the

cloud.

A survey on the security state in PaaS environment was provided by

Rodero-Meriono et al. (2012). Authors are focusing on issues arising to

due to sharing of computing platforms. The work concentrates on Java and

.NET platforms and their properties such as resource accounting, resource

isolation, and safe thread termination (Fernandes et al. 2013).

 A structured review of security issues in cloud was provided by Xiao and

Xiao (2013) on the basis of five most representative security and privacy

attributes. The attributes considered for categorizing security issues

include accountability, availability, confidentiality, integrity and privacy-

preservability. The study discusses the relationship among the attributes

and vulnerabilities that may be exploited by the attackers.

In their book chapter, on issues and developments in cloud computing and

storage security, Aguiar et al. (2013) discusses the recently discovered

attacks on cloud providers and the corresponding counter measures.

Protection mechanisms that focus on enhancing the integrity as well as

privacy of client’s data and computations are included in the study. The

44

study overviewed several issues related to client authentication and

authorization, hardware virtualization, cloud availability, cloud

accountability and remote storage protection and suggests solution to

address these issues. The discussion concludes by putting thrust on the

need to have mechanisms for attaining storage privacy, accountability, and

fool-proof verifiability on client’s data and computations.

A comprehensive book chapter was published by Pearson (2013) relating

the trust, security and privacy properties of cloud computing. Authors in

their work, opine that only those cloud services dealing with personal

information needs to take privacy into account. This chapter introduces

basic concepts, and discusses the Trust, Security and Privacy issues in

cloud computing, along with the approaches to address the issues.

Pearce et al. (2013) in their work discusses the basic concepts of

virtualization and then slowly proceeds to system virtualization, which is

used for isolation of guest operating systems, consolidation of physical

servers etc. The work provides a comprehensive coverage of the threats

affecting agents such as VMM, VMs, OSs in VMs, software installed on

those OSs, and the environment in which the agents operate such as a

network. The work concludes with recommendations for implementation

and verification of secure virtual platforms.

A categorization of vulnerabilities on hypervisors is provided by Perez-

Botero et al. (2013) with focus on Xen and Kernel based virtual machine

(KVM). The study includes the classification of hypervisor vulnerabilities

into three categories based on the hypervisor functionality, the trigger

source and the target affected by the security breach. The authors have

45

considered 11 functionalities that a hypervisor provides and have mapped

the vulnerabilities to them.

 Security Issues Specific to Cloud Infrastructure

There are few threats that originated due to the inherent architecture of

cloud and these threats require special mention. These threats create a

greater impact in the cloud environment due to the architectural and

operational features of cloud. The security issues specific to cloud

infrastructure are explained in this section.

Side-Channeling: Virtualization technology facilitates sharing of

resources, which in turn contributes to cost sharing and offering of

services at low prices (Halpert 2011). To launch side-channel attack, the

attacker first creates virtual machines on the physical machine which hosts

victims VM. The attacker then exploits a shared CPU (Zhang et al. 2011)

or observe patterns in traffic (Carlson 2012) to elicit sensitive information

such as, password or secret key of the victim. For e.g., by using a virtual

machine-based root kit, an attacker can create a “rogue hypervisor”, which

can be placed below the original one. With the aid of this hypervisor,

unauthorized code can be installed into the system by malicious users

(Krutz and Vine 2010).

Shared Ecosystem and Fate Sharing: An organization deploying its

application in the cloud will be provided with security guidelines by the

CSP, based on best practices pertaining to a particular type of application

and from his own knowledge base (Chen et al. 2010). However, a third

party’s intervention could result in interruption of services to users of a

shared cloud eco system. For example, in April 2009 many customers

46

went out of business and several data center owners lost millions of dollars

as an after effect of the FBI raid of data centers in Texas (Zetter 2009).

Vendor Lock-In: The usage of proprietary APIs, by SaaS providers, makes

migrating from one cloud provider to another a difficult task. Vendor lock-

in poses a serious threat when the services are terminated by the service

provider. To cite an example, more or less, 45% of the customer data was

lost and closely 20,000 consumers went out of business, when the cloud

service provider “Link Up” providing online storage service, discontinued

their services. (Ambrust et al., 2009).

Insecure interfaces and APIs: Cloud API’s function as an interface that

link applications, services and infrastructure. A set of API’s manage and

interact with cloud services for provisioning and monitoring of services.

These API’s are typically exposed and their security affects the security of

cloud services. Furthermore, modifications in the cloud API’s can

contribute to malfunctioning applications, lost connectivity, and new

vulnerabilities exposed due to bugs introduced in the new APIs (Carlin

and Curran 2011).

 Abuse and Nefarious Use: To gain unauthorized control over computing,

network and storage resources, a malicious user launches this attack by

taking advantage of the loopholes in the registration process for accessing

services and by exploiting the anonymity in the usage models of resources.

 Authentication Challenges in Cloud

Wide array of cloud services and ever growing number of cloud service

providers are beneficial to users from the perspective of scalability, ease of

maintenance, elasticity etc. Permission to access the secure resources

47

hosted by clould service providers is granted to the user only after

successful user authentication which is the process of verifying the

identity claimed by an individual (Meyer 2007). However, users accessing

cloud services/ resources from multiple cloud service providers will have

to address many authentication challenges (Liang 2011, Granneman 2012)

 .Customers are requested by the cloud service providers to store

their account related information in the cloud. This information can be

accessed by the service providers and customers are worried about

unauthorized access to their stored information and service providers

misusing the information.

 Majority of the cloud service providers use weak authentication

mechanisms to authenticate users. Password based authentication is the

most commonly used mechanism as it is simple, cheap and easy to deploy.

However, human beings have a tendency to choose simple and easy to

remember passwords often leading to data breaches.

 Password based authentication requires the cloud service providers

to store the password information of the user. Owing to security reasons,

this is stored either in the hashed form or salted hashed form in the

server’s database. However, if an attacker manages to gain access to the

server’s database, then he can retrieve this stored information and launch

an offline dictionary attack.

 A user who uses different cloud services, will need to store his/her

password information or authentication credential with every service

provider. Many a times, a user uses the same password for different

services and if a hacker manages to get hold of the password of a

particular account of a legitimate user, then he can use the same password

48

to login into another account of the victim. This redundancy of

information is a concern to both the customers and the service providers.

 When a user maintains different accounts to access different cloud

services, then he will have to undergo multiple authentication processes.

While authenticating to each service provider, he needs to exchange his

authentication credentials. This redundant exchange of information can be

exploited by an attacker to create a security loop hole in the system.

 The SLA’s of cloud service providers contains information

pertaining to the mechanisms followed by the service providers to ensure

the security of the information stored in the cloud. However, from a user’s

perspective, verifying whether the rules are being enforced properly or

not, is a very laborious process. This makes it difficult for the user to

monitor the security of stored information.

 Authentication Attacks in Cloud

This section discusses various attacks that are launched by exploiting the

loopholes in the authentication process.

Eavesdropping: This attack is carried out by an attacker who listens to the

communication channel in between two legitimate users. In a cloud

environment, a bit of code is loaded on a cloud server (Hardesty 2012) by

a traffic eavesdropper to passively intercept the data transferred within a

cloud or he passively listens to messages exchanged between provider and

consumer to make an unauthorized replica. The illegally obtained

information can be used by the attacker to retrieve credentials of a valid

user which in turn can be used to impersonate the user. In a cloud

environment, eavesdropping attack contributing to disclosure of

49

information, can be controlled by adopting fool proof authorization

procedures and by securing the communication channel using HTTPS.

Man-in-the-Middle Attack (MITM): MITM is a prevalent attack in SaaS

environment, where in the attacker intercepts the messages exchanged

between legitimate users and modifies the same without their knowledge

(Misbahuddin 2010). Various types of MITM attacks are discussed in the

following paragraphs.

Wrapping Attack: Meena and Chella (2012), in their work mentions that

this attack is launched by modifying the Simple Object Access Protocol

(SOAP) messages, exchanged between the browser and the server while

establishing communication, so as to duplicate credentials for logging in.

The request signed by a valid client is modified by the attacker by shifting

the body of the original message body to a different wrapping element

inside the SOAP header. The original message is replaced by a new body

which includes the unauthorized operation the attacker wants to execute

with the authorization of the original client. The attacker thus successfully

gains access to the cloud and runs a code malicious in nature which

interrupts the regular operations of cloud servers. The possible

countermeasure would be using a combination of WS-Security with XML

Signature to sign particular element and using digital certificates such as

X.509 issued by trusted certificate authority (CA’s).

Flooding Attack: In a cloud environment, the computation servers

communicate among themselves and work in a service specific manner.

An adversary carries out a flooding attack by sending bogus service

requests to the server (Zunnurhain and Vrbsky 2010). The cloud server

50

authenticates the request before providing service and the process requires

the utilization of CPU cycles, memory etc. of the server. When the bogus

service requests, exceeds the capacity of the server, request for service

from legitimate users will starve and the server will offload its processing

jobs to another server providing the same service, which will also

eventually arrive at the same situation. The adversary thus succeeds in

attacking one server and spreading the attack by flooding the entire cloud

system resulting in engaging the resources of the whole system.

Impersonating Attack: The attacker pretends to be an authorized entity or a

valid server and lures a valid user to share his/her credentials which in turn

is used to impersonate the user. A verifier Impersonation attack involves

an adversary who assumes to be a valid verifier and lures the client to

reveal the authentication keys or information (NIST 2006), which can be

used by the adversary to falsely authenticate to the verifier. A phishing

attack, which also comes under this category, is launched by making the

users to believe that a valid server is communicating with them, by

displaying a web page that resembles a valid server page (Raza et al.

2012)

Session Hijacking: Once a user is authenticated to access a service, a

session will be created for the user by the server and a session ID will be

assigned for the session. Session ID’s of authenticated users can be stolen

by an adversary, if they are not protected properly, and the hijacked

session ID can be used for identity spoofing (Gowrie 2014). Session

hijacking can be addressed by encrypting the communication channel

(Meier etal. 2006).

51

Cookie Poisoning: Cookies contain identity related credentials of an

authenticated user. To launch this attack, adversary, modifies the contents

of the cookies to gain unauthorized access to a resource (Bhadauria 2012).

To a certain extent, this attack can be handled by regularly cleaning up

cookies and by the use of products for Intrusion prevention which

examines each HTTP request sent to a web server for modification of

cookie information (Imperva, 2013).

 Replay Attack: A replay attack involves sniffing of an authentication

message exchanged between two honest communication partners and

resending the same after some point in time (Misbahuddin 2010) (Stallings

2011). This replayed message contains an authentication token that was

previously exchanged and hence the solution to handle replay attack is to

ensure that there is some content that change every time, the message is

transmitted.

Shoulder Surfing Attack: This attack which results in information

disclosure is launched by monitoring the victim over his shoulders,

without his knowledge, while he tries to login by entering his credentials

via the keyboard (Raza et al. 2012). This attacked which is mostly

launched while the victim is in a public place can also involve the use of

spy cameras and the objective is to obtain the password information of a

valid user.

Cloud Malware Injection Attack: The attack focuses on injecting a

malicious instance of a virtual machine or a malicious service

implementation, which appears to the cloud system as one among the valid

service instances (Zunnurhain and Vrbsky 2010). This attack is launched

by an adversary who creates its own IaaS or SaaS service implementation

52

module, containing malicious code or a malicious VM instance (IaaS) and

placing into the cloud. The attacker makes the cloud system to believe that

the injected instance is a valid instance of a particular service the

adversary has attacked. Thereafter, the cloud server redirects the service

requests of valid users to the injected instance and the malicious code of

the adversary is executed. Adversary’s code is capable of various activities

ranging from subtle data modifications to full functionality changes.

Password Discovery Attacks: Multifarious approaches are adopted by

attackers to obtain passwords stored by a system or are transmitted across

the network. A few methods used to retrieve password based on the

information available, are as follows:

Guessing Attack: Easy to remember passwords chosen by users, make

them susceptible to guessing attack (Misbahuddin 2010). Based on some

password related information obtained by the adversary, he guesses a

password and tries to verify the correctness by logging in multiple times

until he succeeds. Probability of guessing correctly is high in an offline

scenario, as there is no restriction on the number of login attempts.

However, the system places a restriction on the number of attempts in an

online scenario, which makes guessing difficult.

Brute Force Attack: Attacker attempts to guess the correct password by

trying out all possible combinations of numbers, alphanumeric characters

and letters, until he gets the right password (Raza et al. 2010). Automated

methods are used to launch a Brute force attack which requires a lot of

computing time and computing power to be successful.

53

Customer Fraud Attack: In this attack, a valid user purposely

compromises its authentication token, either for personal benefit or to

bring bad reputation to the organization. This attack can be prevented by a

verifier who can prove that the failure in authentication process is due to a

wrong action by the victim (Ashraf, 2013).

2.3 AUTHENTICATION

Security of any network depends on the attainment of two simple

objectives (i) Ensuring that unauthorized persons are denied access to

resources and (ii) ascertaining that authorized users are allowed to access

the resources they need. These objectives can be attained in many ways

and one among them is to assign access permissions to resources which

specify the category of users who can or cannot access a particular

resource. Nevertheless, permission to access a resource can be granted

only after verifying the claimed identity of the individual attempting to

access a resource, and that’s where authentication has a role to play.

Authentication is the act or process of verifying the identity (Meyer 2007),

claimed by an individual or an object prior to disclosing any sensitive

information. Authentication process in turn allows authorized users and

services to access sensitive resources in a secure manner, while denying

access to unauthorized users, thereby supporting confidentiality and access

control. Consequently, in most applications where security has top

priority, it is necessary to attain authenticity which is an indispensable

element of a typical security model.

There is marked difference between authentication and authorization. An

authentication system ensures that a person is the one who he claims to be

where as an authorization system verifies that you have the rights to use

54

the resources in the manner you want to use. Authentication precedes

authorization.

It is all the more important that remote users be authenticated properly, as

they are more susceptible to security risks when compared to onsite users.

Single Sign-on (SSO) authentication feature allows users to use a single

credential (password, smart card, biometrics etc.) and prove their

authenticity to multiple servers in a network without repeatedly-submitting

the credentials. This relieves the user of the pain of remembering multiple

passwords as well as the going through the authentication process multiple

times to access multiple resources.

Authentication Types: There are different means for providing the

authentication credentials to the verification system. The simplest and the

commonly used remote user authentication mechanism is Password

authentication, though it is not the most secure. In general, authentication

can be classified into Single-factor, Two-Factor and Multi-Factor based on

the type and number of factors used. An authentication factor is an

independent category of credential that uniquely identifies an entity and it

is a secret that is known to, possessed by or inherent to the owner. For

instance, password is a secret known only to the owner and hence can be

considered as an authentication factor whereas User-ID is public

information and hence fails to qualify as an authentication factor. When

network resources include highly sensitive data, authentication

mechanisms that offer more protection such as Two-Factor and Multi-

Factor authentication mechanisms based on Smart Cards, Crypto-tokens,

Bio-metric authentication etc. are preferred.

55

Most widely used authentication factor include, Knowledge factor or

Something the user knows such as Password and PIN, Possession factor or

Something the user has (USB Token, Smart Card, Crypto-token, Mobile -

Token), Inherence factor or Something the user is (Physiological or

behavioral biometrics) and Location factor or Somewhere the user is

(Geographic location at the time of login). Combination of any two of

these factors offer higher level of security strength than single factor

authentication and is referred to as Two-Factor authentication. Various

single-factor and two-factor based authentication methods currently used

for remote user authentication are discussed in the subsequent sections.

2.3.1 Single Factor Authentication

Single factor authentication is a process which requires only one category

of credentials to identify a user requesting access to a secure resource.

Single factor authentication methods include password based

authentication (Cristofaro et al. 2014), challenge-response methods and

bio-metric authentication. These methods are discussed in the subsequent

sections.

Password Based Authentication (PBA): Cost-effectiveness, ease of

implementation and simplicity makes PBA the most preferred

authentication mechanism. For password based authentication, when

attempting to logon to access a resource, the user is required to submit the

user name /user ID and password corresponding to a particular account as

the authentication factor. The authentication server maintains a data base

56

of user accounts holding the credentials of authorized users and the

submitted password is verified against the entries in the database.

In the case of password based authentication systems the security of the

entire system depends entirely on a secret password. However, human

beings have a tendency to choose simple and easy to remember and hence

easy to guess passwords making them vulnerable to several attacks. To

resist passwords from being guessed, users are recommended to secure

their accounts with high entropy passwords (Cristofaro et al. 2014).

Entropy, which is a measurement of unpredictability of the password, is

calculated based on password length and combinations of characters it can

hold. It is also recommended that passwords should not be personal details

such as mother’s name, favorite hobby, neither should they be words from

dictionary nor from your mother-tongues.

It is typically difficult for a human being to guess a password without

having some information about the owner of the password and if the value

of the password is something representative of the user. However, there

are software programs called “password crackers” which can be used by

human beings to launch a “Brute force” attack on password systems

(Password Cracking, Wikipedia). This means that an application program

tries out each word in a pre-computed dictionary of terms until the correct

combination of characters breaks the password (Dictionary Attack,

Wikipedia). To prevent such attacks, it is advisable to choose strong

passwords having alphabets, numbers and symbols and passwords should

have high entropy with a minimum length of 8 characters.

Again PBA, requires the authentication system to store passwords and user

name in a data base against which the password information submitted by

57

the user can be verified. If the server is not provided with strong security,

the stored passwords can be retrieved/modified by an adversary (Lee

2011) who manages to gain unauthorized access to the database. To

address this issue, many authentication systems rather than storing plain

text password, stores the password in its hashed form (Misbahuddin et al.

2006). This involves using a hash function, which takes the plain text

password as input and produces a unique non-reversible digest as output

(Stallings 2011). If the data base is breached the attacker will be able to

read only the hash of the passwords and not the original password.

However, storing password hashes is not an ultimate solution to ensure the

security of stored passwords, since the attackers can use a rainbow table

which is a pre-computed table for cracking password hashes (Rainbow

Table, Wikipedia).

Passwords are also prone to shoulder surfing attack (Raza et al. 2012) and

sniffing attack (Kulshrestha and Dubey 2014), which mostly happens

when you attempt to log into various web sites using passwords while in a

public place such as Internet cafes, CCD, libraries, Air terminals etc. Over

the years, many enhanced authentication schemes have been proposed to

overcome the limitations of password based schemes.

Challenge-Response Based Schemes: The Challenge-Response Based

scheme requires the user to respond to a challenge received from the

service providing server and based on the user response, the server will

decide whether to grant permission to access the resource or not.

Challenging the users with multiple questions and verifying the responses

known only to the user, provides additional level of security and falls

under the category of single factor authentication (Rouse 2015).

58

Biometric Authentication Schemes: Biometric authentication involves the

automated mechanism of measuring a physical characteristic such as

finger print or behavioral characteristic such as key strokes of an

individual, and comparing the measured value with a previously stored

value. The objective of the comparison process is to determine whether the

similarity measure is satisfactory enough to confirm the identity (Allison

2000, Woodward 2000). As per biological statistics, the probability of two

individuals having the same biological characteristics such as retina and

iris pattern, finger print, handwriting etc. are negligibly small. This

uniqueness of biometrics has paved the way for uniquely identifying and

authenticating users based on their biometric traits.

Biometrics is difficult to forge since it is unique to the person and it is

non-transferable. However, it is possible to replicate biometric data as it is

converted into digital form before being passed onto the authentication

system, and any information in digital form, can be easily replicated.

Again biometric indicators are not only unique, they are unary as well,

which means that they cannot be replaced at any cost. “A biometric is a

unary identity: All of us have only one left thumb print” (Moskowitz

1999). The unary feature of biometrics raises two different problems. First,

is the risk of biometrics getting disclosed to unauthorized individuals and

second is the threat of losing the biometric indicator. Though this is very

much similar to losing and disclosure of password, the unary nature of

biometrics makes it infeasible to change a lost or disclosed biometrics of

an individual.

59

However, the limitations of single factor authentication (SFA) such as

vulnerability to guessing, phishing, social engineering attacks are making

people to think about shifting from conventional SFA to adopt stronger

authentication mechanisms (Misbahuddin 2010). This has urged many

service providers offering high risk services and storing sensitive data to

use an additional factor to authenticate the customers of their services.

Considering this requirement to provide strong user authentication, several

two factor authentication schemes were proposed by researchers.

2.3.2 Two-Factor Authentication

Over the years, many enhanced authentication schemes have been

proposed to overcome the limitations of password based schemes. Two-

Factor authentication is a process in which the authentication system

requires two categories of credentials/factors (Misbahuddin et al. 2009) to

identify a user requesting access to a secure resource. The factors

considered for authentication include something you know? something

you have? and something you are? (Abraham 2009)(Cristofaro 2014)

(Allison 2000). Two factor authentication systems use a combination of

any of these two factors for authenticating the users. Majority of two

factor authentication schemes uses password as the first factor and what

you have/what you are as the second factor. Probability of both the

authentication factors getting compromised simultaneously is very less

which decreases the chances of an unauthorized person circumventing the

security system. This section discusses Two-Factor authentication and the

factors used for authentication in detail.

60

Something you know (Knowledge Factor): A user is authenticated based

on his knowledge of a secret value (Meyer 2007). The secret can be

Personal Identification Number (PIN), Password, Answer to Secret

Question etc (Misbahuddin 2010). which is expected to be memorized by

the user and should be known only to him. Majority of the remote user

authentication systems requiring the user to communicate over the Internet

and Intranet based authentication systems use password based

authentication to identify authorized users.

Something you have (Possession factor): In certain scenarios, a user is

authenticated based on the possession of a factor (Misbahuddin 2010). For

instance, to withdraw money from a bank’s ATM, we need to possess the

ATM card. Similarly, there are other devices such Crypto-tokens, Smart

cards, RSA SecurID token etc. that serve as authentication factor.

Generally, these devices are used in combination with a knowledge factor

such as a PIN or password. Various devices and tokens that fall into this

category are given below.

Crypto-token: A crypto-token otherwise known as a USB token, security

token, authentication token, cryptoken etc. is a hardware device that

provides secure storage of digital identities. The size of the token is

typically small and crypto-tokens such as CryptoMate64 (CryptoMate

2016) weigh only around 6g so that it can be carried along with ease. A

few of these tamper resistant tokens are designed to store cryptographic

keys including Digital Signature, biometric data such as fingerprint

minutiae (Security Token, Wikipedia) etc. Crypt-tokens have built-in

smart card chips where all cryptographic operations such as SHA-1, SHA-

256, AES-128/192/256, and RSA are performed (CryptoMate 2016) as

61

opposed to performing in the PC or terminal. The tokens are primarily

loaded with either of the two operating systems viz. JCOP and MULTOS

which provide the ability to load customer specific applets and satisfies the

common criteria for facilitating maximum security (Cryptoken 2016). To

transfer a generated key value to a client system, crypto tokens are

designed with additional features such as USB connector, RFID functions

and Bluetooth wireless interface. Figure 2.4 shows a crypto-token

(Cryptoken 2016)

Figure 2. 4 Crypt-Token

Smart Card: A Smart card resembles credit-card in size and has built-in

integrated circuit that provides the capability to store and process data

(CardLogix 2009). Based on the capability to process data and on the

memory types, we have two categories of smart cards viz. memory cards

and microprocessor cards. The smart cards are primarily loaded with any

of the two types of smart card operating systems viz., a fixed file structure

or a dynamic application system. Fixed file structure card OS makes the

card usable as a secure computing and storage device. The dynamic

application card operating system which includes MULTOS and

JavaCard® (Multos and Javacard) varieties provides the developers with a

62

platform for building, testing and deploying different on-card applications

securely. Figure 2.5 shows a smart card. (Walter 2011)

Figure 2. 5 Smart Card

The computational capability, tamper-resistance property, and

convenience in managing authentication parameters have made smart

cards to be chosen as a second authentication factor for many remote user

authentication schemes (Chien et al. 2002) (Hsiang and Shi 2009). Smart

cards use cryptography based techniques to authenticate the user and

offers stronger security than password authentication because in order to

authenticate successfully to a system or a network, the user must be in

possession of the card and he should know the Pin/Password. However,

carrying around the cards and the reader remains a burden to users and

hence these schemes are mostly constrained to corporate environments.

Time Synchronized Tokens: The time-synchronized one-time passwords

generated by physical hardware tokens (Meyer 2007) are commonly used

for remote user authentication. The token contains a built in accurate clock

that has been synchronized with the clock on the authentication server.

RSA SecurID is a commonly used time-synchronized token for

performing two-factor authentication (RSA Inc., 2015) (RSA SecurID

63

2016). Every 60 seconds, an authentication code is generated by these

token (Zhu et al. 2014) using a clock value and a random value called

“seed”. The “seed” which is unique for each token is stored in the

respective RSA SecurID authentication server. One commonly observed

problem with time-synchronized tokens is that over a period of time they

fail to be synchronous with the server. The cost of the hardware and the

need to carry around the token are some of the concerns related to using

this approach. Figure 2.6 shows the image of a RSA SecurID token (Ocrho

2008).

Figure 2.6 RSA SecurID

Google Authenticator: Google authenticator (Zhu et al. 2014) is an

application that generates time based one- time passwords in user’s smart

phone. Typically, to use this authentication factor, users will have to

install the authenticator app on their smart phone. To use the authenticator

app (Google Authenticator, 2016) a set up operation should be performed

by the user. This involves storing of an 80-bit secret key in the

authenticator app and the key is generated by the service provider uniquely

for each user and is communicated over a secure channel. To log into a

web site that requires two-factor authentication, user will have to first

64

provide his user name and password. Then the user runs the authenticator

app which generates a six to eight-digit time based one-time password

(OTP) which is provided by the user as the second authentication factor.

OTP is verified by the service provider prior to providing access to its

resource. Figure 2.7 shows the image of Google Authenticator (Cristofaro

et al. 2014).

Figure 2. 7 Google Authenticator

Something you are (Inherence factor): Sometimes the authentication of a

person can be based on “something that person is” or in other words his

authenticity is ascertained by verifying his personal characteristics.

Authentication based on personal characteristics will employ physiological

biometrics or behavioral biometrics (Misbahuddin 2010). The Physical

biometrics are related to the physical traits of an individual such as facial

features, features of the eye, hand geometry and the associated

authentication methods include facial recognition, iris & retina scanning,

palm recognition, finger print recognition etc. The behavioral biometrics

pertains to the behavior of a person and the authentication systems based

on behavioral biometrics use verification methods such as handwritten

65

signatures, keystroke dynamics, typing pattern, voice verification etc.

(Allison 2000).

Commonly used biometric authentication mechanism are those

categorized as physiological biometrics since the values of the

corresponding authentication biometrics such as finger print minutiae are

more consistent. In the case of behavioral biometrics, the values of the

biometrics are also affected by a person’s mood variations, health

conditions, posture etc. To cite an example, one profound problem of

authentication systems based on keystroke dynamics is that, a person’s key

strokes may vary substantially between different days and different times

of the day. For eg. There may be variations in the typing done when the

person is talking over the phone as compared to the typing done without

any distraction. Similarly, if a person is to be authenticated by a voice

recognition system with which his voice is already registered, and the

person is suffering from sore throat, then the system may not recognize

him due to changed voice. These variations may cause the authentication

system to make false-positive and false-negative errors.

All the physiological biometrics such as finger print recognition, iris

recognition etc. require additional hardware such as finger print reader, iris

scanner etc. which is expensive to implement whereas majority of the

behavior biometrics such as key stroke dynamics, voice recognition,

signature dynamics etc. require software tools to verify the captured

biometrics (Misbahuddin 2010). Every technology has pros and cons and

so has biometrics. Biometrics have the advantage that it is unique and non-

forgeable. However, the unary nature of biometrics has a disadvantage that

lost or disclosed biometrics of a person cannot be changed whereas it is

66

possible to change lost password (Allison 2000). Again, since the

biometric information is converted into digital form and passed on to the

authentication system, it can easily be replicated just like any other digital

data (Allison 2000).

2.3.3 Single Sign-on Using SAML Standard

The research work discusses in this thesis uses Security Assertion MarkUP

Language and hence this section discusses Single Sign-on functionality

using SAML.

Single Sign-on: Collaborating organizations would like to provide their

users with a seamless login experience while accessing different services.

In a Single sign-on platform, if users are authenticated at one service, they

do not have to re-enter their credentials and repeat the authentication

process to log on to access another service (Hillenbrand et al. 2005). Most

of the existing Single sign-on (SSO) solutions typically rely on browser

cookies for maintaining state and exchanging identity information. Cookie

poisoning is an authentication attack, which involves the modification of

cookies of an authorized user to gain unauthorized access to resources.

Hence cookies are not a reliable mechanism for sending authentication

information. Browser cookies are not transferrable across DNS domains

and hence the browser cookies, created from one security domain, for

security reasons (same origin policy) can’t be read from another one

(Trosch 2008). Therefore, to solve cross domain SSO, proprietary

mechanisms to pass the authentication data between security domains have

been used. This solution which works fine for a single enterprise, becomes

impractical when different organizations using different mechanisms

67

collaborate. SAML provides a standard protocol and message format to

exchange this security information.

Security Assertion Markup Language (SAML) is an open standard based

on Extensible MarkUp Language (XML), developed by OASIS

consortium (Organization for the Advancement of Structured Information

Standards), an organization focusing on the inventing and adopting open

standards for information technology. SAML is used (OASIS 2005) for

exchanging security information between hosted SAML enabled

applications and enables a user who has established and verified his

identity in one domain to access services available in another domain.

Basic SAML Concepts: SAML consists of building block components

whose functionalities are collaborated to support a number of SAML use

cases. These components basically facilitate the exchange of identity,

authentication, and attribute and authorization information between

security domains.

Compared to other security systems SAML follows a different approach in

providing security assertions about a principal that can be trusted by other

applications within a network. To understand how this works, there is a

need to introduce the two major actors in a SAML environment Viz., the

Identity Provider (IdP) and the Service Provider.

The Identity Provider or asserting party is the system or administrative

domain that makes assertions about a subject (OASIS 2005). Identity

provider asserts that a particular user has been authenticated using a

certain authentication mechanism and has been given the associated

attributes. For example, the Identity Provider after validating the subject or

68

user “Ann” can generate an assertion, this user is Ann, having an email

address annmary@gmail.com and she has been authenticated to IdP’s

system using an authentication mechanism based on password. The

service provider or relying party is the system or domain that relies on

information received from the asserting party. The service provider can

use various mechanisms to verify the assertions supplied to it by the

Identity Provider (OASIS 2005).

A SAML specification defines assertions, protocols, bindings and profiles.

A SAML Assertion defined by an XML schema is a set of claims made by

an asserting party about a subject. A SAML assertion is mostly received

from the Identity provider in response to a request from the relying party.

SAML has three kinds of security assertions which include Authentication

statement, Attribute statement and Authorization decision statement. An

authentication statement is issued by the asserting party after successfully

authenticating a user. The statement includes authentication related

information such as version of SAML used, issuer of the assertion,

authenticated subject, validity period of the assertion, authentication

mechanism used by the verifier etc.

 • For example, the SAML version used is SAML 2.0, the assertion is

issued at 2004-12-05T09:22:05 and the assertion is issued for verification

by the relying party domain https://sp.example.com. Protected password

mechanism was used to authenticate the subject at “2004-12-

05T09:22:00”.

• A subject about whom SP and IdP communicate should be

identified through a NAME-Identifier whose definition follows a format as

defined by SAML. The format includes unspecified, persistent, transient,

69

X.509SubjectName etc. A persistent identifier is stored in the data base

entry for a particular user as the value of two attribute pairs. A transient

identifier is temporary and no data will be written to the user's persistent

data store.

• There are certain restrictions under which the assertion is to be used.

NotBefore restriction specifies the earliest time at which the assertion is

valid and NotOnOrAfter specifies the latest time at which the assertion can

be used. AudienceRestrictionCondition specifies that the assertion is

addressed to a particular audience.

An attribute statement contains information related to the attribute value

associated with the subject. For example, “Ann” in “Christuniversity.edu”

is associated with the attribute “department” with the value “computer

Science”. An authorization decision statement specifies what a user is

permitted to do. For eg. The issuing authority of an authorization assertion

decides whether to grant the request by the subject “Ann” for access of

type “update” to the resource “Internal assessment marks of MCA course”

given that she is a professor handling MCA course related topics.

SAML protocols encompass a number of request/response protocols to

exchange messages between the asserting party and the relying party.

Assertions to be requested and how to place the requested is defined by the

SAML protocols. The structure and the content of the protocol messages

specified as a set of requests and responses are defined using XML

scheme. For example, the Authentication Request Protocol, typically used

to support the web browser SSO profile defines a <AuthnRequest>

message issued by the service provider to the Identity provider who is the

asserting party. This protocol message causes a <Response> containing

70

one or more assertions pertaining to the principal to be returned by the

Identity Provider.

A SAML binding defines how SAML protocol messages can be

transported by embedding them in communication protocols such as

HTTP and SOAP. The bindings (OASIS 2005) defined are (1) SAML

SOAP binding (2) Reverse SOAP (PAOS) binding (3) HTTP redirect

binding (4) HTTP POST (5) HTTP Artifact binding.

A SAML profile typically defines which protocols and bindings can be

combined and which data and assertion must be included. A number of use

cases and profiles are supported by SAML among which the most

important are (1) Web Browser SSO profile (2) Enhanced client and proxy

profile (ECP) and (3) Federation (OASIS 2005).

The following Figure 2.8 illustrates the relationship between the basic

SAML concepts.

Figure 2.8 Basic SAML Concepts

71

The Web Browser SSO profile with Service Provider initiated: Redirect

POST binding is used in this thesis for brokered authentication with SSO

functionality. This is discussed in the following paragraph.

Web Browser SSO Profile: Two separate use cases are supported by web

browser SSO profile, for users who are directly accessing the Identity

Provider or are re-directed to the Identity provider by the Service Provider

(OASIS 2005). Identity Provider (IdP) initiated and Service Provider (SP)

initiated use cases are the two supported use cases. This section discusses

the Service Provider (SP) initiated SSO profile with Redirect POST

binding.

The process starts with the user requesting a resource hosted by the service

provider, for example, safecloudsp1.com. As the user is currently not

having any log on session or in other words a security context at this

domain safecloudsp1.com, an authentication request is triggered to the

IdP. The redirect message of HTTP is used to send this request to the

browser (OASIS 2005). The HTTP header has a destination field which

includes the location of the Single sign-on service of the IdP, for example,

safecloudidp.com. The <AuthnRequest> generated by safecloudsp1.com is

also included in the HTTP header in the form of a query variable. The

browser processes the redirect message and sends a GET message to the

URL corresponding to the Single sign-on service, safecloudidp.com along

with the SAML authentication request. If the user is not currently having a

session with IdP’s domain, then IdP will initiate the authentication process

and challenge the user to submit the valid credentials. On the submission

72

of valid credentials by the user, authentication process will be executed

and a security context is created in IdP’s domain, for the user. A HTML

form containing the SAML assertion is send back to the browser by the

SSO service and this response must be signed by the IdP. The browser via

an “auto submit” will issue a HTTP POST containing the SAML Response

to the assertion consumer service (ACS) URL of the service provider. The

digital signature of the IdP contained in the SAML assertion is validated

by the service provider, safecloudsp1.com, and decides to grant or deny

access to the resource.

2.3.4 Authentication Models for Service Providers

The following sub section discusses different authentication models

adopted by service providers and where they can be used. A comparion of

the two authentication models is shown in table 2.1.

i) Direct Authentication

Direct authentication is used by servers to authenticate remote users when

the server maintains a database of user’s record (Microsoft, Direct

Authentication 2005). This authentication mechanism requires the user

and the service to establish credentials (Microsoft, Web Services Security

2005), prior to the user accessing the services. For example, prior to

accessing a SaaS application such as quickbook.com for calculating tax,

user should first establish an ID and password with the provider by

registering for the service, before calling the service.

Direct authentication can be used if any of the following conditions are

satisfied (Microsoft, Web Services Security 2005):

73

1) The authentication credentials presented to the service by the client

during the authentication process are based on shared secrets such as

Password.

2) The server maintains an identity store such as a database of user

credentials which helps the server to validate the submitted credential by

comparing against the stored values.

3) The service is quite simple in nature and Single sign-on capability is

not needed.

4) Client and service trust each other to exchange credentials securely.

Direct Authentication Process: As illustrated in Figure 2.9, a request

containing the credentials of the client is send to the service by the client.

The submitted credentials are verified against a database and after

validation a response is send by the service to the client, after the

validation is done.

User
Identity StoreService

1. Service Request

3. Service Response

2. Validate

Credentials

Figure 2.9 Direct Authentication Process

74

ii) Brokered Authentication

An authentication mechanism adopted by servers to authenticate remote

users by directing them to a trusted third party. The credentials submitted

by the users are verified by the third party who is otherwise known as the

authentication broker (Microsoft, Brokered Authentication 2005). On

successful authentication, a security token is issued by the broker, which is

used by the client to authenticate to a service (Microsoft, Web Services

Security 2005). Thus the authentication broker acts a broker for

authenticating the client on behalf of the service and the service validates

the credentials without having a direct trust relationship with the client. In

this case, the identity store or databases of user credentials are maintained

by the authentication broker. Brokered authentication is performed when

there is no direct trust relationship between the client and the service and

the service does not have direct access to the identity store.

Brokered authentication is used if any of the following conditions are

satisfied (Microsoft, Web Services Security 2005):

1) Multiple services are accessed by the client resulting in the

requirement of a Single sign-on (SSO) solution.

2) Direct trust relationship does not exist between the client and the

service

3) Service do not have direct access to the identity store

4) A standard access control infrastructure is shared by the client and the

service.

75

Brokered Authentication Process: As illustrated in Figure 2.10, before

accessing a service the client sends an authentication request to the

authentication broker.

User

Authentication Broker

Identity Store

Service

1. Authentication Request

2. Validate Credentials

3. Authentication Response

4. Service Request

6. Service Response

5. Validate Credentials

Figure 2.10 Brokered Authentication Process

76

The credentials of the client are included in the request and the broker

verifies the submitted credentials against an identity store such as a

database. The authentication broker, who vouches for the client, responds

to client’s authentication request and client is issued with a security token

on successful authentication.

A request for service is send by the client to the service along with the

token, which is used by the service to authenticate the client before

providing the service. The service provides a response to the client after

validating the token. The issued token is valid for a time period specified

by the broker and the same token can be used by the client to authenticate

requests to the service until the token expires.

The following Table 2.1 gives a comparison if direct and brokered

authentication models.

77

Table 2.1 Comparison of Direct and Brokered Authentication

Direct Authentication Brokered Authentication

Requires the presentation of the user

credentials to the service, which is

used by the service to authenticate

the request

Requires the presentation of the user

credentials to the authentication

broker, which is used by the broker

to authenticate the user. On

successful authentication, the broker

provides a token which validates the

client and this token is used to

authenticate with services.

Any infrastructure that supports

credential management is adequate.

An infrastructure that supports

different types of security tokens

such as X.509 PKI, Kerberos, STS

SAML Token etc. is required.

Provides no support for single Sign-

on (SSO) functionality. The client

needs to authenticate individually

for every service which can have a

negative effect on performance.

Security token is used to provide

SSO functionality. Authenticating

to a service is done using the

security token and the same token

can be used to access different

services during the same session.

Types of Authentication Brokers: Based on the mechanism used to mediate

the authentication process between the client and the service,

authentication brokers are classified into different types. X.509 PKI,

Kerberos and Security Token Service (STS) are the most prevalent

78

examples for authentication brokers (Oracle). Public Key Infrastructure

support is required for X.509 implementation and this follows an elaborate

procedure for implementation and maintenance. Kerberos requires an

Identity Provider supporting Kerberos protocol such as the Active

Directory (AD). Security Token Service (STS) requires an STS

implementation that issues and manages security tokens.

Brokered Authentication Using Security Token Service: The Protocols

discussed in chapter 4 uses brokered authentication using STS and hence

this section explains brokered authentication using security token service.

The usage of Brokered Authentication using STS is justified under any of

the following conditions:

1) The situation demands security tokens that are extensible and can

contain claims that can address other security functions such as

authorization, custom authentication, auditing etc.

2) Multiple services as accessed by the user and the user need not re-

enter the credentials for each login process. This results in a

requirement for Single sign-on (SSO) functionality.

3) The client needs to access services from multiple security domains

and the it must possible for the client to use the same authentication

token to access services in different security domains.

Brokered Authentication Using STS- Authentication Process: An

authentication request along with credentials, is send by the client to a

security Token Service (STS), trusted by client and service provider. On

79

successful authentication, STS issues a token which proves the

authenticityof the client. The tokens are interoperable which means that a

standard protocol is used for generating the tokens which are acceptable to

all service providers. The client then sends a service request along with the

token, which is verified by the service to ascertain that the token is issued

by a relaible STS and that the client has succesfully authenticated to STS.

The client is then allowed to login to access the service. To allow for

interoperable tokens, a protocol based on WS-Trust (Web Services-Trust)

is used for issuing security tokens. The authentication request message

sent by client to STS, for issuing a token is known as Request Security

Token (RST) message. RST message includes the credentials such as the

User ID and Password required for authenticating the client. Request

Security Token Response (RSTR) message is the message send by STS to

the client. An XML based Security Assertion Markup Language (SAML)

Token will be included in RSTR, and the client uses the token to

authenticate to a service.

2.4 REMOTE USER AUTHENTICATION

Remote user authentication process verifies the legitimacy of a remote

login user (Lin et al. 2003). With the rapid increase in the demand for

convenient and on-demand access to resources/services, more and more

remote servers provide resources which can be accessed via

communication networks. However, most of these resources which are

hosted by remote servers are very sensitive and requires secure access.

Hence a user who wants to access the resources in the remote servers must

first authenticate to the server by undergoing a user authentication process.

This section discusses the most relevant research publications related to

80

remote user authentication, authentication schemes without verifier tables,

authentication schemes for cloud and authentication schemes using mobile

phones as had been analyzed/published across forums/journals and its

interpretation as part of this Research. Security analysis of a few schemes,

security attacks on authentication protocols and a brief description of the

Scyther tool is also included in the section.

2.4.1 Remote User Authentication Schemes

Password authentication is the best-known and most commonly used

mechanism for authenticating remote users (Chung and Wu 1991, Xiong

et al. 2012). The advent of authentication using password, required the

server to maintain the password of all the registered users in a password

table in the clear text form (Li et al. 2001). Unfortunately, this paved the

way for stealing the stored passwords of registered users and

impersonating them by an adversary who has access to the server. Storing

the password information at the server can also make the system prone to

insider attack, since an administrator or employee who can access the

verification information of a registered user can use it to gain access to

other accounts of the user, in a scenario where the same password is used

for multiple accounts. To address these issues of storing password

information, authenticating server was required to store the verifier of

password ie. password in hashed form (Li et al. 2001, Misbahuddin et al.

2006) and during the login time, the password submitted by the user is

converted to its hashed form and compared against the stored passwords.

There is a unique verifier corresponding to each user and these verifiers

are stored in a verifier table in memory (Chien and Jan 2003). Hence an

81

attacker who gains access to the server can steal the password verifier

from the server and can use the verifier to launch an impersonation attack

or a denial-of-service attack. This is referred to as stolen verifier problem

(Bellowin and Merritt 1993, Chien and Jan 2003). Again, storing the

verification information at the server makes the scheme susceptible to

offline guessing attack, wherein an attacker can copy the verification

information (eg. Hash of password) and guess the password while

remaining offline (Gong et al. 1993). Guessing is carried out by comparing

each entry in the verifier table with the hash of words in a dictionary

(Gong et al. 1993) and the probability of successful guessing is high, since

human beings have a tendency to choose dictionary words as their

passwords (Asoke and Manish 2009). Also, an adversary who can access

the verifier table stored at the server can launch a dictionary attack

(Schenier 1996) to crack hashed passwords by comparing hashed

passwords with values stored in a pre-computed table (Jin and Sunghwan

2013). This table contains the hash of most common passwords and is

known as rainbow table (Rainbow table, Wikipedia). The limitation of

hashed passwords was addressed by concatenating a random data referred

to as salt with the password and the hash of the result is stored in the

database, which increases the difficulty in guessing the right password.

Though salt protects against general dictionary attack on a password file, it

does not prevent attack on poorly chosen passwords (Schneier 1996).

These limitations of password based authentication schemes were

addressed by academicians and researchers by proposing authentication

protocols that provides strong authentication and resists stolen verifier

problem.

82

Gong et al. (1993) in their paper mentions that weak passwords can be

protected against strong attacks by using public-key encryption. Authors

proposed a public-key based approach, wherein the authentication server

is provided with a pair of private/public keys which serves to protect

password against offline password guessing attack.

Bellowin and Merritt (1993), in their work discusses that though the

original encrypted key exchange protocol (EKE) protocol protected

passwords that are sent across the network, they required a trusted key

distribution center. Authors proposed an extended version of the EKE

protocol which protects the remote user’s password. The proposed scheme

uses RSA (Rivest et al. 1978) for generating digital signatures.

The above discussed schemes based on public-key crypto systems are

known as weak-password authentication schemes and has the advantage

that the remote server need not maintain a verifier table to validate the

authenticity of the user (Das et al, 2004). However, authentication

schemes using public-key cryptographic techniques cause heavy

computational load on the system when compared to strong-password

authentication schemes which are lighter because of using hash functions

and xor operations (Das et al. 2004). One-way hash function is

computationally infeasible to inverse (Schneier 1996). Considering this

aspect of hash functions, many smart card based authentication schemes

using hash functions were proposed to address the issues such as guessing

attack and stolen verifier problem related to password based

authentication.

The first remote user authentication scheme with smart cards (SC) was

suggested by Leslie Lamport (1981) and the scheme used irreversible hash

83

functions to create a chain of passwords. However, high computational

overhead and the need for resetting password, affected the practical

usability of the system. Added to that, in Lamport’s scheme the server

maintains verification table leading to additional cost in maintaining the

table and susceptibility to stolen verifier attack.

Sun (2000) improved the smart cased based authentication scheme

proposed by Hwang and Li (2000) the security of which was based on

difficulty in solving discrete logarithm problem. The security of Sun’s

(2000) improved scheme was based on the irreversibility property of one-

way hash functions and the scheme significantly reduces the

communication and computation cost.

Chien and Jan (2003) in their paper recognizes that strong passwords with

high entropy generated by computers are difficult for human beings to

memorize. Hence, trusted devices such as smart cards are required to store

strong passwords. Authors proposed a robust and simple protocol (ROSI)

based on smart cards, using hash operations for providing security and the

protocol addresses the stolen-verifier problem.

Juang (2004) in his work recognizes that smart card based remote user

authentication is a very practical solution to create a distributed computing

environment. Author discusses a remote user authentication scheme that

uses symmetric encryption and hash functions. The proposed scheme uses

nonce (number used once) values to resist replay attacks which are

launched by an attacker who pretends to be a legitimate user and attempts

to login to a server by transmitting messages send earlier by a valid user

(Chen and Yeh 2005). In his paper author points out that the three

84

criterions viz. (i) Session key security (ii) Forward secrecy and (iii) known

key security are important for session key agreement.

Hsu (2004) in his paper has demonstrated how a parallel session attack

will work on a smart card based authentication scheme and further he has

pointed out that the attack is workable due to the symmetric structure of

messages exchanged between user and server.

Das et al. (2004) in their work has observed that authentication schemes

can be categorized into two types viz. schemes based on public key

cryptographic techniques and other based on one-way hash operations.

Authors have pointed out that the computational load of authentication

schemes using one-way hash functions and xor operations will be less

compared to schemes based on public key crypto systems. Considering

this fact, Das et al. (2004) proposed a smart card based authentication

scheme providing security using one-way hash functions and the scheme

preserves user anonymity by making use of dynamic ID for each login

which avoids the risk of ID-theft.

Das et al.’s scheme was proved to be a failure in providing user anonymity

and an enhancement of that was suggested by Chien and Chen (2005). In

the improved smart card based scheme using hash functions, Diffie-

Hellman protocol is used by Chien and Chen (2005) to calculate the

session key, which adds on to the computational complexity of the

scheme.

Liao et al. (2005) in their work proves that Das et al.’s scheme cannot

resist guessing attack and does not achieve mutual authentication since

during the authentication phase, server can authenticate the user but user

85

cannot authenticate the server. Hence an attacker can masquerade a server

to get information from user (Liao et al. 2005). Authors proposed an

improved scheme using one-way hash functions that addresses the

limitations of Das et al.’s (2004) scheme. The proposed scheme uses time

stamps to resist replay attacks which requires synchronization of clocks at

the client and server. Also the scheme was proved by Yoon and Yoo

(2006) to be prone to reflection attack.

From the work of Chen and Yeh (2005) it can be understood that Smart

card based authentication schemes should with stand replay attacks and

this can be achieved using either a time stamp based approach or a nonce-

based approach. However, the time-stamp based approach faces some

draw backs such as variation in time zone, the delivery latency etc. (Chang

et al. 2006) and clocks can become unsynchronized due to faults in the

synchronization mechanism (Gong 1992). Chen and Yeh (2005) proposed

a smart card based authentication scheme using nonce values to resist

replay attacks. The scheme provides security using one-way hash

functions.

Even though the authentication schemes discussed in the previous

paragraph were successful in addressing the stolen verifier problem, these

authentication schemes for single server architecture/environment have got

a major limitation. A remote user who needs to access multiple network

services must register their identity and password individually at each

server and must remember various identities and passwords which is very

painful for the user (Li et al. 2001). From the work of Liao and Wang

(2009) it can be understood that, an efficient and secure remote user

authentication scheme for multi-server architecture allows the user to do a

86

one-time registration at the registration center after which he/she can

access the services of all registered service providing servers. The

limitation of multiple-registration and maintaining multiple identities by

users in a single server environment has been addressed by numerous

works related to authentication schemes for multi-server environments.

Most relevant user authentication schemes for multi-server architecture

without verifier tables are discussed in the following paragraphs.

Li et al. (2001) proposed a user authentication scheme for multi-server

architecture that allows users to choose password freely and does not

require the system to maintain a verifier table. The scheme is based on

artificial neural networks in which password authentication system is a

pattern classification system. In this system, each user must hold a large

amount of memory to store the public parameters required for

authentication process which makes the communication cost of the system

to be extremely high.

 Lin et al. (2003) in their work observes authentication schemes based on

neural networks requires a lot of time to train neural network. Authors

proposed an authentication scheme which does not require the system to

maintain a verification table and the security of the scheme is based on

difficulty in solving discrete logarithm problem in a finite field. In this

scheme every user must have a large number of memory to store public

parameters.

Tsaur et al. (2004) in their work recognizes that constructing and

maintaining neural networks in a neural network based authentication

system will add extra manpower and cost. Authors proposed an

87

authentication scheme for multi-server architecture based on RSA

Cryptosystem and Lagrange Interpolating polynomial.

Juang (2004) has proposed a smart card based password authenticated key

agreement scheme using hash functions and symmetric key crypto-system.

From the work of Juang (2004) it can be understood that checking the

freshness of nonce values is mandatory to resist replay attack. The scheme

requires the service provider to maintain an encrypted key table burdening

the provider’s memory.

Chang and Lee (2004) in their paper has pointed out that mutual

authentication between remote server and user is a necessary requirement

in the case of remote password authentication protocols. Authors also

identifies that when the servers share a unique secret information with

each user and the secret information for all the users is stored in the

server’s database, then it will burden each server with need for memory,

when the number of user’s is large. Chang and Lee (2004) proposed a

smart card based mutual authentication scheme using hash functions and

symmetric key crypto system, that does not require the server to maintain

a key table.

Tsai et al. (2008) in their work has mentioned that using one-way hash

functions in user authentication schemes reduces the communication and

computation cost. They proposed a smart card based authentication

scheme using hash functions which does not require the server to maintain

a verifier table. However, the scheme requires the intervention of

registration center to change user’s password. The proposed scheme

permits a remote user to access services from multiple servers without

individually registering at each server.

88

Since the current research, focuses on Two-factor authentication schemes

using hash functions, that permits single registration to access multiple

services and does not require the server to maintain verification table, the

following section elaborates some recent and relevant two factor

authentication schemes using hash functions. Discussion of the works

involves description of various phases of each scheme which includes

Registration, Verification and Password Change phase. Our observations

are also included at the end of description of each scheme. Security

analysis of a few schemes are also done to identify vulnerability of the

scheme to various attacks on authentication protocols.

2.4.2 Authentication Schemes without Verifier Tables

In 2009 Liao and Wang (2009) proposed an authentication scheme using

simple hash functions for multi-server environment. They focused on

achieving mutual authentication and key agreement and address the time

synchronization problem in a distributed environment using nonce values.

It is assumed that the environment has three participants’ viz. the user Ui,

the service provider Sj and the registration center (RC).

Registration Phase: Ui sends his identity IDi and password, PWi to RC

who calculates Ti = h(IDi || x), Vi = Ti ⊕ h(IDi || PWi), Bi = h(PWi) ⊕ h(x)

and Hi = h(Ti) using the values send by Ui and his master secret key ‘x’.

RC chooses a secret number ‘y’ and stores the secret parameters (Vi, Bi,

Hi, h(.), y), in the SC which is issued to Ui .

Login Phase: Ui keys in IDi
*, PWi

* and server identity SIDj. SC performs

the following steps:

89

Step 1: Compute Ti’ = Vi ⊕ h(IDi
‘|| PWi

’) and checks whether Hi’= h(Ti’)

= Hi. If equal user proceeds to next step. Otherwise the process is

terminated.

Step 2: Calculates CIDi = h(PWi) ⊕ h(Ti || y || Ni) , where Ni is a nonce.

Pij = Ti ⊕ h(y || Ni || SIDj) and Qi = h(Bi || y || Ni) and sends login request

{CIDi , Pij, Qi, Ni } to Sj.

Mutual Verification and Session Key Agreement Phase:

Step 1: Sj on receiving login request computes Ti = Pij ⊕ h(y || Ni || SIDj),

h(PWi) = CIDi ⊕ h(T || y || Ni) , Bi = h(PWi) ⊕ h(x) and compares h(Bi ||

Ni || y) = received Qi. If equal Sj authenticates Ui and computes Mij1 = h(Bi

|| Ni || y || SIDj) and sends (Mij1 , Nj) to Ui , where Nj s a nonce generated

by Sj. If there is a mismatch, then request of Ui is rejected.

Step 2: Ui on receiving (Mij1, Nj) calculates h(Bi || Ni || y || SIDj) and

checks for equality with Mij1 in the acknowledgement from Sj. If so, Ui

authenticates Sj, and sends Mij2 = h(Bi || Nj || y || SIDj) to Sj. Sj calculates

h(Bi || Nj || y || SIDj) and checks with Mij2 to verify the identity of Ui.

Step 3: On successful mutual authentication a shared session key SK is

computed by Ui and Sj where SK = h(Bi || Ni || Nj || y || SIDj),

Password Change Phase: Ui can invoke this phase to change password at

his end. Ui keys in IDi
*, PWi

* after inserting SC into the system upon

which SC calculates Ti* = Vi ⊕ h(IDi
* || PWi

) and checks whether Hi=

h(Ti*) = stored Hi. If equal, Ui is allowed to update password. Ui submits

PWinew and SC computes Vi
new = Ti ⊕ h(IDi

* || PWi
new), Bi

new = Bi ⊕

h(PWi) ⊕ h(PWi
new).

90

Vi
new and Bi

new
 replaces Vi and Bi respectively stored in the SC.

 In this scheme password of user is transmitted directly to RC during

registration and a privileged insider such as an administrator who learns

the password of RC can launch an insider attack (Hsiang and Shih 2009).

If the user is using the same password to access another server and the

server is adopting a normal password authentication scheme, then the

insider can use this password to impersonate the user to access the other

server.

 A legitimate user who obtains values ‘y’ and ‘Bi’ from his own SC can

launch a masquerade attack by generating a forged login message.

 The secret number ‘y’ is common for all the users, which permits a

dishonest user to produce a login request that will be considered by the

server as valid. Changing ‘y’ value for each Ui is inefficient thus

contributing to poor reparability of Liao-Wang’s scheme (Hsiang and Shi

2009).

 The server does not check the freshness of nonce Ni, making the

scheme susceptible to replay attack (Chen and Yeh 2005).

 Unsuccessful mutual authentication owing to wrong computation at

server during mutual verification.

 The service providing server requires only ‘y’ and h(x) to verify the

authenticity of a user and this information is accessible to all registered

users. Hence a legitimate user with malicious intentions can launch a

server spoofing attack by impersonating a valid service providing server

and get the confidential information of other users (Chen and Yeh 2005).

91

Hsiang and Shih (2009) in their work produced a cost-effective, secure

and efficient remote user authentication scheme suitable for practical

application environment. The scheme identifies that the concept of sharing

the master secret of the server and the secret number of registration center

leads to server and registration center spoofing attack respectively. Hsiang

and shih attempts to resolve the issues by proposing a scheme in which the

master secret ‘x’ and two secret numbers ‘r’ and ‘y’are known only to RC

and a secret key is shared by RC with each service provider Sj.

Registration Phase: Step 1: Ui selects a random number b and sends IDi,

h(b ⊕ PWi) to RC.

Step 2: RC computes Vi = Ti ⊕ h(IDi || h(b ⊕ PWi)), Ai = h(h(b ⊕ PWi)

||r) ⊕ h(x ⊕ r), Bi = Ai ⊕ h(b ⊕ PWi) , Ti = h(IDi ||x), Ri = h(h(b ⊕

PWi) || r) and Hi = h(Ti).

Step 3: Server stores (Vi, Bi, Hi, Ri, h(.)) into SC and sends to Ui who

inserts b into the received SC.

Login Phase: Step 1: Ui types in his IDi and PWi after inserting the card

into the system. Ti = Vi ⊕ h(IDi || h(b ⊕ PWi)) is calculated by smart card

and checks whether h(Ti) = stored Hi .If there is a match Ui is considered

as a legitimate user and the login request is generated as in step 2.

Otherwise the request is rejected.

Step 2: SC generates a nonce Ni and calculates Ai = Bi ⊕ h(b ⊕ PWi) ,

CIDi = h(b ⊕ PWi) ⊕h(Ti || Ai || Ni), Pij = Ti ⊕h(Ai || Ni || SIDj), Qi = h(Bi

|| Ai || Ni), Di = Ri ⊕ SIDj ⊕ Ni , C0 = h(Ai || Ni+1 || SIDj).

Step 3: SC sends (CIDi, Pij, Qi, Di, C0, Ni) to Sj

92

Mutual Verification and Session Key Agreement Phase: For

authenticating Ui, Sj generates a nonce Njr and executes the following

steps.

Step 1: Sj calculates Mjr = h(SIDj|| y) ⊕ Njr , and sends (Mjr , SIDj , Di , C0 ,

Ni) to registration center.

Step 2: RC calculates Njr’ = Mjr ⊕ h(SIDj|| y), Ri‘ = Di ⊕ SIDj ⊕ Ni , Ai’ =

Ri’ ⊕ h(x ⊕ r). Calculates C0’ = h(Ai’ || Ni+1 || SIDj) and checks for

equality with the received C0. If there is no match, Ui is denied access. If

equal, RC calculates C1 = h(Njr’||h(SIDj||y) || Nrj), C2 = Ai ⊕ h(h(SIDj||y) ⊕

Njr’) and sends (C1, C2, Nrj) to Sj, where Nrj is a nonce value of RC.

Step 3: Sj calculates C1’ = h(Njr’|| h(SIDj||y)|| Nrj) and checks for a match

with C1 from RC. If equal, RC is authenticated by Sj who calculates Ai =

C2 ⊕ h(h(SIDj||y) ⊕ Nrj), Ti = Pij ⊕h(Ai || Ni || SIDj), h(b ⊕ PWi) = CIDi

⊕h(Ti || Ai || Ni) , Bi = Ai ⊕ h(b ⊕ PWi).

Step 4: Sj calculates h(Bi || Ai || Ni) and checks for equality with the Qi

received in the request for login from Ui. If equal, Ui is successfully

authenticated by Sj and proceeds to step 5. Otherwise request is rejected.

Step 5: Sj calculates Mij’ = h(Bi || Ni || Ai ||SIDj) which is sent to Ui along

with Nj, where Nj is a nonce of Sj.

Step 6: Ui on getting (Mij’, Nj) calculates h(Bi || Ni || Ai ||SIDj) and checks

for equality with the received Mij’. On equality, Ui authenticates Sj and

sends Mij’’ = h(Bi || Nj || Ai ||SIDj) to Sj. Otherwise the session is

terminated.

93

Step 7: Sj on receiving Mij’’ calculates h(Bi || Nj || Ai ||SIDj) and checks for

equality with received Mij’’. If there is a match Ui is authenticated.

On successful authentication of each other, both Ui and Sj calculates a

shared key as h(Bi || Ai || Ni || Nj || SIDj) which is used to secure future

sessions.

Password Change Phase: This phase does not involve RC or Sj and

proceeds as follows.

Step 1: Ui enters IDi, PWi after inserting SC into the system and submits a

request for password change.

Step 2: SC calculates Ti = Vi ⊕ h(IDi || h(b ⊕ PWi)) and checks whether

h(Ti) = stored Hi .On equality, Ui is permitted to enter new password

PWinew . Step 3: SC computes Vinew = Ti ⊕ h(IDi || h(b ⊕ PWinew)), Binew =

Bi ⊕ h(b ⊕ PWi) ⊕ h(b ⊕ PWinew). The values Vinew and Binew replace

the values Vi and Bi in the SC.

Following are salient observations on the scheme:

 Authentication Phase involves both RC and Service Provider

contributing to increased communication cost.

 Failure in the mutual authentication of RC and Service Provider owing

to wrong computation by service provider during mutual verification

and session key agreement phase (step 3).

 Susceptible to Masquerade attack and server spoofing attack by a

legitimate user.

Lee et al. (2011) proposed a scheme to address the weaknesses in Hsiang

and Shih scheme (2009). The scheme includes a onetime registration

94

phase, login phase, verification phase and password change phase which

permits the user to change password. The secrets ‘x’ and ‘y’ used to

verify the user is known only to RC. The values h(x||y) and h(y) are

calculated and shared by RC with each server Sj. Unlike Hsiang et al.

scheme, this scheme does not require the involvement of RC during

verification phase.

Registration Phase: Step 1: Ui submits IDi, h(b ⊕ PWi) , to RC where b is

a random number.

Step 2: RC calculates Bi = h(h(b ⊕ PWi) || h(x||y)) , Ti = h(IDi ||x), Vi = Ti

⊕ h(IDi || h(b ⊕ PWi)), and Hi = h(Ti).

Step 3: SC containing (Vi, Bi, Hi, h(.), h(y)) is sent to Ui by RC. Ui stores b

into his SC which contains (Vi, Bi, Hi, h(.), h(y), b).

Login Phase: Step 1: After inserting SC into the system, Ui keys in his IDi

and PWi. SC calculates Ti = Vi ⊕ h(IDi || h(b ⊕ PWi)) and checks

whether Hi* = h(Ti) is equal to the Hi value in SC. If they are not equal,

the login request is rejected. Upon equality Ui is considered a legitimate

user and the request for login is generated as in step 2.

Step 2: SC calculates Ai = h(Ti || h(y) || Ni) , CIDi = h(b ⊕ PWi) ⊕h(Ti ||

Ai || Ni), Pij = Ti ⊕h(h(y) || Ni || SIDj), Qi = h(Bi || Ai || Ni), where Ni is a

nonce generated by SC . SC sends (CIDi, Pij, Qi, Ni) to Sj.

Verification Phase: On receiving Sj authenticates Ui as follows.

Step 1: Sj computes Ti = Pij ⊕h(h(y) || Ni || SIDj), Ai = h(Ti || h(y) || Ni) ,

 h(b ⊕ PWi) = CIDi ⊕h(Ti || Ai || Ni), Bi = h(h(b ⊕ PWi) || h(x||y)) .

95

Step 2: Sj calculates h(Bi || Ai || Ni) and checks for equality with the

received Qi. Request for login is rejected if there is a mismatch. Otherwise

Sj calculates Mij’= h(Bi || Ni || Ai || SIDj) and sends Mij’ along with a nonce

Nj generated by Sj to Ui.

 Step 3: On receiving (Mij’, Nj), Ui computes h(Bi || Ni || Ai || SIDj) and

checks for equality with the received value Mij’. Ui fails to authenticate Sj

if there is a mismatch. Otherwise Ui sends Mij’’ = h(Bi || Nj || Ai || SIDj to

Sj.

Step 4: Sj on receiving the message Mij’’ calculates h(Bi || Ni || Ai || SIDj)

and ckecks for equality with the Mij’’. On equality, Ui is successfully

authenticated by Sj and the session key SK =h(Bi || Ni || Nj || Ai || SIDj) is

simultaneously generated by both Ui and Sj.

Password Change Phase: This phase requires involvement of RC and

proceeds as explained:

Step 1: Ui keys in his IDi, PWi after inserting SC into the system and

submits a request for changing password.

Step 2: SC calculates Ti = Vi ⊕ h(IDi || h(b ⊕ PWi)) and checks whether

Hi* = h(Ti) is equal to the Hi value in SC. If equal Ui chooses a PWnew and

a new random number bnew. Ui sends IDi and h(bnew ⊕ PWnew) to

registration center in a secure manner.

Step 3: RC calculates Bnew = h(h(bnew ⊕ PWnew)|| h(x||y)) .The values Vi

and Bi in the SC are replaced with Vinew and Binew.

Relevant observations on the scheme are as follows:

96

 Failure in mutual authentication owing to wrong calculation by the

service provider.

 The password change phase requires the involvement of RC.

 Improper authentication due to acceptance of fabricated authentication

messages.

Security Analysis of Lee et al. Scheme (2011): This section analyzes the

resistance of Lee at al.’s scheme (2011) to various attacks and highlights

the associated weaknesses. In this protocol, the messages in the login

phase as well as verification phase are transmitted via an insecure channel

making the scheme susceptible to various attacks.

Failure in Mutual authentication: During mutual authentication, in step 3,

Ui calculates Mij’’ = h(Bi || Nj || Ai || SIDj) which is sent to Sj. Sj on

receiving message Mij’’ calculates h(Bi || Ni || Ai || SIDj) and compares

with the Mij’’. Ui is using the nonce Nj while computing Mij’’ whereas Sj is

using the nonce Ni to computing Mij’’. Obviously the values will not match

and the authentication will fail.

Denial-of-Service Attack: This scheme is susceptible to DoS attack owing

to partial modification of authentication message by the attacker. In the

step 2 of verification phase, Sj sends (Mij, Nj) to Ui. However, the nonce Nj

is not used in the message Mij and hence even if its value is modified, Ui

will not reject the message.

To illustrate the scenario, assume that an adversary M intercepts the

message (Mij, Nj) send by Sj to Ui. Now the adversary sends (Mij, Nm) to Ui

where Nm is adversary’s nonce. Ui calculates h(Bi || Ni || Ai || SIDj) and

checks with the received value of Mij. Since the change of nonce value

97

from Nj to Nm does not modify the message, the computed value of Mij

will be correct and Ui authenticates Sj even though the message (Mij, Nm)

is a fabricated message. To achieve mutual authentication Ui computes

Mij’’ = h(Bi || Nj || Ai || SIDj) and sends to Sj. In the correct scenario Sj

should compute Mij’’ = h(Bi || Nj || Ai || SIDj) whereas Sj calculates Mij’’ =

h(Bi || Ni || Ai || SIDj), which will result in an authentication failure even in

the case of a honest user since Ni ≠ Nj .

The fact that the protocol does not check the freshness of nonce Nj,

permits an attacker to change the message partially. In this scheme a valid

user Ui is not able to differentiate between forged and valid message

which ultimately results in a denial-of-service to a legitimate user.

Forgery Attack: Lee et al. (2011) claims that a valid login message cannot

be created by a malicious person without knowing Ai, Bi and PWi. Also a

legitimate user who is malicious in nature cannot impersonate another user

since he cannot get Bi from the SC and intercepted login message (CIDi,

Pij, Qi, Ni) without knowledge of h(x||y). Also a valid user who does not

know the master secret x cannot compute Ti and Ai required to generate a

correct login request message even if he has extracted the parameters (Vi,

Bi, Hi, h(.), h(y), b) from his SC. The protocol was claimed by authors to be

secure against masquerade attack. However, the security analysis of the

scheme reveals that a valid malicious user can launch a forgery attack (Li,

2013) by using his own SC information and an intercepted login message

(CIDi, Pij, Qi, Ni) by performing the following steps.

S1: Assume that A is a legitimate registered user and has the information

(Vi, Bi, Hi, h(.), h(y), b) stored in his/her SC.

98

S2: When a different user Ui, interacts with server Sj, adversary A can

intercept (CIDi, Pij, Qi, Ni) and calculate Ti = Pij ⊕h(h(y) || Ni || SIDj), using

the h(y) values in his own SC and the values in the intercepted message.

To send a login request message resembling a valid message to a service

providing server Sk, following steps are performed by adversary A.

S3: A calculates Ai* = h(Ti || h(y) || NA) , CIDi* = h(bA ⊕ PWA) ⊕h(Ti ||

Ai* || NA), Pik* = Ti ⊕h(h(y) || NA || SIDk), Qi *= h(BA || Ai *|| NA), where

NA is a nonce. The adversary A then sends (CIDi*, Pik*, Qi *, NA), to server

Sk.

S4: On receiving message (CIDi*, Pik*, Qi *, NA), calculates Ti = Pik*

⊕h(h(y) || NA || SIDk), Ai* = h(Ti || h(y) || NA), h(b ⊕ PWi)* = CIDi*

⊕h(Ti || Ai* || NA) = h(bA ⊕ PWA), and Bi* = h(h(b ⊕ PWi)* || h(x||y)) =

h(h(bA ⊕ PWA) || h(x||y)) = BA. Hence h(Bi* || Ai *|| NA) = h(BA || Ai *||

NA) = Qi * and the server Sk authenticates A.

S5: Sk generate a nonce Nk and calculates Mik’ = h(Bi* || NA || Ai *|| SIDk)

and sends (Mik’, Nk) to A.

S6: After receiving the message, A computes h(BA || || NA || Ai *|| SIDk).

Obviously h(BA || || NA || Ai *|| SIDk) = h(Bi* || NA || Ai *|| SIDk) = Mik’ and

A successfully authenticates Sk. Then A computes Mik’’ = h(BA || || Nk || Ai

*|| SIDk) and sends to Sk.

99

S7: Sk on receiving Mik’’ computes h(Bi* || Nk || Ai *|| SIDk). Obviously

h(Bi* || Nk || Ai *|| SIDk) = h(BA || Nk || Ai *|| SIDk) = Mik’ and Sk

successfully authenticates A. then the adversary A and Sk share a common

session key SK = h(BA || NA || Nk || Ai *|| SIDk) = h(Bi* || NA || Nk || Ai *||

SIDk)

The above analysis demonstrates that a forgery attack can be launched by

an attacker using his/her own SC information (BA, h(), h(y)) and by

computing Ti from a intercepted login request message.

Inefficient Password Change Phase: In Lee et al.’s (2011) scheme, the

information Bi = h(h(b ⊕ PWi) || h(x||y)) stored in the SC of Ui is

calculated by RC using its master secret x, secret key y and password PWi

of Ui. Hence, whenever Ui needs to update his/her password there should

be a communication with RC and secure channel should be established to

modify password which increases the communication overhead.

The scheme proposed Li et al. (2013) for multi-server environments

causes user’s identity to change dynamically in every login request. The

various phases of the scheme proceeds as follows:

Registration Phase: Step 1: Ui selects a number b, which is random in

nature and calculates Ai = h(b ⊕ PWi) . Ui sends IDi, Ai to RC.

Step 2: RC calculates Bi = h(IDi ||x), Ci = h(IDi || h(y) || Ai), Di = h(Bi ||

h(x||y)) , Ei = Bi ⊕ h(x||y).

Step 3: (Ci, Di, Ei, h(.), h(y)) are stored into SC by registration center and is

send to Ui who stores b into his SC which contains (Ci, Di, Ei, b, h

100

(.), h(y)).

Login Phase: Step 1: Ui types in his IDi and PWi after inserting SC into the

system. SC calculates Ai = h(b ⊕ PWi), Ci *= h(IDi || h(y) || Ai) and

checks for equality with Ci stored in SC. If there is a mismatch, then login

request is rejected. Otherwise Ui is considered as a legitimate user and the

login request is generated as in step 2.

Step 2: SC calculates Pij = Ei ⊕ h(h(SIDj || h(y)) || Ni) , CIDi = Ai ⊕ h(Di

|| SIDj || Ni) , M1 = h(Pij || CIDi || Di || Ni), M2 = h(SIDj || h(y)) ⊕ Ni ,

where Ni is the nonce of SC . Ui submits (Pij, CIDi, M1, M2) to Sj as a login

request.

Verification Phase: During this phase Sj and Ui mutually authenticates

each other and generates a shared session key be performing the following

steps.

Step 1: Sj computes Ni = h(SIDj || h(y)) ⊕ M2 , Ei = Pij ⊕ h(h(SIDj || h(y))

|| Ni) , Bi = Ei ⊕ h(x||y) , Di = h(Bi || h(x||y)) and Ai = CIDi ⊕ h(Di || SIDj

|| Ni).

Step 2: Sj calculates h(Pij || CIDi || Di || Ni) and compares with the received

M1 . Request is rejected if there is a mismatch. Otherwise Sj successfully

authenticates Ui and generates a nonce Nj to compute M3 = h(Di || Ai || Nj ||

SIDj), M4 = Ai ⊕ Ni ⊕Nj . Sj sends (M3 , M4) to Ui .

Step 3: Ui on receiving (M3, M4) Ui computes Nj = Ai ⊕ Ni ⊕ M4 , h(Di

|| Ai || Nj || SIDj) and compares with the received M3. If there is no match,

Ui fails to authenticate Sj and terminates the session. Otherwise Ui

computes M5 = h(Di || Ai || Ni || SIDj) and sends (M5) to server.

101

 Step 4: Sj on receiving (M5) computes h(Di || Ai || Ni || SIDj) and checks

for equality with M5 sent by Ui . On equality, Sj successfully authenticates

Ui.

On successful mutual authentication, the session key, SK = h(Di || Ai || Ni

|| Nj || SIDj) is computed simultaneously by Sj and Ui.

Password Change Phase: This phase involves only Ui and SC and

proceeds as follows.

Step 1: Ui types in his IDi and PWi after inserting SC into the system and

submits request to change password.

Step 2: SC calculates Ai = h(b ⊕ PWi), Ci *= h(IDi || h(y) || Ai) and checks

whether Ci* = Ci stored in SC. A mismatch results in rejection of request.

Otherwise Ui is considered as a legitimate user and Ui chooses a PWi
new

and bnew.

Step 3: SC computes Ai
new = h(bnew ⊕ PWi

new) and Ci
new = h(IDi || h(y) ||

Ai
new) .The value in the SC is replaced with Cinew .

Security Analysis of Li et al. Scheme: This section analyses the security of

the above discussed scheme and weaknesses are explained.

Denial-of-Service Attack: Though Li et al. Scheme uses nonce values, the

freshness of nonce values are not checked which can result in a DoS

attack. Assume that an attacker A, intercepts a (Pij, CIDi, M1, M2) for login

and resends the message at a later point in time. The server without

verifying the freshness of the nonce Ni calculates, Ni = h(SIDj || h(y)) ⊕

M2 , Ei = Pij ⊕ h(h(SIDj || h(y)) || Ni) , Bi = Ei ⊕ h(x||y) , Di = h(Bi ||

h(x||y)), Ai = CIDi ⊕ h(Di || SIDj || Ni). Sj calculates h(Pij || CIDi || Di || Ni)

and compares with M1. If equal Sj accepts the login request and computes

102

M3 = h(Di || Ai || Nj || SIDj), M4 = Ai ⊕ Ni ⊕ Nj where Nj is a nonce

generated by Sj. Sj sends (M3 , M4) to A . Here though A will not be able

to compute Nj he will be successful in blocking the computing resources

of the server and many such invalid login request messages can ultimately

lead to DoS attack.

A DoS attack can also be carried out by a valid user B having access to

h(y) and has malicious intentions. Then B can modify a login request

message (Pij, CIDi, M1, M2) send by Ui, to Sj, where M2 is calculated using

a nonce NB whereas Pij, M1 are calculated using Ni. The server computes

the nonce NB which is used to calculate Ei and M1. The computed value

will not match the received value and server will reject the login request

from the honest user Ui denying access to resources he is authorized to

access.

Smart Card lost Attack: Stealing of SC of a valid user Ui by a malicious

valid user A will help A to launch this attack. A in this scenario will be

knowing h(y) and from an intercepted login request message (Pij, CIDi, M1,

M2) send by Ui to Sj , he/she can compute Ni = h(SIDj || h(y)) ⊕ M2 , Ei =

Pij ⊕ h(h(SIDj || h(y)) || Ni) and Ai = CIDi ⊕ h(Di || SIDj || Ni) where Di is

obtained from SC of Ui . Then A can try to retrieve the password of Ui by

an offline guessing attack. The adversary A guesses a password PWiguess

and calculates Aiguess = h(b ⊕ PWiguess) and compares with Ai until the

correct password if obtained.

Masquerade Server Attack (Madhusudhan and Adireddi 2014): In Li et

al.’s scheme the value h(x || y) is shared among all servers which is used

by servers to verify the user. Assume that malicious insider A, of a

registered server has the knowledge of h(x||y). Then if A intercepts a valid

103

message (Pik, CIDi, M1, M2) send by Ui for login to a registered server Sk,

A can compute Ni = h(SIDk || h(y)) ⊕ M2 , Ei = Pij ⊕ h(h(SIDk || h(y)) ||

Ni) , Bi = Ei ⊕ h(x||y) , Di = h(Bi || h(x||y)), Ai = CIDi ⊕ h(Di || SIDk ||

Ni). A can generate a nonce NA and compute M3 = h(Di || Ai || NA || SIDk),

M4 = Ai ⊕ Ni ⊕ NA. A sends (M3, M4) to Ui. Ui computes NA = Ai ⊕ Ni

⊕ M4 , h(Di || Ai || NA || SIDk) and compares with the received M3. Then

Ui computes the mutual authentication message M5 = h(Di || Ai || Ni ||

SIDk) and sends (M5) to the adversary A. A verifies M5 and mutual

authentication is done. Then the adversary A and Ui calculates SK = h(Di ||

Ai || Ni || NA || SIDk), which serves as the session key.

Eavesdropping Attack: Presume that attacker A has understood the SC

details of a registered user Ui. Now if A intercepts the message (Pij, CIDi,

M1, M2) from Ui to the server Sj, then A can compute Ni = h(SIDj || h(y))

⊕ M2 , Ai = CIDi ⊕ h(Di || SIDj || Ni) where Di is obtained from the SC of

Ui. Thereafter if A intercepts the message (M3, M4) from Sj then A can

compute Nj = Ai ⊕ Ni ⊕ M4 and the session key SK = h(Di || Ai || Ni || Nj

|| SIDj) . The calculated session key can be used by A to eavesdrop on the

future communications between Ui and Sj.

In a distributed cloud environment, millions of clients share the same

computing infrastructure at a large scale. As a consequence, cloud

environment demands stronger authentication mechanisms compared to

traditional client-server systems. The following section discusses the most

recent and relevant works published in the area of authentication in cloud.

104

2.4.3 Authentication Schemes for Cloud

 Shen et al. (2010) proposed a theoretical prototype system to address the

security concern in cloud computing environment. In the discussed

system, cloud computing and trusted platform support services (TSS) are

combined to provide secure cloud computing environment. TSS has its

basis on trusted platform module and requires a separate device at the user

side. Authors claimed that the proposed system design can offer better

authentication, access control based on roles assigned and data protection

in cloud. However, Shen et al.’s scheme does not address the

authentication for cloud computing users.

Celesti et al. (2010) in their work discusses Identity Management and

authentication issues in a cloud federation scenario. Authors analyse the

issue of identity management in an inter-cloud environment and proposed

a reference architecture. The work which focuses on heterogeneous and

federated clouds distinguishes clouds as home clouds and foreign clouds.

Home cloud is described as a cloud provider, whose capability of

virtualization infrastructure has reached the maximum capacity,

preventing further instantiation, of virtual machine instances and hence

forwards its requests for federation to foreign clouds who shares part of its

computing capabilities for free or by charge. The work does not discuss

authentication for cloud computing users.

Kang and Zhang (2010) in their work discusses an authentication scheme

which uses the concept of bilinear pairing to authenticate a user who wants

to share the data stored by another user in the cloud, when both the users

are in the same domain. The owner will validate the request for data and

will send a token with a signature to the requestor which is submitted to

105

the cloud end, who verifies the same and permits or denies access to the

user.

Chow et al. (2010) proposed an authentication model for mobile users that

takes into consideration the input constraints, power limitations and

practical computation capability of handsets. The proposed approach for

authentication is based on a framework that supports decisions regarding

authentication. This flexible framework named “Trustcube” also uses an

approach based on “user behavior” referred to as “implicit authentication”

where in user's past behavioral data is used to authenticate to access a

service. Chow et al., describes, an authentication platform where policies

and open standards are used to facilitate the integration of different

authentication methods.

Pertinant observations on the scheme are as follows:

 The authentication factor is “What the user does”.

 Proposed framework for authentication is based on the past behavioral

data of the users’ viz. the history of the web sites visited by the user.

 Users’ activities are tracked and stored for future reference which

questions the privacy of the user.

Lee et al. (2010) proposed a Two-Factor authentication framework that

prevents unauthorized access to cloud services. The proposed

authentication is carried out in two steps, In the first step, the PKI

authentication is used and only registered users with valid certificates will

be permitted by the cloud authentication server to proceed to the next step.

106

The second step uses OOB (Out-of-Band) authentication in which a one-

time random code is sent via SMS to the user’s mobile phone, by the

authentication server. The code is verified by the web server before

granting access to the user.

Salient observations on the scheme are as follows:

 Susceptible to attacks on SMS based OTP’s, the one-time random code

being sent via SMS to the user’s phone. Mulliner et al. (2013) explains in

his paper that SMS-based one-time passwords (OTP) are prone to threats

such as SIM Swap attack, wireless interception due to security

vulnerabilities in GSM network. Mulliner also mentions in his work that

mobile phone malware, particularly Trojans designed specifically for

intercepting messages containing SMS-based OTP’s have become a

serious threat.

 A communication with the Certificate Authority is required to verify

the certificate of the user.

 Implementation of Public Key Infrastructure (PKI) increases the

complexity of the authentication systems.

 Password is submitted in plain text form to the registration server

during the registration process, which can be captured by an attacker if the

communication channel is not secure. Also the password is revelaed to the

server which makes the scheme susceptible to insider attack.

 The server stores the password of user and hence the scheme is prone to

stolen verifier problems.

 Provides no support for changing user’s password.

107

 Authentication of the server is not done by the user which makes the

scheme prone to man-in-the-middle attack. A Man-in-the-Middle (MITM)

attack is launched by an adversary who sniffs the messages exchanged

between a client and server, modifies message and inserts messages

pretending to be an honest user or server (Chen and Yeh 2005)

 Registration is done directly at the service providing server. Thus to

access multiple services, user needs to undergo multiple registration

processes and maintain multiple accounts.

Zhu et al. (2011), proposed a novel biometric-based authentication scheme

in which voice template is used for user authentication. The authentication

process is carried out in two phases viz. the enrollment phase and the

matching phase. The discussed approach uses homomorphic encryption to

encrypt the code book and voice print biometrics. The authentication

system computes distortion measurement without disclosing user’s data by

comparing user’s encrypted biometric data with the encrypted code book.

Noteworthy observations on the scheme are as follows:

 The size of code book database increases with the number of users and

hence the computational overhead increases as user’s increase.

 In Voice recognition systems it is difficult to control sensor and channel

variances that significantly impact capabilities. Also voice of different

individuals may not be sufficiently distinctive for identification over large

data bases (PBworks, 2007).

108

Liu et al. (2012), proposed a cloud mutual authentication scheme to solve

the authentication problem between the user and the cloud server. This

scheme applies Trusted Computing Technology and smart card

authentication to cloud computing service platform. The server uses TPM

which is in hardware architecture, to generate Public and Private Key

instances and this key will be specific to hardware.

Most relevant observations on the scheme are as follows:

 ID is transmitted in the plain text form to the cloud server during

registration and this can be captured by the attacker.

 During login phase, only ID is verified by the smart card. Hence even

a wrongly entered password will cause a login message to be send to the

server.

 Time stamps are used to resist replay attack. This can result in time

concurrency issues (Gong 1992, Chang 2006).

Dinesh and Agrawal (2012), proposed a multi-level password based

authentication scheme. Authentication is done at the organization, user and

team levels. Authors propose the generation of passwords by

concatenating passwords at different levels viz. password within the

organization, password within the team and password for the particular

user. At the user level, the scheme verifies the authorization of the user to

access a cloud resource. Security of the scheme is solely dependent on

password of the user which can be hacked by social engineering attacks.

109

Zwattendorfer and Tauber (2012) in their work suggests the use of

national electronic IDs (eIDs) for user authentication in cloud. The work

discusses the requirement for providing Single Sign-on functionality in the

cloud environment. Authors point out that user’s have to undergo multiple

authentication processes to access the services of different service

providers, if service provider appications are bundled for example, through

a web portal or a one-stop shop. Single Sign-on (SSO) provides users with

the ability to authenticate once and access several secured resources in a

distributed network environment.

Significant observations on the scheme are as follows:

 E-Government or e-health services have to achieve higher security and

privacy requirements as they need to comply with national law or data

protection requirements.

 Cloud applications dealing with sensitive areas such as e-Government

and e-health sector require more reliable and secure authentication

mechanism than the conventional username/password authentication.

 For achieving higher security requirements for identification and

authentication in cloud, the work extends the existing eID framework

STORK (Security Across Borders Linked), which is the identification and

authentication framework across Europe.

 The deployment of extended STORK framework onto public cloud

platforms may render the personal data such as the unqiue identifier of the

user, fully visible to the cloud service provider.

110

Banyal et al. (2013), proposed a multi-factor authentication framework for

cloud. The authentication mechanism combines traditional authentication

based on ID and password with an approach that uses splitting secret value

and Captcha values in encrypted form for user authentication. According

to the risk involved and security required, authors categorize the cloud

services and resources into low, medium and high. Depending on the type

of the resource accessed, user needs to undergo one, two or three levels of

authentication by sending an encrypted captcha, a one-time key and the

IMEI number.

Salient observations on the scheme are as follows:

 A secret key is shared between each user and server and this value is

stored by the server.

 ID and Password are sent in the clear text form to the server during

registration phase.

 Password information is stored by the server and is used to verify the

user during authentication phase. The scheme is susceptible to stolen

verifier attack.

 One-Time key is send via SMS which makes the scheme prone to

attacks on SMS-based one-time passwords (Milliner et al 2013). Abraham

(2009) in his article on two-factor authentication in cloud, has mentioned

that availability of SMS based OTP’s is dependent on the network

coverage of the user’s mobile phone and user’s will also incur SMS costs.

 Password change requires the involvement of the server.

111

Saurabh et al. (2013), proposed an authentication scheme for

authenticating a mobile device to a cloud service. The proposed scheme

viz. Message Digest Authentication (MDA) uses ID, Password, encrypted

hashed messages (message digests) for authentication and can be used by

mobile devices not having IMSI chips. Since MDA is used, a loss of the

mobile device will not compromise authentication information of user.

This scheme requires the server to maintain a verification table and the

scheme does not provide the user with the option to change password.

Since the current research, focuses on Two-factor authentication schemes

using hash funtions, this section includes a detailed discussion of a few of

the most recent works in this area:

Hao et al. Scheme (2011): Hao et al. proposed a time-bound ticket based

mutual authentication using smart cards. Here, users are registered with

cloud servers who issues digital tickets to the client. Tickets are linked to

the smart card of the client. A ticket is used only once for verifying

integrity of data after which the ticket becomes obsolete. The

authentication scheme includes three phases which can be explained as

follows:

Registration Phase: During this phase user Ui registers with the server S.

Step 1: Ui selects identity IDi, password PWi and a random number b. Ui

computes IPBi = h(IDi || h(PWi ⊕ b)) and sends {IDi , IPBi ,t} where t is

the number of tickets Ui needs and Ui pays to S for the tickets issued.

Step 2: Server S, on receiving the message generates the tickets for Ui

where Ti
 (j)

 denotes the jth ticket of Ui where j = 1, 2…. t. The ticket ID

112

and valid period of Ti
 (j) is denoted by TIDi

 (j) and VPi
 (j) respectively. Thus

S generates {(TIDi
(j)

and VPi
(j)

, j = 1,2, ….t)} and computes the following:

Wi = IPBi ⊕ h(IDi , K1) , α i
 (j) = H K2

 (IDi || TIDi
 (j) || VPi

 (j)) ,

β i
 (j) = α i

 (j) ⊕ IPBi

where K1 and K2 are a long term secret keys of S.

Ti
 (j) = (Ti

 (j)1
, Ti

 (j)2
), of which Ti

 (j)1
 = (TIDi

(j)
, VPi

(j)
) , Ti

 (j)2
= β i

 (j).

S computes Zi
 = H K2

 (IDi) ⊕ IPBi, which is used for changing user

password.

Step 3: S includes {IDi, t, Wi, Zi, Ti
 (j), j = 1, 2…. t.) into a SC and issues to

Ui

Step 4: Ui stores b into the smart card.

Verification Phase: Ui can use the t tickets in the SC to perform data

verification for a maximum of t times. Assuming the Ui is using the mth

ticket, the verification proceeds as follows:

Step 1: Ui keys in IDi and PWi after inserting SC into the system.

Step 2: SC generates a nonce ru as per system time and calculates IPBi =

h(IDi || h(PWi ⊕ b)) , Hi = Wi ⊕ IPBi , C1 = ru ⊕ Hi, C2 = h(ru) ⊕ Ti
 (m)

2

⊕ IPBi

Step 3: SC sends {IDi, Ti
 (m)

2, C1, C2} to S.

Mutual Authentication Phase: S performs the following steps to verify Ui:

Step 1: S verifies IDi, and rejects the request if IDi is invalid.

113

Step 2: S verifies that ticket with ID, TIDi
(m)

 is already used by comparing

with the used tickets published in the bulletin board. If so, the request is

rejected and session is terminated.

Step 3: S checks whether the period VPi
(m)

 is within the current date. If

not, the ticket is rejected.

Step 4: S then computes D0 = H(IDi , K1), D1 = C1 ⊕ D0 and D2 =

H(D1) ⊕ C2 .

Step 5: S calculates H K2
 (IDi || TIDi

 (m)
 || VPi

 (m)
) and compares with D2. If

there is a mismatch, request for login is rejected. Otherwise S

authenticates Ui successfully.

Step 6: S calculates C3 = D0 ⊕ rs, C4 = h(ru , rs) , KS = h(D0 , ru || rs) where

rs is a nonce of S and KS is the session key for subsequent sessions. S

sends, (C3, C4) to Ui.

Step 7: SC computes D3 = C3 ⊕ Hi = H(IDi , K1) and compares h(ru , D3)

with C4. If they are not equal, Ui fails to authenticate S. Otherwise after

successful authentication, SC computes KC = h(Hi , ru || rs) and uses KC as

the session key to communicate with S as KC = KS. The ticket Ti (m)
 is

removed by Ui from SC after the Mth verification is over, and TIDi
 (m) is

published by S on its bulletin board.

Password Change Phase: This phase is used by Ui to change the stored

password.

Step 1: Ui keys in his IDi and PWi after inserting SC into the system.

114

Step 2: SC generates a nonce ru as per system time and computes IPBi =

h(IDi || h(PWi ⊕ b)) , C1 = ru ⊕ Wi ⊕ IPBi, C2 = h(ru) ⊕ Zi
 ⊕ IPBi

Step 3: SC sends {update, IDi, C1, C2} to S wherein update indicates a

password change request.

Step 4: S checks validity of IDi, and rejects the request if IDi is invalid

computes D0 = H(IDi , K1), D1 = C1 ⊕ D0 and D2 = h(D1) ⊕ C2 .

Step 5: S calculates D1 = C1 ⊕ H(IDi , K1), D2= h(D1) ⊕ C2 and checks

whether D2=H K2
 (IDi). If there is a mismatch, S rejects the request.

Otherwise S authenticates Ui successfully and request for change is

accepted.

Step 6: S computes C3 = H(IDi , K1) ⊕ rs, C4 = h(ru , rs) , where rs is a

random nonce generated by S. S sends, (C3 , C4) to Ui.

Step 7: SC computes D3 = C3 ⊕ Wi ⊕ IPBi and compares C4 with h(ru ,

D3). If equal, SC authenticates S and prompts Ui to enter new password.

Step 8: Ui enters new password. PWi
new. SC computes IPBi

new = h(IDi ||

h(PWi
new ⊕ b)), Wi

 new= Wi ⊕ IPBi⊕ IPBi
new , Zi

 new= Zi ⊕ IPBi⊕

IPBi
new. and replaces Wi

 with Wi
 new and Zi

 with Zi
new in the SC. The SC

also updates Ti
 (j)2

with

Ti
 (j)2⊕ IPBi⊕ IPBi

new. for all remaining tickets in

the SC.

Most relevant observations on the scheme are as follows:

 Absence of early detection of wrong password before generation of

login request renders the scheme susceptible to denial-of-service attack.

115

 Tickets are required to access services and on expiry of the issued

tickets, client needs to purchase new tickets from the server. Thus a new

smart card needs to be issued or smart card contents need to be modified

every time new tickets are issued.

 Password update phase requires the involvement of the server, since

user authentication is done by the server before allowing the user to

change his/her password.

 Registration is done by the service providing server. Hence to access

multiple cloud services, user should register individually for each service

and should maintain a smart card issued by that service provider. Thus

multiple authentication tokens should be carried to access multiple

services.

Choudhury et al. (2011) proposed a user authentication framework for

cloud. Authors discussed a novel idea that provides identity management

with authentication using smart card. The scheme which uses light-weight

XOR and hash operations, applies a two-step verification to authenticate a

user. Verifcation is done using password, smart card and out-of-band

authentication in which a one-time key is send as SMS via HTTP/SMS

gateway.

Registration Phase: During this phase, user Ui registers with server S.

After successful registration, S issues Ui with a smart card.

Step 1: Ui selects ID, PW and a random number x. Ui calculates h(PW ⊕

x) and sends {ID , h(PW ⊕ x) ,h(x)} to S.

116

 Step 2: S checks whether the ID is available. If not Ui is prompted to

repeat the process from step 1. Otherwise, S calculates J = h(ID ⊕ h(PW

⊕ x)), I = h(ID||y), B = g h(I||J) + h(x) + h (y) mod p, where ‘y’ is a nonce. S

stores {I, J, B, p, g, h(.)} into the SC and issues to Ui who stores x into the

SC.

Step 3: Server S enters user ID in a table stored by the server.

Login Phase: In this phase user Ui sends a login request to the cloud server

S.

Step 1: Ui keys in his ID, PW after inserting SC into the system.

 Step 2: Client calculates J1 = h(ID ⊕ h(PW ⊕ x)) and compares with the

J in the SC. If there is a mismatch the session is terminated. Otherwise Ui

will compute C = h(I||J) and sends the login request message M1 = {B, C}

to S.

Step 3: S generates a one-time key K and compute B” = g C+h(y) mod p,

h(B”), L = h(B” || k) and h(L). S sends M2 = {h(B”), h(L)} to Ui using a

public channel and the one-time key K via SMS to the user’s phone.

Step 4: Ui on receiving M2 calculates B’ = Bg -h(x) mod p, h(B’) and L* =

h(B’|| k) and h(L*). Ui compares h(B’) with h(B’’) and h(L*) with h(L). If

they are not equal Ui aborts the session. Otherwise computes R = h(T||B’)

using the current time stamp T and sends M3 = {I, h(R), T} to S over a

public channel.

Authentication Phase: This phase is carried out by the cloud server S to

verify the authenticity before allowing A to login.

117

Step 1: S checks whether T’ – T ≤ ▲T is satisfied or not. If not, then the

session is terminated. Otherwise S proceeds to compute I’ = h(ID||y) and

R* = h(T||B’’) and checks whether h(R*) = h(R) and I’=I. If both the

conditions are satisfied, then S proceeds to the step 2. Otherwise

terminates the session.

Step 2: S generates the session key Sk = (R ⊕ L) and sends M4 = h(Sk) via

a public channel to Ui.

 Step 3: On receiving M4, Ui verifies Sk by computing (R ⊕ L).

Password Change Phase: This phase permits Ui to change the password

without the intervention of S.

Step 1: Ui enters ID, PW and computes J* = h(ID ⊕ h(PW ⊕ x)) . J* is

compared with the J stored in the SC. If they are not equal the session is

terminated. Otherwise Ui enters the new password, PW* and generate x*.

Step 2: The new value of J is computed as J’ = h(ID ⊕ h(PW* ⊕ x*)) and

J’ replaces J in the SC.

Significant observations on the scheme are as follows:

 Flaw in password change phase:

The smart card contains the values {I, J, B, p, g, h(.)} where J = h(ID ⊕

h(PW ⊕ x)), I = h(ID||y), B = g h(I||J) + h(x) + h(y) mod p . Here J is calculated

using user’s password and the value of B contains J.

During password change phase, user Ui enters ID, PW. SC computes

J* = h(ID ⊕ h(PW ⊕ x)) and checks whether J* = J stored in the SC. If

they are not equal the session is terminated. Otherwise Ui enters the new

118

password, PWnew and generates xnew. The new value of J is computed as

Jnew = h(ID ⊕ h(PW* ⊕ x*)) and Jnew replaces J in the SC.

While modifiying the password during the password change phase, only

the value of J is re-calculated using the new password and x values. The

value of B which contains J remains the same. B should be re-calculated

using the new value of J and x, which is not done. This will lead to login

failures once the user changes the password.

After modifiying the password, user calculates C = h(I||J) and sends login

request <B, C> to the cloud server. Server computes B” = g C+h(y) mod p =

 g h(I||J)+h(y) mod p and the value h(B”) is send by the server to user . Ui

calculates B’= Bg -h(x) mod p = g h(I||J
old

) + h(x
old

) + h(y) g -h(x) mod p. Since the B

value was not re-calculated using the changed J and x values, h(B’) will

not match with h(B”) and the user will not be able to login.

 One-time key is send via SMS to the user’s mobile phone. Mulliner et

al. (2013) explains in his paper that SMS-based one-time passwords (OTP)

are prone to threats such as SIM Swap attack, wireless interception due to

security vulnerabilities in GSM network. Mulliner also mentions in his

work that mobile phone malware, particularly Trojans designed

specifically for intercepting messages containing SMS-based OTP’s have

become a serious threat.

 To resist replay attack time stamps are used. However, the time-stamp

based approach faces some draw backs such as variation in time zone,

delivery latency etc. (Chang et al. 2006) and clocks can become

unsynchronized due to faults in the synchronization mechanism (Gong

1992).

119

 In this scheme, registration is done by the service providing server and

hence to access services of different service providing servers, a user

needs to go undergo multiple registration processes and carry multiple

authentication tokens.

Jaidhar (2013) in his work mentions that among the security issues of

cloud computing, authentication is considered as one among the most

important issues. He proposed a two-factor authentication scheme using

password and smart card to address the vulnerabilities in authentication

scheme which allows an intruder to gain access to cloud resources.

Major observations on the scheme are as follows:

 The proposed scheme has a flaw in the computations done during the

login phase which will prevent even a valid user from successfully

completing the login process and to access cloud services. This flaw can

be explained by discussing the steps in the registration phase and login

phase of the scheme as follows:

Registration Phase: During this phase, user registers with server S. After

successful registration, S issues Ui with a smart card.

Step 1: Ui selects IDi, PWi, random number b and calculates IPBi =

h(PWi⊕ b). Ui sends {IDi, IPBi, t} to cloud server over a secure channel.

 Step 2: S generates ‘t’ tickets for the user. S calculates IUi = h(IDi
x mod

p) ⊕ IPBi , Ai = h(IUi ⊕ IPBi || IDi) = h(h(IDi
x mod p) || IDi).

Step 3: S computes Bi
j = hki(IDi|| TIDi||TIDi

(j)||VPi
(j)) where j = 1,2, …t.

120

Step 4: S issues a SC containing {IUi, Ai, Bi
j, Ti

(j)} into the SC and issues

to Ui who stores b into the SC.

Login Phase: In this phase user Ui sends a login request to the cloud server

S.

Step 1: Ui enters SC and inputs IDi, PWi,

Step 2: SC calculates IUi’ = IUi ⊕ h(PWi || b) = h(IDi
x mod p) ⊕ IPBi

⊕ h(PWi || b) = h(IDi
x mod p) ⊕ h(PWi⊕ b) ⊕ h(PWi || b).

Ai’ = h(IUi’ || IDi) = h(h(IDi
x mod p) ⊕ h(PWi⊕ b) ⊕ h(PWi || b) || IDi).

Step 3: Ai’ is the value calculated by SC. Now the value of Ai stored in SC

is Ai = h(h(IDi
x mod p)||IDi).

Ai’ will never be equal to Ai since there is a computation mistake. Author

is using IPBi = h(PWi⊕ b) to calculate Ai in the registration phase.

However, during the login & verification phase, the value used to calculate

IUi’ is h(PWi || b). This will result in a different value of Ai’ which is

calculated using IUi’and hence the login request will fail. The same

computational mistake is occurring during the mutual authentication phase

and password change phase.

 Mutual authentication phase involves the calculation of a shared key

KA. However, it results in two different values at the client and server side

due to a wrong computation at the client side by smart card.

 Password change phase involves the same steps as in login request

phase which results in a value that do not match with the value stored in

smart card. Hence password change request will always be rejected.

121

 Registration and issuing smart cards are done by the service providing

server. In a scenario where the user needs to access different cloud

services, he will need to undergo multiple registration processes and carry

multiple smart card (authentication factor).

Rui Jiang (2013) proposed a scheme which uses password and SC to

overcome the limitations of Choudhary et al.'s scheme. Only simple hash

functions and xor operations are used in the authentication protocol and

does not use OOB authentication as required in the case of Choudhary et

al.’s scheme.

Registration Phase: This phase is invoked by the user Ui to register to the

cloud server S. After successful registration, S issues, Ui with a smart card.

Step 1: Ui selects identity ID, password PW and a random number x. Ui

computes h(PW ⊕ x) and sends {ID , h(PW ⊕ x) ,h(PW)} to S through a

secure channel.

 Step 2: S checks whether the ID is available and not issued to another

user. If not S rejects request for registration. Otherwise, S calculates I =

h(ID||y), where y is a secret number generated by S.

 B = g ID + h(PW) + h (y) mod p. S issues to Ui via a secure channel, a SC

containing {I, B, p, g, h(.)} and A stores x into the SC.

Step 3: ID and h(PW ⊕ x) are stored by S in the server.

Login Phase: When Ui wants to login into S, this phase is executed.

 Step 1: Ui inserts his SC and types in ID, PW.

122

Step 2: The SC computes C = h(ID || h(PW ⊕ x) || Tu) where Tu denotes

Ui’s current time stamp. Ui sends {ID, C, Tu} to S using a public

channel.

Authentication Phase: S on receiving the message {ID, C, Tu} verifies the

identity of Ui by performing the following steps.

Step 1: S checks whether Tu’ – Tu ≤ ▲T is satisfied or not. Here Tu’ is the

current time stamp of S and ▲T is the maximum allowed delay in

transmission. If the condition is not satisfied, then the login request is

rejected. Otherwise S computes I* = h(ID||y) and C* = h(I* || h(PW ⊕ x) ||

Tu) . If C* = C, S accepts login request of A and computes K’ = g ID + h (y)

mod p, h(K’), R = h(K’ || Ts), where Tu is the current time stamp of S. S

generates a random number a and sends E
h(K’)

{R, Ts , a} to Ui.

Step 2: Ui computes K’’= Bg - h(PW) mod p and h(K’’), E
h(K’’)

{R, Ts , a} to

obtain {R, Ts , a}. Ui checks Ts with current time stamp and terminates the

session if the transmission delay is more than the allowed maximum. Else

Ui computes R’ = h(K’ || Ts) and compares with the R received from S. If

R’ = R, Ui successfully authenticates S and sends h(a) to S.

Step 3: S checks h(a) and if correct, mutual authentication is successfully

done and both Ui and S calculates the session key as Sk = h(K’ || a) = h(k ||

a).

Password Change Phase: This phase permits Ui to change the password in

the SC.

Step 1: Ui types in ID, PW after inserting SC into the system. Ui sends to

S, ESk
{h(PW ⊕ x) || h(PW’ ⊕ x) || b} where b is a random number and

123

PW’ is the new password of Ui. The steps in the login and authentication

phase are executed and after successful authentication, A sends a request

for changing password to S and submits h(PW ⊕ x) and h(PW’ ⊕ x).

Step 2: S verifies h(PW ⊕ x) and replaces it with h(PW’ ⊕ x) . S sends

h(b) to A.

Step 3: A verifies h(b) and if correct SC computes Z = Bg -ID- h(PW) mod p,

B’ = Zg ID+ h(PW) mod p, A replaces B with B’ in the SC.

Most relevant observations on the scheme are as follows:

 Susceptible to stolen verifier attack and Denial-of-Service (DoS) attack

since variant of password is stored at the server ie. h(PW ⊕ x) .

 Login request is created without verifying the password. So even if a

wrong password is entered, login request will be created without verifying

the password and hence attacker can easily launch DoS attack by either

entering an incorrect password or identifier.

 Password change is done by the server and each time the password is

changed, communication is required between the user and the server. This

phase is also prone to DoS attack.

 Time stamps are used to resist replay attacks and this can result in time

concurrency issues. Protocols using time stamps can suffer from problems

due to variation in time zone, delivery latency etc. (Chang et al. 2006) and

Gong (1992) mentions in his work that clocks can become unsynchronized

due to faults in the synchronization mechanism.

 In this scheme, to access the services of the service provider, user needs

to register directly at the service providing server. In such a scenario, to

124

access different cloud services, a user will have to undergo multiple

registration processes and will need to carry around multiple

authentication tokens such as Smart Cards and crypto-tokens.

As the two-factor authentication protocols discussed in sections 3.1.4,

4.1.4 and 5.3 requires the use of mobile phones and Quick Response Code

(QR-Code), a few relevant authentication schemes using mobile phones as

an authentication factor is discussed in the following section.

2.4.4 Authentication Using Mobile Phone

The rapid advancements in the field of mobile communication

technologies have lead to the invention of smart phones with

commendable storage and processing capabilities. Hence, many

authentication schemes that leverages the use of mobile phones as an

authentication factor have been proposed by researchers. QR-codes

(ISO/IEC 2000) or “Quick Response” codes, introduced by Denso-Wave,

a Japanese company, provides a new input interface to smart phones. This

two- dimensional bar code which can store a greater volume of

information compared to bar codes, can be scanned and read by devices

having embedded QR code scanning application. Majority of the currently

available smart phones come with in-built software that can decode the

scanned QR code (Falas and Kashani 2007).

Liao et al. (2009) proposed an authentication system that eliminates the

usage of password verification table. Authors are discussing a practically

feasible authentication solution using one-time passwords (OTP) and QR

code which is used as an input interface to communicate the OTP to the

125

user’s mobile phone. This scheme requires the user to share a secret key

with each service provider and hence the user needs to store different

secret keys in his mobile phone to access the services of different service

providers. Time stamps are used to verify the originality of messages and

protocols using time stamps are prone to issues due to differences in time

zone at client and server, latency in delivery etc. (Chang et al. 2006) and

clocks can become unsynchronized due to faults in the synchronization

mechanism (Gong 1992).

Lee et al. (2010), proposed an authentication system for online banking

using a mobile-OTP in combination with a QR code. To authenticate to

the server, user needs a mobile OTP program downloaded into his mobile

phone. A random value send by the server and mobile serial number is

used by user to generate OTP which is used to authenticate to server. In

the discussed scheme server authentication is not done and the user does

not verify whether the QR code is generated by the correct server. The

protocol requires public key certificates and verification of digital

signatures to complete the authentication process.

Mukhopadhyay and Argles (2011) proposed a Single Sign-On (SSO)

model for user authentication. The work uses QR-code based one-time

passwords to address the issues of phishing attacks inherent in Single

Sign-on based authentication systems. In this scheme, during registration,

user name and password are submitted in plaintext form to Identity

Provider (IdP) which makes the system susceptible to password guessing

attack. IdP maintains a verification table to store the root password of the

users, which makes the scheme susceptible to stolen verifier attack. Time

stamps are used by client and IdP to verify originality of the messages and

126

this requires the respective clocks to be synchronized in time and this can

lead to time concurrency issues (Gong 1992, Chang 2006). In the

discussed authentication scheme, if a user has to change the password,

then it can be done only with the intervention of the server.

David (2012) proposed a proof of concept authentication system that

provides two factor authentication by combining a password and a camera

equipped mobile phone for authenticating the user. In this scheme which

provides both online and offline mode of authentication, user passwords,

IMEI are stored in the server. A public, private key pair is generated for

each user which means that the users need to share a key pair with every

server. Hence to access the service of multiple service providers a user

needs to maintain multiple accounts and different key pairs. The server

stores the password, private key/public key pair of all the users. Storing

the password and key pairs of users by the server makes the scheme prone

to stolen verifier problems. Also since password is stored by the server,

changing of password requires server’s support.

Dodson et al. (2012) proposed a phone based authentication system for

making online payments. The user stores a shared secret which is a

random key generated by the server and during the process of account

creation. This shared secret which is unique to each user is maintained by

the server and is later used to verify the authenticity of the user during

login process. The secret is communicated by the server to the user via the

QR code which is scanned and stored on the phone’s password manager.

The user needs to negotiate and manage a shared secret with each web site

it visits and this means that, to access multiple services, the user needs to

maintain different shared secrets. The stored shared secret is used to

127

generate the response to the challenge that is send by the server during the

login process.

2.4.5 Security Attacks on Authentication Protocols

This section discusses common security attacks applicable to

authentication protocols. The contents of this section are referred from the

work of Misbahuddin (2010).

Replay Attack: A Replay attack is launched by an adversary to gain

unauthorized access to the system. This attack is performed by

intercepting a message exchanged between two honest communication

partners and retransmitting the captured message at a later point in time.

Replay attacks can be handled by changing some value in the message

during every session. To achieve this, time stamps and random values are

included in transmitted messages, so that, the freshness of these values are

checked by the verifier to ascertain the originality of the received message.

Time stamps requires time synchronization between communicating

entities and this can lead to time concurreny problems especially when

client and server belongs to different time zones (Chang etal. 2006). To

overcome the time concurreny problem many protocols use random

numbers or nonce (number used once) values, which varies with time. To

check the freshness of the nonce, the verifier needs to maintain a previous

nonce value for a certain period of time.

Guessing Attack: The tendency of human beings to use simple passwords

make them insecure. To launch a guessing attack, the adversary

understands the nature of the password, guess an arbitrary password and

verifes the guessed password by logging in repeatedly until he gets the

128

correct password. To prevent online guessing attack, many systems, block

the account of the user after a certain number of login attempts. However,

the probability of successful password guessing is high in an offline

scenario as there is no restriction on the number of trials.

Brute Force Attack: A brute-force attack is a type of password guessing

attack in which the attacker attempts to guess the correct password by

trying sequentially every possible combination of numbers, upper and

lower case letters, alphanumeric characters, spaces etc. The process is

continued until the attacker arrives at the correct password. This attack,

which requires a lot of time and computing power, is carried out using

automated tools.

Dictionary Attack: A dictionary attack is a variant of password guessing

attack wherein the attacker attempts to guess the password by trying out

passwords from a list of most popular passwords. Such popular passwords

are usually collected and traded by hackers and are available in the form of

a list of commonly used passwords. To resist dictionary attack, the

password of users should include a combination of numbers, upper and

lower case letters and should not be a word from the dictironary.

Insider Attack: Insider attack is performed by a system administrator or an

employee of the service provider who has access to the secret information

of the user. From a convenience perspective, users’ have a tendency to use

one password to access multiple applications such as e-mail, online

banking etc. If an insider with privileges of an administrator can access

the password information of a registered user maintained by the

Authentication Server, they can use it to impersonate the user or leak out

the information to others.

129

Stolen Verifier Attack: Many authentication servers, store user passwords

in a hashed form or a hash of the salt value combined with the user

password in the database. To launch a stolen verifier attack, the adversary

steals this verification table and attempts to guess the password using an

offline guessing attack. The attacker compares entries in the verification

table with the message digest of entries in a dictionary of passwords or he

compares the entries with a rainbow table. The adversary will arrive at the

right password when there is a match.

Shoulder Surfing Attack: Attacker obtaines the authentication credentials

of the target by monitoring his typing of credentials without his

knowledge. Even partial information about the victim gathered via this

attack can pose serious threats when used to launch other attacks. For

example, a password guessing attack can be launched by using the

password length information gathered using a shoulder surfing attack.

Server Spoofing Attack: Server spoofing attack is launched by an attacker

who impersonates a legitimate server and exchange messages with the

user to attain the objective of gathering the secret credentials of the user.

To thwart Server spoofing attack, the user should properly authenticate the

server, before exchanging secret information.

Man-in-the-Middle Attack: This attack is an active form of eavesdropping

wherein the attacker creates separate connections with the client and the

server and intercepts the messages exchanged between them and replaces

them with fabricated message. The victims will be made to believe that

they are talking to each other directly over a secure channel while the

entire conversation is being monitored and controlled by the attacker. In

130

reality, both the victims are receiving messages injected into the channel

by the man-in-the-middle whose existence is transparent to them.

Phishing Attack: Phishing is a very popular attack with cybercriminals

wherein the attacker lures a legitimate user into revealing his sensitive

information such as login credentials, credit card details, account

information etc. by pretending to be a trustworthy entity. In most of the

cases, the victim receives a mail that appears to have been sent by a

reputed source or by a contact known to the victim. The victim on clicking

a link in the mail will be directed to a web site that looks very similar to a

valid server page where he will be prompted to divulge his personal or

financial details.

Impersonation Attack: In impersonation attack, the adversary attempts to

gain unauthorized access to resources hosted by the server or access the

secret credentials of the user by pretending to be a legitimate entity. The

attacker acts like a legitimate server or a registered user and attempts to

fool the other entity to believe that he is communicating with an honest

entity.

Reflection Attack: This attack is launched by an attacker who convinces

the target to reveal the secret to the challenge generated by the victim.

Reflection attack which is performed on mutual authentication protocols is

launched by creating parallel sessions. Assume that an attacker who

impersonates a legitimate user sends a login request message to the server.

The server generates a challenge and sends to the attacker who is expected

to generate a response. The attacker who is ignorant of the values required

to generate the response, establishes another session with the server and

sends the message received in the previous session. The server generates

131

and sends to the adversary a new secret which is used by the attacker in

the sesson established first. Server verifies and validates this response and

resource access is permitted to the attacker. Reflection attack will succeed

if challenge-response messages are symmetric in nature.

 Crypto-token/ Mobile-Token Lost Attack: If an adversary gains possession

of the token of a legitimate user, then he can attempt various nefarious

activities such as offline password guessing, impersonate the user and gain

unauthorized access to resources by logging into his account, modify the

stored contents of the token etc. The authentication protocol and the

contents of the token should be designed such that it is infeasible for the

attacker to derive secret information from the token or launch the

discussed attacks.

Denial-of-Service Attack: There are three different ways in which a denial-

of-service attack can be launched. (1) Assume that an administrator who

has access to the user database stored in the server, modifies the secret

information used to authenticate the user. In that case, a legitimate user,

who attempts to login with his valid credentials, will be denied from

accessing the resouces he is authorized to access. (2) Another possible

scenario where a denial-of-service attack can happen is when the crypto-

token is possessed by the attacker. In this case, the attacker attempts to

login to the account of the owner of the token using a random password

and he will be denied access. Now if the attacker modifies the current

password with his own password, then the legitimate user will be denied

access in his future login attempts. (3) Generating login requests without

password verification at the client side can also lead to denial-of-service

attack, since the resources of the server will ultimately get blocked in

132

verifying the received login requests. To resist denial-of-service attack in

the first case, the authentication protocols without verification table at the

server was designed. In the second and third case, denial-of-service can be

resisted by verifying the password before permitting password update and

before generating a login request.

Mutual authentication protocols facilitating session key agreement should

satisfy the following properties (Misbahuddin 2010):

Key Confirmation: Key confirmation is the property whereby

communicating entities are assured that both possess the same secrey key

(Boyd and Mathuria 2013).

Known-Key Security (Tsai 2008) (Boyd et al. 2013): Known-key security

is the property which assures that a compromise of the past session key

will not enable an adversary to create a new session key. This property is

satisfied when the keys generated in different sessions are computationally

independent of each other.

Forward Secrecy (Li et al. 2013, Boyd et al. 2013): Forward secrecy

property means that even if the master secret key ‘x’ is compromised then

the attacker will not be able to derive the previous session keys. This

property is indicative of the fact that knowledge of the master secret alone

is not sufficient enough to derive the session key.

2.4.6 Scyther – An Automated Tool for Protocol Verification

A communication protocol is a set of rules and every protocol should

follow the defined conventions to establish semantically correct

communications between the participating entities. A regular

133

communication protocol in which defined cryptographic mechanisms are

used to secure the message exchanged is referred to as a security protocol.

The mechanisms such as hashing, symmetric encryption and asymmetric

encryption are used to achieve various cryptographic properties such as

Confidentiality, Integrity, Authenticity, Non-Repudiation etc (stallings

2006). However, using cryptographic primitives alone will not guarantee

secure operation of the protocol and resistance to attacks. Many accepted

and published protocols reported to be safe were later identified to have

security flaws (Needham and Schroeder 1978), (Denning and Sacco 1981)

(Dalal et al. 2010) and this is due to the fact that manual analysis of such

protocols are extremely difficult (Cremers 2008). There was a need to do

rigorous verification of the communication protocols using mechanisms

relevant to the domain and this has initiated research on formal logic for

designing and formal analysis of security protocols. Though many

approaches were proposed for designing security protocols, there are no

effective approaches for constructing flawless and efficient protocols. The

research in the area of formal logic that will help to prove that a protocol is

correct and secure is still going on. Currently there are very few automated

tools for verifying security protocols which includes Scyther (Cremers

2008), ProVerif (Blanchet 2001), AVISPA (Arnado 2005), Athena (Song

et al. 2001). These tools differ in their input language, the way they verify

the protocols and deliver the output. Among these, Scyther which is an

open source tool offers a GUI, many novel features and takes only a

fraction of seconds to verify a small protocol. Also research studies

reveals (Cremers and Lafourcade 2007) that, Scyther offers better

performance than AVISPA (Arnado 2005) and is similar in performance

134

to ProVerif (Blanchet 2001). Considering the performance and popularity

of Scyther, the research uses Scyther tool to do the formal analysis of the

protocols discussed in chapters 3,4 and 5.

An overview of features of Scyther and assumptions made to verify the

Security of a protocol while using Scyther is included in this section. The

assumptions, justifications and explanations in this section are referred

from (Cremers and Casimier 2006).

Having a security protocol about whose security we are assured of is not

sufficient enough to accept that protocol as a flawless one. Instead, we

want some guarantees and supporting facts about its security and the major

objective of Scyther is to verify the protocol and give the guarantee. This

requires both the protocol as well as network to be created based on a

mathematical model and the network is assumed to be controlled by an

atttcker. Dolev-Yao (Dolev and Yao 1983) introduced an idealized

abstraction of cryptographic primitives known as Dolev-Yao model, to

address the need to reason about the security of protocols. First, it is

assumed that cryptography is perfect which means that, a message cannot

be cracked by anobody other than the right owner of the key. Second

assumption is that the intruder can either understand the complete message

or he understands nothing. Third assumption is that the network is fully

controlled by the adversary who can read, modify, delete and re-route

transmitted messages and inject his own messages.

A security protocol comprises of a number of dynamic behaviors and each

distinct behavior of a protocol is called a ‘role’ depicted as a sequence of

events. For example, we have roles such as initiator & responder, client &

server, sender & receiver in a protocol. We have a number of

135

communicating entities called ‘agents’ in a communication system and a

system executes the roles performed by agents. The execution of a role by

an agent to achieve a secure exchange of message is called a run. Agents

try to achieve security while adversary tries to act against them by

compromising security.

A security protocol model can be described using the following

components:

Protocol Specification: The protocol specification uses formal language

based on abstract syntax followed by the security protocol description

language to describe the behavior of role in a protocol. The specification

of a protocol encompasses initial knowledge for role execution,

declaration of constants, variables, functions, macros, nonces used in

challenge -response mechanisms and session keys used for securing future

communications.

Agent Model: Agents are communicating entities executing roles in the

protocol. The agent model of Scyther assumes that honest agents behave

as expected and described in the protocol specification and does not leak

any important information unless explicitly specified. Under normal

circumstances, agents execute the role description in a sequential manner.

Thus an agent who has send a message waits for the corresponding receive

event until it receives an anticipated message. This implies that an agent

matches received message with the format of an expected message and

ignores unanticipated message.

Threat Model: A network which is completely under the control of the

adversary is to be created. This requires creating a network model in

136

which the attacker can intercept a message, modify transmitted messages,

inject messages constructed from its initial knowledge and can

compromise any number of agents and learn their secret keys.

Cryptographic primitives: In this relevant properties of mathematical

constructs such as encryption, decryption, hashing and other functions are

modelled. Cryptographic primitives are modeled by adopting the black-

box approach which assumes that without knowing the secret key, a plain

text cannot be retrieved from the cipher text.

Security Requirements: Specifies the objectives of a security protocol such

as maintaining the secrecy of exchanged messages, maintaining the order

of the messages and the values transmitted in the messages as described by

the protocol.

Scyther requires security protocols to be described using a specification

language called security protocol description language and scyther files

are saved using “.spdl” extension. Role terms used in the protocol

specification are constructed using the following basic sets:

Var: denotes the variables used to store received messages.

Const: the fresh constants such as nonce and key values which are unique

to each instance of a role and treated as local values.

Role: denotes the roles performed by various agents.

Func: denotes the function names used in the protocol description

Scyther tool provides a command line interface (CLI) which uses Python

as the scripting language. The tool also provides a graphical user interface

(GUI) which makes it easier to understand and verify the protocol.

137

Security properties to be verified are modeled as claim events in Scyther.

An attack graph will be generated whenever an attack is found

corresponding to a particular claim. The verification of the protocol can be

done for a bounded or an unbounded number of sessions. Scyther supports

verifying the security of the protocol against multiple attacks as opposed

to the verification against a single attack supported by other similar tools.

The tool can be used to verify user defined claims and automatic claims

generated by Scyther.

CONCLUDING REMARKS

Though there are various two factor authentication schemes proposed

using hash functions for cloud environment, every scheme is found to

have some limitation in terms of desirable security features. Moreover,

none of the schemes provide perfect security and is thus susceptible to

various attacks. Also the proposed two-factor authentication schemes

using smart cards for cloud environment, requires the User to directly

register at the service providing servers who will then issue the smart card

which serves as an authentication factor. Hence in a scenario where the

User needs to access multiple cloud services, the User should undergo

multiple registration processes, maintain multiple accounts and remember

multiple identities. These limitations of the currently available two-factor

authentication schemes, viz. susceptibility to attacks, need for multiple

registration, maintaining multiple accounts and carrying different

authentication tokens (smart cards/crypto-tokens) when accessing the

services of multiple service providers etc. are being addressed by the

proposed research work. The research proposes a hash function based,

138

two-factor authentication scheme using crypto-tokens. Since

procurement/issue of crypto-token involves cost and since the token needs

to be carried around by the User, from a User friendly perspective, the

research also proposes a hash function based authentication scheme using

mobile-token. The proposed schemes use nonce values to resist replay

attacks and does not require the server to maintain a verifier table.

Based on the authentication requirements, cloud service providers can be

categorized into two. Category one includes those service providers

dealing with highly sensitive data and working in a controlled

environment such as those providing health-care services and financial

services. These service providers need a strong, Two-Factor user

authentication mechanism without any additional functionality such as

Single sign-on and would prefer to directly authenticate users of its

services. The second category of service providers are those dealing with

secure data while working in a collaborative environment whose services

are accessed by the users simultaneously during the same session, with

other services. Category two providers need a strong, Two-Factor

authentication mechanism that also provides the users with a Single sign-

on functionality. These service providers would prefer to delegate the

authentication of users of its services to a trusted third party. In the related

literature, the researcher was not able to identify an authentication

architecture that caters to the requirements of both the categories of

service providers.

These gaps are addressed in this research which moves forward with the

following objectives:

139

 Proposing an authentication architecture and different Two-Factor

authentication protocols that uses password as the first factor and

Cryptoken/Mobile-Token as the second authentication factor, which can

be adapted by service providers who prefer to directly authenticate users

of its services. Users to avail the services of service providers, should

register at a centralized registration authority (Identity Provider), who will

issue the second authentication factor viz. Crypto-Token/ Mobile-Token.

While accessing the services of different service provider’s, a user should

authenticate individually to each service provider, using password and the

second authentication factor (Crypto-token or Mobile-Token).

 Proposing an authentication architecture and different Two-Factor

authentication protocols that uses password as the first factor and

Cryptoken/Mobile-Token as the second authentication factor, which can

be adapted by service providers who require Single Sign-on functionality

and would prefer to delegate the authentication of users of its services to a

trusted third party. In the proposed architecture, users can do a single

registration at a centralized registration authority (Identity Provider) and

be issued with a single authentication factor. To access the services of

different service providers during a session, user’s need to authenticate

only once at the Identity Provider, using password and the second

authentication factor (Crypto-token or Mobile-Token).

 An authentication framework which includes an integrated

authentication architecture and a two-factor authentication protocol that

facilitates the Users with the convenience of single registration and of

accessing different cloud services using a single authentication token

(either a Crypto-Token or a Mobile-Token). The framework comprises of

140

Users (of cloud services), category one service providers who prefer to

directly authenticate its users using a strong Two-Factor authentication

protocol, category two service providers who need a strong Two-Factor

authentication protocol and require Single sign-on functionality which is

achieved by delegating the authentication to an authentication broker. The

service providers who are part of the framework have the flexibility to

choose between direct and brokered authentication. The proposed

authentication protocols using hash functions, does not require the server

to maintain verifier tables.

141

CHAPTER 3

3. DIRECT AUTHENTICATION SCHEME WITHOUT

VERIFIER TABLE

Verifying the identity of remote users is a necessary pre-requisite in a

cloud environment before being allowed access to secure

resources/services/applications. The simplest and most commonly used

user authentication mechanism is password based authentication. With the

proliferation of Internet enabled services, users have to manage a growing

number of logins/passwords which represent their identity across different

service providers (SP’s). Since management of multiple identities is

cumbersome Users tend to choose low entropy, easy to remember,

passwords, rendering the authentication system susceptible to various

attacks. Warren (2006) in his work on passwords, observes that a

responsible User, is expected to securely manage his password and update

the same on a regular basis and to utilize different passwords for each new

service he registers. However, this does not happen as a vast majority of

users for ease of remembering often write passwords on paper, store in

mobile phones, or in the worst case use the same password for multiple

services. Also, Hart (2009) said that “archaic static password, one tier

login “constitutes one of the biggest security risks and is not enough for

cloud services. Therefore, password authentication alone is not sufficient

for a secure authentication to cloud services and many works on cloud

security recommends adopting a Two-factor authentication (Abraham

2009, Fernandes et al. 2014) mechanism. Subashini and Kavitha (2011) in

their work has mentioned that, many a times user credentials are stored at

142

the service providers’ databases and authentication schemes with

verification table are vulnerable to various attacks (Tsai 2008).

Service providers, offering their services from a cloud environment can be

broadly categorized into two, from the prespective of their authentication

requirements. A set of service providers dealing with highly sensitive

information and working in a controlled and regulated environment, such

as those providing services for health care sector, can be grouped into one

category. These service providers require a strong authentication

mechanism to authenticate its Users. However, they do not require any

additional functionality such as Single sign-on. Similarly, there are another

category of service providers that deal with secure information but operate

in a collaborative environment. Service providers whose applications are

bundled through a web portal, SaaS services such as Aceproject for project

management (Fenton 2011) and Assembla for code management (Media

2012) which are simultaneously accessed by organisations during a

session for collaborative project management etc. can be grouped under

the second category. If each of these providers has its own independent

user management mechanism, then the users will have to go through

multiple registrations and maintain multiple accounts. To provide the users

with a seamless authentication experience, the second category of service

providers prefer to have a Single Sign-on functionality by which the users

can authenticate to one of the service provider and can access multiple

services without re-entering the credentials during the same session.

Chapter 3 and chapter 4 proposes authentication architectures and

authentication protocols to cater to the requirement of the category one

service providers and category two service providers respectively.

143

Two-factor authentication technology which requires the user to provide

more than one authentication information, seeks to decrease the

probability that the requestioner is presenting false evidence of its identity.

The adoption of two-factor mechanisms makes it more difficult for

attackers to bypass the entity authentication of cloud systems, because

even if attackers could guess a customer’s password correctly, they still

need to acquire the specific second piece of information for authentication.

Unfortunately, if different service providers set up their own two-factor

authentication services, users may have to experience painful registration

process repeatedly. In addition, users accessing multiple cloud services

may be required to hold multiple authentication tokens associated with

various service providers.

Taking cognizance of the aforesaid issues related to authentication in

cloud environment, in chapter 3 and chapter 4 we propose authentication

schemes where in users authenticate to different cloud services (Service

Providers) using a single password and a second authentication factor

which can be a crypto-token or a mobile-token. The proposed approach

takes away the requirement of the user to remember multiple identities,

carry multiple devices to access various services and provides the benefit

of a higher level of security in the form of a second authentication factor.

The scheme also addresses the issues such as stolen-verifier attack, insider

attack, denial-of-service attack etc. by eliminating the requirement to

maintain a verification table at the server.

Access to different services across diverse service providers using a single

authentication token requires the interoperability between the providers

which is now the limiting factor for deployment of such strong

144

authentication solutions. As a result, the research intends to propose the

utilization of the 2-factor authentication scheme using password as the

first factor and Crypto-token/Mobile-Token as the second factor within a

specific environment. The environment includes a trusted entity called an

Identity Provider (IdP) with whom the users and the Service providers will

be registered. The Identity Provider entity is responsible for providing and

managing the second authentication factor concept to end users. The IdP is

the central authority responsible for registering the users, issuing the

authentication factor and distributing their profile information to the

service providers. After obtaining the authentication factor from the IdP,

the User who wants to access the service can be authenticated either

directly by the service provider or by an authentication broker (Identity

provider) to whom the users are re-directed to by the service provider, for

achieving Single Sign-on functionality. The authentication factor issued by

the identity provider along with the password can be used to authenticate

to Service Providers. In this system, mutual association between Service

Providers and the Identity Provider is necessary.

This chapter discusses the scheme proposed for direct authentication by

service providers and chapter 4 discusses the authentication scheme

proposed for brokered authentication by an authentication broker.

Authentication protocols discussed in sections 3.1.3, 3.1.4 of current

chapter, in sections 4.1.3, 4.1.4 of chapter 4 and in section 5.3 of chapter 5

are based on hash functions and xor-operations as these simple operations

reduces the computational load of the authentication system (Das et al.

2004). The proposed authentication protocols do not require the server to

maintain a verifier table.

145

3.1 DIRECT AUTHENTICATION SCHEME

As discussed in the previous paragraph, within the proposed model, there

exists an Identity Provider which is responsible for registering a user,

issuing him with the authentication factor and providing the profile

information of the user to different Service Providers registered with the

Identity Provider. The major advantage of this approach is that the Service

Providers are relieved of the burden of issuing the authentication tokens

and can concentrate on their core functionality of providing services. Also

the users need not go through the pain of carrying multiple devices to

access multiple services.

The proposed direct authentication solution is possible by the use of a

Crypto-Token/ Mobile-Token as the second authentication factor. As

illustrated in Figure 3.1, this factor will have, the user’s authentication

parameters saved by Identity Provider/downloaded remotely from the

Identity Provider and stored securely within it. Once identities are

downloaded, the user can provide them to the Service Provider, totally

independent of the Identity Provider. The Service Provider will exchange

the two-factor authentication protocol with the user and based on the result

146

will allow or deny access to the requested resource.

Identity Provider
Internetwork

Local Network

Registering and

downloading

authentication token

from IdP

Authenticating to

Service Provider

(1)

(1)

(1)

(2)

(2)

(2)

(2)

(1)

DASP 2
DASP 1

Figure 3. 1 Crypto-Token/Mobile-Token Deployment and Direct

Authentication at SP

3.1.1 Identity Provider and Service Providers Association

The proposed scheme considers that the association between Service

Providers and Identity Providers takes place in an integrated trust based

environment. The participating entities in such an environment exchange

information about resources and users by using a common set of practices

and policies.

Association: The Service Providers need to register with the registration

server of the IdP by providing a unique server ID, Service Provider URL,

a short description of the service provided, and the preferred mode of

authentication as “Direct Authentication”. At the end of the registration

process, The IdP issues an authentication module containing the proposed

Two-Factor authentication protocol to the Service Provider (SP) which can

147

be integrated with the authentication engine of the SP. Also a secret key of

the IdP is communicated in a secure manner to the Service Provider (SP).

This is later used by the SP to verify an authentication parameter during

the authentication of the user by using the proposed 2-factor authentication

protocol.

Trust: In the proposed direct authentication model, trust should be

established between the communicating entities such as users, service

providers and the Identity Provider to accept and process communications

from each other. As stated in the trust model guidelines of the OASIS

consortium (Linn, 2004), authentication and business agreements (BA) are

the two criteria to be followed for establishing trust. The proposed two-

factor direct authentication solution has adopted the “Pairwise/Direct”

model for the Service providers and the Identity Provider, where Service

Providers and Identity Providers have a BA and authentication of each

other is done by using Digital Certificates and PKI technology (Stienne et

al. 2013). Service providers enter into an agreement with the Identity

Provider by undergoing a registration process and they will exchange their

own digital certificates in order to establish trust for future

communications.

3.1.2 Proposed Direct Authentication Architecture

The proposed architecture for a Cloud environment includes four

participants’ viz. a Registration Server (RS), an Authentication Server

(AS), Service Provider’s (SP’s) and users’. The RS and AS are in the

148

same trusted domain and together they provide the functionality of the

Identity Provider (IdP).

The user’s and SP’s comprising the proposed architecture needs to register

with the registration server of the IdP. When a SP registers with the IdP,

he submits his identity information and the details of the services

provided. The cloud service provider’s (CSP’s) and IdP work in a trust

based environment.

In this two-factor authentication scheme, user’s password and a registered

crypto-token serve as the authentication factors. When a user wants to get

the service of a CSP, he is re-directed to the IdP by the SP if he is not a

registered user in which case his profile information will not be available

with the SP. In such a scenario, the user needs to do a single registration at

IdP as illustrated in Figure 3.2, by providing the User-ID and Password.

On successful registration, IdP provides the user with a Crypto-token /

Mobile-Token containing the security parameters. The server Id’s of all

the participating service providing servers and the details of their services

are also communicated to the user via an e-mail. The login and

authentication phase of the proposed scheme runs independently on each

SP and the service providers directly authenticate the users requesting

their services as is illustrated in Figure 3.3. A user who wants to access the

services of a particular SP, tries to login to the provider’s web page by

submitting his ID and PW. The authentication module within each SP

executes the proposed protocol for mutual authentication, before providing

the requested service. The second authentication factor of the proposed

protocols contains only a few hashed values generated from user’s ID,

password and the secret key of the server. It does not contain any digital

149

signature which is generated by encrypting the hash of a value by the

sender’s private key. This requires the implementation of public key

infrastructure (PKI). The proposed protocols do not require the support of

PKI.

The protocols do not require the server to maintain a password verification

table. The registration and authentication process flow is illustrated in

Figure 3.4.

User

SP1

SP2

Registration Request

Registration Request

Redirects

Redirects

IdP

Figure 3. 2 Direct Authentication - Registration Redirect

150

User Login
 R

equest

Login Request

SP1 AS

SP 2 AS

Figure 3.3 Direct Authentication – Login and Authenticate to each SP

`

SP1

SP2

User PC 1. Registration Request

1a. Redirects Registration Request

1. Registration Request

1a. Redirects

Registration Request

2
.
R

e
g
is

tr
a
ti
o
n

 C

o
n
fi
rm

a
ti
o
n

Identity Provider

1
. R

e
g
is

tra
tio

n
 R

e
q
u
e
s
t

4. Authentication Response

4. Authentication Response

3. Authentication Request

3. Authentication Request

Figure 3.4 Registration and Authentication Process Flow

151

3.1.3 Crypto-Token Based Direct Authentication Protocol without

Verifier Table

In the crypto-token based authentication protocols discussed in sections

3.1.3 ,4.1.3 and 5.3, we are ensuring the security of user’s password

communicated to server by adopting concepts of cyclic groups and by

taking advantage of the fact that discrete logarithm problem is notoriously

hard to solve in many groups. Hence this section includes a brief

explanation of cyclic groups and Discrete Logarithm Problem (DLP). A

group (G,.) is a set G together with a binary operation “.” (multiplication

or addition), which satisfies the following properties (Beachy and Blair

2005):

(a) The group G is closed under the binary operation(b)The binary

operation is associative (c)The group G has an identity element and

(d)Every element of group G has an inverse element.

Any group G is said to be cyclic if there exists an element a ∈ G such that

the element b ∈ G can be written as b = ax for some x ∈ Z, where Z is the

set of integers. Here ‘a’ is called the generator of G and we denote this as a

= <G>. It is known that all multiplicative groups G = Zp* where p is a

prime number is cyclic (Damgard and Nielsen 2012). Now if the integer x

and the generator a is given, then the power ax can be easily calculated by

the square and multiply method (Gao 1999). The inverse problem, that is

given a group G, it’s generator a and element b ∈ G, finding integer x such

that ax = b, is the discrete logarithm problem and it is considered to be

hard (Gao 1999).If ax = b, then the discrete logarithm of b base a is x, and

it is represented as DLa(b) = x.

152

 Example: Consider the group G = Zp* where p is a prime number and p =

1999 (Brawley and Gao 1999). This group is cyclic under multiplication

modulo p.

G = Zp* = {1,2, 3, 4, ……………..., p-1}

Now the element a = 3 is a generator of G and is also known as the

primitive element modulo p.

Then G = {a0, a1, a2, a3,…………………………, ap-2} mod p.

Ie. G = {a0, a1, a2, a3,…………………………, a1997} mod p.

Now it is easy to calculate 3789 mod 1999 = 1452. Ie. 3789 ≡ 1452 mod

1999. On the other hand, it is difficult to determine that x = 789, given

only that x takes a value between 0 and 1997 and satisfies the equation 3x

≡ 1452 mod 1999.

The discrete logarithm problem (DLP) is considered to be notoriously hard

in many groups such as in Zp* where p is a large prime number (Damgard

and Nielsen 2012).

Phases of the Proposed Protocol: The proposed protocol consists of four

phases viz., Registration, Login, Mutual Authentication & Key Agreement

Phase and the Password change phase. The notations used are listed in

Table 3.1.

153

Table 3. 1 Notations Used in the Protocol (Direct&Crypto-Token)

IdP, SP Identity Provider, Service Provider in the cloud

Ui, Sj, SIDj i th User, j th SP, ID of the jth SP

IDi, PWi,

g0, p

Unique Identification of Ui, password of Ui,

generator of cyclic group, Prime Number

Chosen by Ui.

S Secret key of server of IdP shared with service

providers

Ni, Nj Nonce values chosen by Crypto-token and

server respectively

h(.) , ⊕ , || One-way hash function, XOR operation,

Concatenation Operation

Registration Phase

Registration Phase illustrated in Figure 3.5 can be explained as follows:

R1: Ui generates a cyclic group of prime order p and selects a generator g0.

R2: Ui selects his identity IDi and Password PWi. Computes b = h(PWi),

 k = g0
b mod p.

R3: Ui submits h(IDi), h(IDi||k) to IdP through a secure channel. IdP

checks the availability of h(IDi). Otherwise Ui is prompted to select a new

IDi.

R4: Upon receiving h(IDi), h(IDi || k) , IdP computes

Vi = h(IDi || k) ⊕ h(IDi) ;

154

Ki = h(IDi) ⊕ h(h(IDi) || h(S)); Mi = h(IDi||k) ⊕ Ki.

Here h(S) is the hash of the secret key ‘S’ of the IdP which is shared with

all the registered service providers.

IdP sends a registration confirmation message to Ui along with the list of

service providers registered under its domain. IdP stores {h(.), Vi, Mi} into

crypto-token and sends to the user Ui via a secure channel such as a trusted

courier. Ui stores g0, p into the crypto-token. IdP also updates the service

provider’s data base with the profile information of registered users. Here

the Cloud Service Provider’s maintain a database of user profile

information such as the unique user identity ‘IDs’ = (IDi) in hashed form

(h(IDi)) as one entry along with e-mail ID, firtst-name, last-name, mobile

number etc.

Figure 3.5 Registration Phase of Direct Authentication Using Crypto-

Token

155

Login Phase

Login Phase illustrated in Figure 3.6 can be explained as follows:

L1: Ui clicks the URL of Service Provider. In the login page Ui enters his

identity IDi. SP verifies whether IDs = h(IDi) exists in his database. If so

Ui is prompted to proceed.

L2: Ui inserts his crypto-token into the system. Ui enters the server ID

‘SIDj’ of the service providing server Sj and his password PWi.

L3: Crypto-token computes b = h(PWi), k = g0
b mod p.

L4: Crypto-token computes Vi
‘= h(IDi || k) ⊕ h(IDi) and checks whether it

is equal to the Vi stored in the crypto-token. If so crypto-token generates a

nonce Ni and computes the challenge C1 = h(IDi) ⊕ h(SIDj || Ni).

L5: Crypto-token sends C1, Ni to Sj.

L6: Sj on receiving C1, Ni computes h(IDi) = C1 ⊕ h(SIDj || Ni) and

ensures that he is communicating with a registered user to whom he sent a

message to proceed with login. Sj computes the response C2 = h(Ni || 1) ⊕

h(Nj) , and where Nj is the nonce generated by Sj. Sj sends <C2 , Nj> to

Crypto-token.

L7: Crypto-token computes, Ti = h(Ni || 1) , (h(Nj))’ = C2 ⊕ Ti and checks

whether h(Nj)’ = h(Nj). By doing so, Crypto-token ensures the freshness of

nonce Ni. It ensures that the response is from the service providing server

to whom its challenge was sent.

L8: Crypto-token computes Ki= Mi ⊕ h(IDi || k) , Bi = Ki ⊕ h(IDi),

Ri = h(IDi || h(k)) ,Pij = h(Bi ⊕ (h(Nj) + 1) || Ri), Lij =Bi ⊕ Ri

156

L9: Crypto-token sends <Pij, Lij> to Sj.

Authentication and Key Agreement Phase

A1: On receiving Pij, Sj computes Bi
 ‘= h (h(IDs) || h(S)).

A2: Sj computes, Ri’ = Lij ⊕ Bi’, Pij
’ = h (Bi

 ‘⊕ (h(Nj)’ + 1) || Ri). Server

ensures the freshness of the nonce Nj and checks whether Pij
’ is equal to the

received Pij. If it does not hold, Sj rejects the login request. Otherwise Sj

considers Ui as authenticated and sends the response Ji = h(Bi’ || Ri’ || Ni) to

Ui .

A3: Ui computes Ji ‘= h(Bi || Ri || Ni) and compares with the received Ji . If

equal, Ui successfully authenticates the server. After successful mutual

authentication, both client and the server computes the session key as SKus

= h(Bi ||SIDj|| h(Ni) || h(Nj)|| Ri) and SKsu = h(Bi’ ||SIDj|| h(Ni) || h(Nj)|| Ri’)

respectively.

157

Figure 3.6 Login and Authentication Phase of Direct Authentication

Using Crypto-Token

158

Password Change Phase

Password change Phase illustrated in Figure 3.7 can be explained as

follows:

 Ui inserts his Crypto-token and enters IDi, his password PWi .and requests

for a password change.

P1: Crypto-token computes b = h(PWi), k = g0
b mod p.

P2: Crypto-token computes Vi
‘= h(IDi || k) ⊕ h(IDi) and checks whether it

is equal to the Vi stored in the Crypto-token. If equal, Ui is asked to enter

the new password.

P3: Ui submits PWinew. Crypto-token computes bnew = h(PWinew),

knew= g0
bnew mod p.

P4: Crypto-token computes Ki = Mi ⊕ h(IDi || k) , Vinew = h(IDi || knew) ⊕

h(IDi) ; Minew = h(IDi || knew) ⊕ Mi ⊕ h(IDi || k) .Crypto-token replaces Vi

with Vinew and Mi with Minew in the Crypto-token.

159

Ui enters IDi, PWi , “Change Password”

Vi’ = Vi

Request Rejected

N

Y

Computes bnew= h(PWnew) ;knew = g0
h(PWnew

) mod p

)); ki =Mi ⊕ h(IDi||k) ⊕ ki ;Vinew =h(IDi||knew) ⊕ h(IDi); Minew =h(IDi||knew) ⊕

Mi ⊕ h(IDi||k)

Crypto-token replaces Vi with Vinew and Mi with Minew in the crypto-

token

 Token Computes k = g0
h(PWi

) mod p, Vi’

Enter New Password

Submits PWinew

Password Successfully Updated

Figure 3.7 Password Change Phase of Direct Authentication Using

Crypto-Token

Security Analysis

Security analysis is carried out to analyze the resistance of the protocol to

various attacks. The proposed protocol is secure against the following

attacks.

i. Security against Replay Attack: A replay attack involves

capturing the messages exchanged between a valid user and a server and

replaying the same at a later point in time. Time stamps are commonly

used to resist replay attacks. However, in a distributed cloud environment,

using time stamps might lead to time synchronization problems if the

clocks of sender and receiver are not synchronized properly. Hence the

proposed scheme uses nonce values to resist replay attacks. To

successfully launch a replay attack, an adversary should be able replay a

valid login request message {Pij = h (Bi ⊕ (h(Nj) + 1) || Ri), Lij = Bi ⊕ Ri}

160

send by Ui or the response message {Ji = h(Bi || Ri || Ni)} send by the server,

at a later point in time. However, server and Ui verify the freshness of the

nonce values before accepting the request and response. Random nonce

values used in the proposed scheme viz. Ni and Nj are generated

independently and their values are session dependent. Hence attackers

cannot gain access to the system by replaying messages previously

transmitted by legal users.

ii. Man-in-the-Middle Attack: In the proposed protocol, if the

adversary modified any of the message exchanged between the client and

the server, then the session will be terminated. For example, assume that

IDi is modified into IDi
* in the message C1 exchanged during the login

phase. The server during the login phase checks whether an IDs

corresponding to the IDi
* is there in its user table. If it is not there, then the

login request will be rejected.

If IDi* is some other user’s ID, then Bi
 ‘ is calculated as Bi

 ‘= h (h(IDi
*) ||

h(S)) = Mi ⊕ h(IDi
* || k) ⊕ h(IDi) where k = g0

b mod p corresponds to

the password of IDi*. Also to calculate < Pij, Lij> and the session key, the

adversary needs to know the password and the server’s secret key. Hence,

this attack will fail since the adversary will not be able to impersonate a

valid user without knowing his password.

iii. Security against Stolen Verifier Attack: In most of the

authentication schemes the server stores some verification or password

table in its database to verify the legitimacy of the user. Thus the attacker

may steal verification information from the server’s database and attempt

to impersonate valid users. In the proposed scheme, only h(IDs) and some

profile information are stored in the server. Using h(IDs) alone, the

161

attacker cannot compute values used for authentication and hence the

attack will fail.

iv. Security against Server Spoofing Attack: In a server spoofing

attack, an unauthorized server tries to masquerade as a valid server and

attempts to obtain the credentials of a valid user. Assume that an adversary

intercepts C1, Ti and <Pij, Lij> transmitted between the user and the server

during an earlier communication. To spoof the server, the adversary

should be able to generate the response Ki = h(Bi|| Ri || Ni) . To calculate Bi

= h (h(IDi) || h(S)) , the adversary should have the knowledge of server’s

secret key, which is unknown to the adversary. Again to calculate Ri,

adversary should know Bi. Also, he will not be able to calculate the

session key without knowing the values of Bi, Ri which are never

transmitted across the communication channel during the course of any of

session.

v. Security against Guessing Attack: In the proposed scheme the

password is never transmitted in the plain text form. Moreover, the

password is modified into k = g0
b mod p where b = h (password) before

transmitting password information to the IdP. Hence even if the attacker

needs to verify the guessed password, he needs to solve the discrete

logarithm problem. Also, at the client side, when the user enters a

password, it is first verified by the crypto-token. The token will keep an

account of the number of failed login attempts and the user will be blocked

after three attempts.

vi. Security against Phishing Attack: In this attack, the adversary

uses fraudulent means to obtain sensitive information such as password,

credit card details etc. by pretending to be a trustworthy entity. In the

162

proposed scheme, before sending the login request the crypto-token and

server between steps L4 and L7, ensures that both are communicating with

the correct and valid entity by checking the freshness of the nonce. The

proposed scheme is thus resistant to phishing attack.

vii. Security against Crypto-token lost Attack: If the Adversary steals

the Crypto-token, containing the parameters {h(.), Vi, Mi, go, p}, he can

neither retrieve the user’s password nor the IdP’s master secret ‘S’ from

the stored values.

viii. Security against Denial-of-Service Attack: A denial-of-service

attack can be launched by an adversary by creating invalid login request

messages and bombarding the server with the same or by modifying the

current password in the crypto-token which prevents a valid user from

accessing resources, he is authorized to access. This attack can also be

launched by an adversary who has got control over the server and is able

to modify the user information stored in the server’s database which in

turn prevents the valid user from accessing the resources. The first

scenario will not work in the case of the proposed scheme, since it is

impossible for the adversary to create valid login request messages

without knowing the correct password. The validity of the password is

checked at the client side before creating a login request as well as before

allowing a user to modify the current password. The second scenario is

also not applicable in the proposed scheme, since the server does not

maintain a verifier/password table.

ix. User Anonymity Preserved: The user will send the login request

Pij to the cloud server Sj in each login session. To trace the user, the

adversary will intercept the login message and attempt to extract IDi from

163

the message. The irreversibility property of one-way hash functions

prevents the adversary from extracting IDi from Pij. More over each login

message is made dynamic by including the nonce Nj which is unique for

each login session. Therefore, an adversary cannot identify the person

making a login attempt and hence the proposed scheme preserves user

anonymity.

x. Security of Session Key

 Known-Key Security: Known-key security property ensures that a

compromise of past session key will not contribute to deriving any further

session key. In the proposed scheme, the session key SK is calculated

using Bi, h(Ni) and h(Nj), Ri which are never communicated across a

transmission channel. Security properties of hash functions such as

collision resistance and irreversibility guarantees that even if the past

session key is revealed, the adversary cannot derive Bi, Ri. Furthermore,

the nonce values Ni and Nj are session dependent and generated

independently by Ui and Sj and they themselves will not be having the

knowledge of Ni and Nj that will be generated in the future sessions. Thus

the proposed scheme satisfies known-key security property.

 Forward Secrecy: Forward secrecy property ensures that even if

the attacker manages to obtain the master secret ‘S’ of the registration

authority, it will not result in the compromise of any previous sessions.

Suppose that the adversary has the knowledge of ‘S’. The adversary

cannot compute the value of Bi
 = Mi ⊕ h (IDi || k) ⊕ h(IDi) without

knowing the password of the valid user. Thus he cannot derive the session

key SK = h(Bi || SIDj || h(Ni) || h(Nj) || Ri) which is required to decrypt the

messages sent from the client to the server and vice-versa. Also the session

164

key is calculated using the unique nonce values generated independently

by the user and the service provider. Hence, even they will not be able to

predict the session key values. Also, the nonce values are very large

making it difficult for the attacker to guess the values to generate the

session keys.

xi. Security against Denial-of-Service Attack: The scheme allows the

crypto-token holder to change the password without the intervention of the

IdP. The Crypto-token verifies the legitimacy of the user before changing

the password to prevent unauthorized users from easily changing the

password if they obtain the crypto-token of some other registered user.

Thus only valid user who knows the correct ID and password,

corresponding to the crypto-token can change the password.

Efficiency Analysis

This section analyzes the efficiency of the proposed scheme in terms of

the computational and the communication cost. It is assumed that IDi,

PWi, g0, p, nonce values are 128 bits long and the output of hash function

(SHA-2) is 256 bits long. Let Th Tx, Te and Tc denote the time complexity

for hashing, XOR, exponentiation and concatenation operations

respectively. In the protocol, the parameters stored in the Crypto-token are

Vi, Mi, g0, p and the memory (E1) needed in the crypto-token is 768

(2*256 +2 *128) bits. Communication cost of Login, Authentication&

Key agreement (E2) includes the capacity of transmitting parameters (C1,

Ni, C2, Nj, Pij, Lij) which makes E2 equal to (4*256 + 2*128) = 1280 bits.

The computation cost of user registration (E3) is the total time of all

operations executed in this phase by the user and Registration authority

and is equal to 4Th + 3Tx + 1Te + 2Tc. The computation cost of the user

165

(E4) and the server (E5) authentication is the total time of all operations

executed by the crypto-token and Server during login, authentication and

key agreement phase. During login & authentication, the crypto-token

performs 9 hash functions, 6 XOR, 1 exponentiation and 9 Concatenation

making E4 equal to 9Th +6Tx+ 1Te + 9Tc. Similarly, E5 is 7Th + 3Tx + 9Tc.

The computation cost of password changing (E6) is the total time of all

operations executed in this phase by the user and is equal to 5Th + 4Tx

+2Tc+2Te. Comparisons with other protocols are shown in Table 3.2.

Comparison results reveals that the computational efficiency of the

proposed protocol for direct authentication using Crypto-token is

comparable with similar other two-factor authentication protocols. In the

case of the proposed crypto-token based protocol, the security of password

send to the server during registration, is enhanced by obfuscating the

password, by exponentiating the password to the power of the generator of

a cyclic group. In this protocol, the research is exploiting the difficulty in

solving discrete logarithm problem for cyclic groups of the form Zn where

‘n’ is a very large odd prime number. Though these computations increase

the computation cost of the protocol and affects total computational time,

the protocol aids in providing enhanced security. In such a scenario, it can

be mentioned in the Service Level Agreement between the IdP and the

Service Providers that the authentication protocol provided by the IdP,

provides secure authentication of users that requires a certain time period

for execution. The authentication protocol can be adopted by those service

providers to whom the time duration for execution of authentication

protocol is agreeable.

166

Computations done during the password change by Rui Jiang’s protocol is

much more compared to the proposed protocol, as in Rui Jiang’s protocol,

the entire steps in authentication phase is executed before the password is

changed by the server and user.

Table 3.2 Comparison of Computational Efficiency with Other Protocols

 E1 E2 E3 E4 E5 E6

Crypto-token

based

Protocol

768

bits

1280

bits

4Th + 3Tx

+ 1Te +

2Tc

9Th +6Tx+ 1Te

+ 9Tc

7Th +3Tx +

9Tc.

5Th+4Tx

+2Te

+2Tc.

Choudhary et

al. [2011]

1024

bits

1920

bits

6Th + 3Tx

+ 1Te +

2Tc

10Th +2Tx+

1Te + 3Tc

8Th+1Tx

+1Te +3Tc.

4Th+4Tx

Jaidhar

[2013]

1024

bits

1664

bits

5Th + 5Tx

+ 1Te +

5Tc

6Th + 2Tx +

9Tc+2Ts +1Td

5Th+1Tx+

8Tc+2Td

+1Ts+1Te

3Th +

2Tx +

3Tc

Rui Jiang

[2013]

768

bits

1152

bits

4Th + 1Tx

+ 1Te +

1Tc

7Th + 1Tx +

4Tc+1Td+1Te

7Th+

5Tc+1Ts+1Te

18Th +

3Tx +

11Tc+2Ts

+1Td

+4Te

Scyther Analysis

Scyther tool requires the optimal parameters and the protocol description

to be given as input. The tool analyses the input and outputs a summary

report and displays a graph for each attack.

The strength of the protocol is verified using Scyther tool which ascertains

the strength by evaluating the resistance of the protocol to various attacks.

Scyther uses strand space model for formalizing logic and uses Dolev-Yao

167

model for modelling the network, which caters to the requirement of a

mathematical approach for validating the protocol.

The description of a protocol is written in Security Protocol Description

language (SPDL) (Cremers, 2008) and the analysis results of login phase

are shown in Figure 3.8. Specification of a security protocol describes the

communicating entities, events describing the protocol and order of

execution of events, and initial knowledge required for communication

parties such as constants used in the protocol. Events include sending and

receiving of messages and security claims. SendLabel(I,R,p) corresponding

to role I, denote I sending message p to R and RecvLabel(I,R,p) denotes R

receive p sent by I. Labels are used to mark corresponding send and

receive events. Claim events describe Security properties.
“Claim(Principal, Claim,Parameter),“ where Principal is the user’s name,

Claim is a security Property, and Parameter is the term for which the

security property is checked. The proposed protocol can be modeled using

SPDL as follows:

// Login, Authentication and Key Agreement Phase of Protocol for Direct

Authentication

const exp: Function; const hash: Function; hashfunction h; const XOR:

Function;

const h1:Function; const plus:Function;const mod:Function;

protocol Directauthlogin(I,R){

role I {

const IDi, Pi,, Bi, SIDj,k,s,b,g,p;

fresh N1: Nonce;

var N2: Nonce;

macro b = h(b);

168

macro k = mod(exp(g,b),p); macro Pij = h(XOR(XOR(h(IDi), h(h(IDi),

h(s))), plus(h(N2),1)),h(IDi,k)); macro Lij = XOR(h(N2) , h(IDi,k));

send_1(I,R, XOR(h(SIDj,N1), h(IDi)),N1);//C1

recv_2(R,I, XOR(h(N2), h(N1,1)));//C2

send_3(I,R, h(XOR(XOR(h(IDi), h(h(IDi), h(s))),

plus(h(N2),1)),h(IDi,k)));//Pij

send_4(I,R,Lij);

claim_i1(I, Secret, XOR(h(SIDj,N1), h(IDi)));//C1

claim_i2(I,Secret,XOR(h(N2), h(N1,1)));//C2

claim_i3(I,Secret,h(XOR(XOR(h(IDi), h(h(IDi), h(s))),

plus(h(N2),1)),h(IDi,k)));//Pij

claim_i4(I, Secret, h(s)); claim_i10(I,Secret,k); claim_i11(I,Secret,h(IDi));

claim_i12(I, Secret,N1); claim_i5(I, Secret, h(N2));

claim_i13(I,Secret,Lij);

claim_i6(I, Niagree); claim_i7(I,Nisynch);claim_i8(I,

Alive);claim_i9(I,Weakagree);

claim_i10(I, Commit, R,N1,N2);

}

role R{

const IDi,Pi,N2,Bi, SIDj,k,s,b,g,p;

var N1:Nonce; fresh N2: Nonce;

recv_1(I,R, XOR(h(SIDj,N1), h(IDi)),N1);//C1

send_2(R,I, XOR(h(N2), h(N1,1)));//C2

recv_3(I,R, h(XOR(XOR(h(IDi), h(h(IDi), h(s))),

plus(h(N2),1)),h(IDi,k)));//Pij

recv_4(I,R,Lij);

claim_r13(R,Secret,Lij); //Lij

claim_r1(R, Secret, XOR(h(SIDj,N1), h(IDi)));//C1

claim_r2(R, Secret, XOR(h(N2), h(N1,1)));//C2

claim_r2(R, Secret, h(XOR(XOR(h(IDi), h(h(IDi), h(s))),

plus(h(N2),1)),h(IDi,k)));//Pij

169

claim_r3(R, Secret,h(s)); claim_r10(R,Secret,k);

claim_r4(R,Secret,h(IDi));

claim_r5(R, Secret, h(N2)); claim_r6(R , Alive); claim_r7(R,Niagree);

claim_i10(R, Running, I,N1,N2);claim_r8(R,Nisynch);

claim_r9(R, Weakagree);

}}

Figure 3.8 Scyther Analysis of Direct Authentication Using Crypto-Token

Formal Analysis using Scyther

To perform the formal security analysis, this section focuses on evaluating

the vulnerability of certain parameters such as h(IDi), k, S, C1, C2, N1, N2

170

Pij which are used in the proposed authentication scheme. If the

parameters are compromised during any stage of communication between

user and server during authentication, then the protocol is vulnerable to

attacks which fails to justify the security of authentication scheme. The

proposed protocol is coded and analyzed using the security analyzer

Scyther, which checks for the vulnerability of each of the parameters used

in the scheme. Scyther is configured with ten (10) runs and all possible

attacks. There are various claims made as part of the security analysis and

these claims are validated by executing and analyzing the proposed

scheme using Scyther. The “No attack” results shown in Figure 3.8 prove

that Scyther validates all the claims made as part of security analysis.

Claim 1: The proposed scheme is designed to ensure the secrecy of the

user ID, throughout the registration and authentication process.

The user ID is submitted in the hashed form to the IdP during the

registration process. This is used along with the password and the secret

key of IdP to generate the secret parameters to be stored in the crypto-

token. During the authentication process, user ID is hashed and XOR-ed

with server-ID and nonce N1 to generate the challenge C1. The claim that

user ID, IDi is safe is verified by Scyther.

Claim 2: The proposed scheme is designed to ensure the secrecy of the

variant of password ‘k’ throughout the registration and authentication

process.

The password is never transmitted in the plaintext form either to the IdP or

to the cloud server. It is converted into a modified form ‘k, by finding the

hash of the password viz. ‘b’ and then raising g0 (generator of a cyclic

171

group) to the power of ‘b’. Now to obtain the password from ‘k’, we need

to solve the discrete logarithm problem. During the authentication process,

password is used to generate the login request. It is not sent to the cloud

service provider, but it is used to check the stored password and to

calculate the values Ki, Ri. Also the password is not stored anywhere other

than in the crypto-token. Scyther results validate the claim that ‘k’ remains

a secret.

Claim 3: The proposed scheme requires the S to be a secret

 ‘S’ is the secret key of the IdP. It is used in its hashed form to compute

the parameters to be stored in the crypto-token and to verify the user

during the authentication process. Scyther validated the claim that ‘S’ is

safe.

Claim 4: The proposed scheme requires that the challenge C1 is secret

Challenge C1 is the hashed information containing user ID, service

provider ID and nonce N1 sent by the user to the server to ensure security

from replay attack. Scyther validated the claim that ‘C1’ is safe.

Claim 5: The proposed scheme requires that the response C2 remains a

secret

C2 is the communication sent by the service provider in response to the

challenge C1 sent by the user. The computation of C2 is done using the

challenge N1 and a nonce N2 generated by the server. Scyther validated

the claim that ‘C2’ is safe.

Claim 6: The proposed scheme requires that Pij is secret

172

Pij is the login request sent from the user to the server, which contains the

user ID, the secret key of the IdP and the nonce sent by the server. The

login request should not reveal any information, which will enable an

adversary to forge a valid login request. Scyther validated the claim that Pij

is safe.

Claim 7: The scheme assures the user and the server remains alive and

also the server is assured that the user remains alive.

The server is said to be alive, if the proposed protocol is used by the server

for the initial (k-1) messages exchanged with the user, when the user sends

the kth message. Thus if the entity making the claim, receives atleast one

message from it’s honest communication partner, before it makes the

claim, then the claim will be valid. The Scyther tool validates the aliveness

claim.

Claim 8: The scheme guarantees Weak agree

The scheme guarantees that the user (crypto-token) is in weak agreement

with the server which ascertains that both of them are interacting with

each other. Hence, the user and the server are executing the proposed

scheme with each other. The actions of the adversary do not affect the

operation of the proposed scheme during the execution of the protocol run.

The claim is validated by the Scyther results.

Claim 9: The scheme assures Niagree between the user (crypto-token) and

the server

Niagree claim enforces that the sender (user) and the receiver (server)

agree upon the values of variables exchanged during the running of the

proposed scheme. During the operation of the proposed scheme, the user

173

and sever can exchange data safely and the correctness of the claim is

justified by the analysis results.

Claim 10: The proposed scheme holds Synchronization during the

authentication process

Ni-Synch or Non-Injective Synchronization property requires that the

corresponding send and receive events (1) happened in the correct order

and (2) have the same contents. Ni-Synch is valid if all actions before the

claim are performed as per the protocol description of the proposed

scheme. The proposed protocol satisfies this claim as indicated by the

result of Scyther analysis.

3.1.4 Mobile-Token Based Direct Authentication Protocol without

Verifier Table

Physical tokens such as crypto-tokens and smart cards enable secure

identification of users and offer the advantage of a highly secure tamper

resistant environment making it difficult to misuse the contents of the

memory (Scheuermann, 2002). Due to the computational capability,

tamper-resistance property, and convenience in managing authentication

parameters of users’s, devices with cryptographic capabilities such as

crypto-tokens/smart cards have been widely adopted as the second

authentication factor in many remote user authentication schemes (Hwang

and Li, 2000) (Chien, 2002) (Hsiang and Shi, 2009). However, carrying

around a separate additional device such as a crypto-token remains a

burden to users. Also it involves cost factor and hence these schemes are

174

mostly constrained to corporate environments. This points out to the

requirement of an authentication factor that can be used by laymen as well.

In the recent past, mobile phones have become more of a necessity than a

luxury and hence leveraging the mobile device to serve as an

authentication factor can help improve the security of authentication

schemes. Phone aids in identifying the owner and can be used to store

authentication information which makes it the right candidate as a second

factor for user authentication. The process flows of the registration and

authentication stages are as depicted in Figure 3.4.

 Phases of the Proposed Protocol: The focus is on designing a mutual

authentication protocol with lesser number of stored variables in the

mobile token and less processor intensive operations contributing to less

power consumption and heat generation for power constrained

equipment’s like mobile phones.

The proposed protocol consists of four phases’ viz., User registration

phase, Login, Authentication & key agreement phase and Password

change phase. During the registration and authentication phase of this

protocol, users mobile phone should have Internet connectivity. The

notations used are listed in Table 3.3.

175

Table 3. 3 Notations Used in the Protocol (Direct&Mobile-Token)

IDi, PWi Identity, Password of user Ui.

S, Nj Secret key of IdP, Nonce of RS

Ni Nonce of Ui.

h(.) , ⊕ , || hash function, XOR operation, Concatenation

Operation

Registration Phase

 During the registration process, User downloads a mobile app into his

mobile phone. This app enables the user to execute the registration, login&

authentication and password change phase of the protocol. This phase is

executed only once during which the user submits his credentials to RS of

IdP. RS generates a set of security parameters using the submitted

credentials and his key value. RS stores the security parameters within a

secret file which is downloaded and stored in a secure location within the

user’s mobile phone. The secret file is encrypted using the password

(PBE) of the user which ensures that only a valid user will be able to store

the token into his mobile phone and use the same to avail secure access to

the Cloud services.

The registration process illustrated in Figure 3.9 can be explained as

follows:

R1: The user Ui clicks the “Register” link at Service Provider’s (SPs)

page. SP redirects Ui to the registration page of the IdP.

176

R2: IdP prompts Ui to submit her identity IDi and PWi. The user submits

his h(IDi) and h(PWi.).

R3: RS checks whether h(IDi) already exists in its user table. If so Ui is

prompted to select a new IDi.

R4: RS creates a file containing the authentication parameters Ki, Mi, Ji,

h(.) and the file is encrypted using password of Ui and a salt value. The

salt value is generated using a PRNG function and is concatenated with

h(PWi) and the hash of the result is generated using SHA-256. ie.

h(h(PWi) || salt).

The output is a 256-bit value which is used as the key for AES encryption

algorithm to encrypt the file.

The values of Ki, Mi, Ji are generated by performing hash and XOR

operations on IDi, PWi, S as follows:

Vi = h(h(IDi) || h(S)),

Ki = Vi ⊕ h(h(IDi) || h(PWi)),

 Ji = h(Vi)

 Mi = h(h(IDi) ⊕ h(S)) ⊕ Ji.

 Here ‘S’ is the key shared between IDP and the Service Providers.

R5: IdP generates a QR code embedding Service Provider URL, Salt and

the URL for downloading the secret file.

R6: The QR code will be displayed on the Service Provider’s page and the

user will be prompted to scan the QR code.

177

R7: The mobile app, invokes the scanning application, and the user can

scan the code. The user will get URL for downloading the secret file, salt,

the service provider URL and the link to download the secret file.

R8: The user will be prompted to enter his IDi, PWi. The app attempts to

decrypt the file using password given as input by the user and the salt

value attached to the file. If the decryption is successful, the secret file

contents will be accessed.

R9: When the user touches the register button in the mobile app, mobile

app, calculates Vi’= Ki ⊕ h(h(IDi’) || h(PWi’)) and Ji’= h(Vi’). Ji’ is

compared with Ji stored in the mobile token and if equal, the registration

process is considered successful and user will get the “Registration

Successful” message.

R10: The file will be stored in a safe location within the user’s phone in

the form of a mobile token. IdP stores the User ID ie. h(IDi) and other

profile information in its user table. If registration is not successful, then

the file will be deleted from the user’s phone and user will get a

“Registration Failed” message.

178

Figure 3.9 Registration Phase of Direct Authentication Using Mobile-

Token

Login phase

Login Phase is executed when the user attempts to access a protected

resource of a Service Provider (SP). It is assumed that, the browser at this

point does not have an established session with the SP. If there is no existing

session between the browser and the SP, then SP generates a login session

and authenticates the user by executing the authentication phase, as

illustrated in figure 3.10. The user uses his password and the parameters

stored within the mobile token deployed in the mobile phone, to authenticate

himself to the SP. The procedure can be explained as follows:

179

L1: Authentication Server (AS) displays the login page and prompts the user

to enter user’s identity (IDi) and Password (PWi). The values are sent over

the communication channel as h(IDi) and h(PWi)). AS calculates:

 Lj = h(h(IDi) || h(S)), Mj = h(h(IDi) || h(PWi)), Cj = h(Lj ⊕ Mj),
 Pj = h(Lj),

 Tj = h(h(IDi) ⊕ h(S)) ⊕ Pj.

 AS generates a nonce Nj and computes the challenge Qj = h(Cj || Pj || Nj)
L2: The random nonce Nj and challenge Qj ie < Qj, Nj > is send to the user

Ui, via a secure communication channel (QR code)

L3: The mobile app computes Cj’ = h(Ki), Pj‘= Ji , Qj ‘=h(Cj ‘ || Pj’ || Nj) and

checks whether Qj’ = Challenge Qj, received from AS. If so, mobile app

considers the message as being received from an authenticated source and

continues with the following steps. This step is included to avoid the

possibility of phishing attack, since only the servers which hold the shared

key h(S) of IdP will be able to generate this message.

Authentication and Key Agreement Phase

A1: Mobile app on behalf of user Ui computes Rij = h(Mi || Qj ‘ || Ni), where

Ni is a nonce generated by Ui .

A2: Computes C1 = Ni ⊕ Ji , Kij = HMAC (Mi, Rij) to AS of the SP. Ui

sends < Kij, C1 > to AS via wi-fi or cellular network (GSM/GPRS).

HMAC is a keyed hash function and Mi serves as the key which is used to

encrypt the message Rij.

 A3:AS on receiving the message <Kij, C1 >, computes Ni ‘= C1 ⊕ h(h(h(IDi)

|| h(S))), Rij’ = h(Tj || Qj || Ni’) and Kij ‘= HMAC (Tj, Rij’). AS recalculates

the HMAC value by using Tj as the key and Rij’ as the message. Since key

Mi which is equal to Tj, is known only to the user, the value Kij would have

180

been calculated only by the user. AS assures the freshness of the nonce Nj.

AS checks whether Kij‘is equal to the received Kij. If equal SP considers the

user as authenticated and that the integrity of message is maintained.

Otherwise the login request is rejected.

Figure 3.10 Login and Authentication Phase of Direct Authentication Using

Mobile-Token

181

A4: The SP sends a response Fij = h (Rij ⊕ Ni) along with a successful

authentication message.

A5: If the authentication is successful then SP notifies the user’s browser of

a successful login. The user on receiving Fij,

computes Fij ‘ = h(Rij ⊕ Ni).Ui checks the freshness of the nonce Ni and

verifies the authenticity of the server.

A6: Both Ui and SP computes the session key as SKus= h(Ji || Rij || Ni || Nj)

and SKsu= h(Pj|| Rij’ || Ni || Nj) respectively.

Password Change Phase

The password change phase as shown in Figure 3.11 is invoked when the

user wishes to change his password without the intervention of the IdP or the

SP and is carried out as follows:

P1: User enters his identity (IDi) and Password (PWi) and executes the

“Password Change” request. The mobile app computes Vi
‘ = Ki ⊕ h(h(IDi)||

h(PWi)) and checks if h(Vi ‘) it is equal to stored Ji. If equal, the mobile app

prompts the user to enter the new password ‘PWinew’. Otherwise the

“password change” request is rejected.

P2: The app calculates Kinew = Ki ⊕ h(h(IDi)|| h(PWi)) ⊕ h(h(IDi)||

h(PWinew)) and replaces the existing Ki value in the file with Kinew.

182

Figure 3.11 Password Change Phase of Direct Authentication Using Mobile-

Token

Security Analysis

i. Security against Guessing Attack: The aim of this attack is to find out

the password of the user. Assume that the adversary A, manages to get the

secret file containing <Ki, Mi, Ji, h(.)>. Among these parameters, Ki contains

the user password and Ki = Vi ⊕ h(h(IDi) || h(PWi)). Now assume that ‘A’

guesses the password PWi *. Then he can calculate Ki = Vi ⊕ h(h(IDi) ||

183

h(PWi*)). However, to check whether the guessed password is correct, the

adversary should know Vi = h(h(IDi) || h(S)), which is not stored in the

mobile-token. It cannot be extracted from Ji = h(Vi) as hash functions are not

reversible. Otherwise, to obtain Vi, he should be knowing the secret key of

the server. In the case of android phones, the secret file is stored in a private

location accessible only to the mobile app within the phones memory. Hence

even the owner of the file will not be able to access its contents which rules

out the possibility of a valid user getting h(S) using his own password and

then trying to guess another user’s password by stealing his mobile-token.

ii. Security against Replay Attack: The proposed authentication protocol

uses nonce values to resist replay attack. The server generates the nonce Nj

which is used to calculate the challenge Qj =h(Cj || Pj || Nj) . Now the user Ui

generates a response to this challenge as Kij = HMAC (Mi, Rij) where Rij =

h(Mi || Qj || Ni) . Thus the response contains Qj which inturn includes the

nonce Nj generated and transmitted by the server to user. On receiving the

response Kij which contains the nonce Nj, uniquely generated for that

particular session, server is assured that this is not a replay attack. The server

then sends an authentication response message Fij = h(Rij ⊕ Ni) where Ni is

the nonce of Ui and is unique to that session. On receiving Fij, Ui checks the

freshness of the nonce and is assured that this is not a replay attack. These

nonce values which are generated independently by the server and user are

unique to a particular session and are included in the messages exchanged

between the user and the server. Hence an adversary cannot get unauthorized

access to a system by using previous messages.

iii. Server Spoofing Attack: For an adversary to masquerade as a legitimate

service provider, he must be able to generate the messages that are generated

184

by a valid server. Thus if A is an adversary, he should be able to generate

<Qj, Nj>, < Fij > and the session key. However Qj =h(Cj || Pj || Nj), where Cj

= h(Lj ⊕ Mj) with Lj = h(h(IDi) || h(S)), Mj = h(h(IDi) || h(PWi)), and Pj =

h(Lj). Hence, to generate Qj, the adversary should have the knowledge of

server’s secret key ‘S’ and the password of user. Similarly Fij = h(Rij ⊕ Ni)

where Rij = h(Mi || Qj || Ni) with Mi = h(h(IDi) ⊕ h()S)) ⊕ h(h(h(IDi) || h(S)).

To generate a valid Fij, he should have the knowledge of server’s secret key,

user passwords and the nonce Ni. These values are neither send across the

communication channel, nor can they be extracted from the messages

between the user and the server.

iv. Insider and Stolen Verifier Attack: Insider attack is launched by an

administrator who deliberately leaks secret information resulting in security

flaws of the authentication scheme. In the proposed scheme both during

registration and login phase, the h(PWi) is send to the server. Deriving the

password from h(PWi) within a specific time interval is very difficult. The

proposed scheme does not maintain any verifier table and hence it is secure

against stolen verifier attack.

v. Two-Factor Security: In a scenario where, both the user’s mobile token

and his password are stolen, then there is no way to prevent the attacker from

masquerading as the user. Hence the security of the proposed two-factor

authentication scheme can be guaranteed when either the mobile-token or the

password is stolen but not both. This security property is referred to as two-

factor security. In the discussed scheme the secret parameters < Ki , Mi , Ji ,

h(.)> of the mobile token are difficult to be derived if the attacker has

obtained the user’s password alone and not the mobile token. Now if the

attacker also intercepts the challenge Qj = h(Cj || Pj || Nj), it is a laborious

185

process to extract Mj (which contains PWi) from Cj and Pj due to the

irreversible property of one-way hash functions.

Again if the attacker intercepts the response < Kij, C1 > from the user, it is

infeasible to derive h(S) or h(PWi) from HMAC (Mi, Rij) as they are

calculated using hash functions. Irreversible property and collision-resistance

property of hash functions makes its computationally infeasible for the

attacker to retrieve the password within a required time interval. On the other

hand, if the attacker, manages to get the mobile token and extracts the values

< Ki , Mi , Ji , h(.)> using power analysis attacks suggested by Messergers et

al.(1999), he still cannot obtain, PWi directly from any of these stored

values.

vi. Known-Key Security: The known key security means that even if the

session key of any of the previous sessions is compromised, the attacker

should not be able to derive the session key of any of the future sessions. In

the proposed protocol, the session key is calculated using Pj and Rij as SKsu =

h(Pj|| Rij || Ni || Nj) which require the knowledge of password and server’s

secret key, which is not known to the adversary. The irreversible property of

hash functions ensures that Pj and Rij cannot be derived from the past session

keys, which makes it difficult for the attacker to derive the future keys. Also

the session key calculation involves nonce values generated randomly and

independently by both the user and the server. Hence even the valid user and

the server will not able to predict the future session keys.

vii. Forward Key Secrecy: The forward key secrecy property requires

that a compromise of the master key of the system should not help the

adversary to calculate the previously established session keys. In the

proposed protocol, even if the master key of the IdP is compromised, the

186

adversary cannot compute any of the previous session keys without knowing

the password PWi of the user.

viii. Mutual Authentication: When the user receives the challenge Qj

from the server, it is verified as Qj ‘=h(Cj ‘ || Pj’ || Nj), where Cj ‘ and Pj’ are

calculated using parameters in the mobile-token. A response to this

challenge is generated by using Mi, which is extracted from the mobile token

and is not there in the challenge received from server. The server calculates

Tj = Mi, using the user’s password and its own secret key. A successful

verification proves the authenticity of user. Again the response send from the

server, Fij is verified by the user. Thus the proposed protocol achieves the

requirement of mutual authentication which is required in a multi-server

environment.

Efficiency Analysis

This section analyzes the efficiency of the proposed mobile token based

protocol in terms of the computational and the communication cost. It is

assumed that nonce values are 128 bits long and the output of hash function

(SHA-2) is 256 bits long. Let Th, Tx and Tc denote the time complexity for

hashing, XOR and concatenation respectively. In the protocol, the

parameters stored in the secret file are Ki, Mi, Ji and the memory (E1) needed

in the mobile is 768 (3*256) bits. Communication cost of authentication (E2)

includes the capacity of transmitting parameters (h(IDi), h(PWi), Qj, Nj, kij,

C1, Fij) which makes E2 equal to 1664 (6*256 + 1 *128) bits. The

computation cost of user registration (E3) is the total time of all operations

executed in this phase by the user and IdP and is equal to 11Th + 4Tx +3Tc+

1Ts+ 1Td. The computation cost of the user (E4) and the server (E5) is the

total time of all operations executed by the mobile app and the service

187

provider during login and authentication. During authentication, the mobile

app performs 7 hash functions, 1 XOR and 6 concatenation making E4 equal

to 8Th + 4Tx+ 9Tc. Similarly, E5 is 11Th + 7Tx+ 11Tc.The computation cost

of password change (E6) is the total time of all operations executed in this

phase by the user and is equal to 6Th + 2Tx +2Tc. Comparison with other

protocols are shown in Table 3.4.

Table 3.4 Comparison of Computational Efficiency with Other Protocols

 E1 E2 E3 E4 E5 E6

Mobile-

token based

Protocol

768

bits

1664

bits

11Th + 4Tx+

3Tc+ 1Ts+

1Td

8Th + 4Tx+

9Tc

11Th + 7Tx+

11Tc

6Th+2Tx+2Tc

Choudhary

et al.

[2011]

1024

bits

1920

bits

6Th + 3Tx +

1Te + 2Tc

10Th +2Tx+

1Te + 3Tc

8Th+1Tx +1Te

+3Tc.

4Th+4Tx

Jaidhar

[2013]

1024

bits

1664

bits

5Th + 5Tx +

1Te + 5Tc

6Th + 2Tx +

9Tc+2Ts +1Td

5Th+1Tx+

8Tc+2Td

+1Ts+1Te

3Th + 2Tx +

3Tc

Rui Jiang

[2013]
768

bits

1152

bits

4Th + 1Tx +

1Te + 1Tc

7Th + 1Tx +

4Tc+1Td+1Te

7Th+

5Tc+1Ts+1Te

18Th + 3Tx +

11Tc+2Ts

+1Td +4Te

Number of hash operations during the registration phase (E3) is more in the

case of proposed protocol for direct authentication using mobile-token, due

to the calculations done at the client side to verify the authenticity of the

user, before storing the mobile-token permanently in the phone. In the case

of the proposed mobile token based protocol, the authenticity of the user is

188

verified before storing the secret file into the user’s smart phone, by

attempting to decrypt the encrypted file downloaded from the Identity

Provider. In addition, the protocol also ensures the integrity of the stored

parameters in the secret file which is downloaded from the server, by

recalculating the value of a parameter strored into the file by the server. Only

after these two verifications are done, will the file be permanently stored in

to user’s smart phone.

Also the proposed mobile token based protocol is using HMAC to generate

the response from the phone to the user, and HMAC requires two hash, two

concatenations and two XOR operations. Again the HMAC value send by

the client is verified by the server to authenticate the user. All these

processes are enhancing security though it leads to an increase number of

computations.

Though these computations increase the computation cost of the protocol

and affects total computational time and efficiency, the protocol aids in

providing enhanced security. In such a scenario, it can be mentioned in the

Service Level Agreement between the IdP and the Service Providers that the

authentication protocol provided by the IdP, provides secure authentication

of users that requires a certain time period for execution. The authentication

protocol can be adopted by those service providers to whom the time

duration for execution of authentication protocol is agreeable.

Computations done during the password change by Rui Jiang’s protocol is

much more compared to the proposed protocol, as in Rui Jiang’s protocol,

the entire steps in authentication phase is executed before the password is

changed by the server and user.

189

Scyther Analysis

The formal analysis of protocol is done using Scyther. The strength of the

protocol is verified using Scyther tool which ascertains the strength by

evaluating the resistance of the protocol to various attacks. Scyther uses

strand space model for formalizing logic and uses Dolev-Yao model for

modelling the network, which caters to the requirement of a mathematical

approach for validating the protocol.

The analysis result of login phase is shown in Figure 3.12. The protocol is

written in SPDL as follows:

//Login Phase with Symmetric Key Encryption of Message and Testing the

Compromise of Symmetric Key

const exp: Function; const hash: Function; hashfunction h; const XOR:

Function;

const h1:Function; const HMAC:Function; usertype SessionKey;

secret SK:Function; const Fresh:Function;

protocol DirectauthMobileProtocol-login(I,R){

role I {

const IDi,PWi,S,mg1,mg2;

var Nj:Nonce; var SK: SessionKey;

fresh Ni :Nonce; send_1(I,R,h(IDi), h(PWi));

recv_2(R,I, h(h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi))), h(h(h(IDi), h(S))) ,

Nj)), Nj);//Qj

//Calculating Mi = XOR(h(XOR(h(IDi), h(S))), h(h(h(IDi), h(S)))))

//Calculating Cj '= h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi))));

//Calculating Pj' = h(h(h(IDi), h(S)));

//Calculating Qj' = h(h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi)), h(h(h(IDi),

h(S))) , Nj))

190

//Calculating Rij = h(Mi||Qj'||Nj) = h(XOR(h(XOR(h(IDi), h(S))), h(h(h(IDi),

h(S)))), h(h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi)), h(h(h(IDi), h(S))) ,

Nj)), Ni)

//Calculating Kij = HMAC(XOR(h(XOR(h(IDi), h(S))), h(h(h(IDi), h(S))

))), h(XOR(h(PWi), h(h(h(IDi), h(S)))), h(h(XOR(h(h(IDi), h(S)), h(h(IDi),

h(PWi)), h(h(h(IDi), h(S))) , Nj)), Ni))

send_3(I,R, HMAC(XOR(h(XOR(h(IDi), h(S))), h(h(h(IDi), h(S))))),

h(XOR(h(PWi), h(h(h(IDi), h(S)))), h(h(XOR(h(h(IDi), h(S)), h(h(IDi),

h(PWi)), h(h(h(IDi), h(S))) , Nj)), Ni)), Ni); //Kij

recv_4(R,I, h(XOR(h(XOR(h(XOR(h(IDi), h(S))), h(h(h(IDi), h(S)))),

h(h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi)), h(h(h(IDi), h(S))) , Nj)), Ni),

Ni)))); //Fij

//Calculating Fij'=h(XOR(h(XOR(h(XOR(h(IDi), h(S))), h(h(h(IDi), h(S)))),

h(h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi)), h(h(h(IDi), h(S))) , Nj)), Ni),

Ni))

//SK= h(Ji|| Mi || Ni || Nj)

macro Ji = h(h(IDi), h(S));

macro Mi= XOR(h(XOR(h(IDi), h(S))), h(h(h(IDi), h(S))));

macro SK = h(Ji,Mi,Ni,Nj);

secret SK:Function;

//recv_5(R,I, SK);

/*Testing the sending of messages encrypted using the generated session key

*/

recv_6(R,I,{mg1}SK(R));

send_7(I,R,{mg2}SK(I));

claim_i1(I, Secret, h(IDi)); // IDi

claim_i2(I, Secret, h(PWi)); // PWi

claim_i3(I,Secret,h(h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi))), h(h(h(IDi),

h(S))) , Nj))); //Qj'

claim_i4(I, Secret, Nj); // Nj

claim_i3(I,Secret,HMAC((XOR(h(XOR(h(IDi), h(S))), h(h(h(IDi), h(S))))),

h(XOR(h(PWi), h(h(h(IDi), h(S)))), h(h(XOR(h(h(IDi), h(S)), h(h(IDi),

h(PWi)), h(h(h(IDi), h(S))) , Nj)), Ni)))); //Kij

191

claim_i4(I,Secret,h(h(h(IDi), h(S)))); //Ji

claim_i5(I,Secret, h(XOR(h(XOR(h(XOR(h(IDi), h(S))), h(h(h(IDi), h(S))

)), h(h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi)), h(h(h(IDi), h(S))) , Nj)), Ni),

Ni))));//Fij

claim_i6(I,Secret,h(S)); claim_i7(I,Secret,h(Ni)); claim_i8(I,Niagree);

claim_i9(I,Nisynch); claim_i10(I, Alive); claim_i11(I,Weakagree);

claim_113(I,Secret,SK); claim_i12(I,Empty,(Fresh,SK));

claim_i14(I,Commit,R,Ni,Nj);

claim_i15(I,SKR,SK);

}

role R {

const IDi,PWi,S;

const SK: Function;

fresh Nj:Nonce; var Ni:Nonce; fresh SK:SessionKey;const mg1, mg2;

macro Lj = h(h(IDi), h(S));

macro Tj = XOR(h(PWi), h(h(h(IDi), h(S))));

macro SK = h(Lj,Tj,Ni,Nj);

secret SK:Function;

recv_1(I,R,h(IDi), h(PWi));

//Calculating Lj = h(h(IDi), h(S));

//Calculating Mj = h(h(IDi), h(PWi));

//Calculating Cj = h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi)))

//Calculating Tj = XOR(h(PWi), h(h(h(IDi), h(S))))

//Calculating Pj = h(h(h(IDi), h(S)));

//Calculating Qj = h(h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi)), h(h(h(IDi),

h(S))) , Nj))

send_2(R,I, h(h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi))), h(h(h(IDi), h(S))) ,

Nj)), Nj);//Qj

recv_3(I,R, HMAC(XOR(h(XOR(h(IDi), h(S))), h(h(h(IDi), h(S))))),

h(XOR(h(PWi), h(h(h(IDi), h(S)))), h(h(XOR(h(h(IDi), h(S)), h(h(IDi),

h(PWi)), h(h(h(IDi), h(S))) , Nj)), Ni)), Ni); //Kij

192

//Calculating Rij' = h(Tj||Qj||Ni) = h(XOR(h(XOR(h(IDi), h(S))), h(h(h(IDi),

h(S)))), h(h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi)), h(h(h(IDi), h(S))) ,

Nj)), Ni)

//Calculating Kij = HMAC(Tj, Rij') = HMAC(XOR(h(XOR(h(IDi), h(S))),

h(h(h(IDi), h(S))))), h(XOR(h(PWi), h(h(h(IDi), h(S)))),

h(h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi)), h(h(h(IDi), h(S))) , Nj)), Ni))

//Calculating Fij=h(XOR(h(XOR(h(XOR(h(IDi), h(S))), h(h(h(IDi), h(S)))),

h(h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi)), h(h(h(IDi), h(S))) , Nj)), Ni),

Ni))

send_4(R,I, h(XOR(h(XOR(h(XOR(h(IDi), h(S))), h(h(h(IDi), h(S)))),

h(h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi)), h(h(h(IDi), h(S))) , Nj)), Ni),

Ni)))); //Fij

//h(Lj|| Tj || Ni || Nj)

//Calculating symmetrc key, SK = h(Lj,Tj,Ni,Nj);

//send_5(R,I, SK);

/*Testing the sending of messages encrypted using the generated session

key*/

send_6(R,I,{mg1}SK(R));

recv_7(I,R,{mg2}SK(I));

claim_r1(R, Secret,h(IDi)); // IDi claim_r2(R, Secret, h(PWi)); // PWi

claim_r3(R,Secret,h(h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi))), h(h(h(IDi),

h(S))) , Nj))); //Qj

claim_r4(R, Secret, Nj); // Nj

claim_r5(R,Secret,HMAC((XOR(h(PWi), h(h(h(IDi), h(S))))),

h(XOR(h(PWi), h(h(h(IDi), h(S)))), h(h(XOR(h(h(IDi), h(S)), h(h(IDi),

h(PWi)), h(h(h(IDi), h(S))) , Nj)), Ni)))); //Kij'

claim_r6(R,Secret,h(h(h(IDi), h(S)))); //Pj

claim_r7(R,Secret, h(XOR(h(XOR(h(XOR(h(IDi), h(S))), h(h(h(IDi), h(S))

)), h(h(XOR(h(h(IDi), h(S)), h(h(IDi), h(PWi)), h(h(h(IDi), h(S))) , Nj)), Ni),

Ni))));//Fij

claim_r8(R,Secret,h(S)); claim_r9(R,Secret,h(Ni)); claim_r10(R,Alive);

claim_r11(R,Niagree); claim_r12(R,Nisynch); claim_r11(R,Weakagree);

193

claim_r13(R,Secret,SK); claim_r12(R,Empty,(Fresh,SK));

claim_r14(R,Running,I,Ni,Nj);

claim_r15(R,SKR,SK);}}

const Eve: Agent;

untrusted Eve;

compromised SK(Eve);

Figure 3.12 Scyther Analysis of Direct Authentication Using Mobile Token

Formal Analysis using Scyther

To perform the formal security analysis, this section focuses on evaluating

the vulnerability of certain parameters such as IDi, PWi, S, Vi, Ki, Mi, Ji , Qj,

Ni, Nj ,Kij, Pj, Fij which are used in the proposed authentication scheme.

194

There are various claims made as part of the security analysis and these

claims are validated by executing and analyzing the proposed scheme using

Scyther. The “No attack” results shown in Figure 3.12 proves that Scyther

validates all the claims made as part of security analysis.

Claim 1: The proposed scheme is designed to ensure the secrecy of the user

ID, throughout the registration and authentication process.

The user ID is submitted in the hashed form to the IdP during the registration

process. This is used along with the password and the secret key of IdP to

generate the secret parameters to be stored in the mobile-token. Claim that

user ID, IDi is safe is verified and validated by Scyther.

Claim 2: The proposed scheme is designed to ensure the secrecy of the

password ‘PWi’ throughout the registration and authentication process.

The password is never transmitted in the plaintext form either to the IdP

during the registration process or to the service provider during the

authentication process. It is transmitted in a hashed form and hash operations

are irreversible. During the authentication process, the hashed password is

used by the server along with h(IDi) , h(S) and nonce Nj to compute the

challenge Qj. The calculation of Qj involves several hashing and XOR

operations, which makes it very difficult to retrieve PWi or h(PWi) from Qj.

Though the response Kij generated by the mobile token also includes the user

password, it is hashed and XOR-ed with other parameters and nonce values

and the HMAC of the result is taken to get the Kij value. This makes it all the

more difficult to extract PWi or h(PWi) from Kij. Also the variant of the

password stored in the mobile-token is in a hashed form and is combined

195

with other parameters. Scyther results validate the claim that ‘PWi’ remains a

secret.

Claim 3: The proposed scheme requires the S to be a secret

 ‘S’ is the secret key of the IdP, which is shared with the registered service

providers. It is used in its hashed form to compute the parameters to be

stored in the mobile-token and to verify the user during the authentication

process. Scyther validates the claim that ‘S’ is safe.

Claim 4: The proposed scheme requires that the parameter Vi stored remains

a secret

Vi is a value used to generate the authentication parameters calculated by the

IdP and stored in the mobile token. Vi is computed by hashing the

concatenation of hash of user ID and hash of server’s secret key S. Scyther

validates the claim that ‘Vi’ is safe.

Claim 5: The proposed scheme requires that the authentication parameter Ki

stored in the mobile token remains a secret

Ki is one among the authentication parameters calculated by the IDP and

stored in the mobile token. Ki is computed by performing hash and XOR

operations on the hashed values of Vi, h(IDi), h(PWi). Scyther validates the

claim that ‘Ki’ is safe.

Claim 6: The proposed scheme requires that the authentication parameter Ji

stored in the mobile token remains a secret

Ji is one among the authentication parameters calculated by the IDP and

stored in the mobile token. Ji is computed by performing hash of Vi. Scyther

validates the claim that ‘Ji’ is safe.

196

Claim 7: The proposed scheme requires that the authentication parameter Mi

stored in the mobile token remains a secret

Mi is one among the authentication parameters calculated by the IdP and

stored in the mobile token. Mi is computed by performing XOR operations

on the hashed values of Ji and h(PWi). Mi should not reveal any information

that will enable the adversary to impersonate a valid user. Scyther validates

the claim that ‘Mi’ is safe.

Claim 8: The proposed scheme requires that the parameter Pj is secret

Pj generated by the server is the hashed information containing hash value of

hash of user ID concatenated with the hash of user PW. The value of Pj is

used in computing the challenge Qj. Pj is not transmitted in the plain text

form to the user. Scyther validated the claim that ‘Pj’ is safe.

Claim 9: The proposed scheme requires that the challenge Qj is secret

Challenge Qj generated by the server is the hashed information containing

hash of user ID, hash of user PW, hash of server secret key, S and nonce Nj

sent by the server to the user to ensure against replay attack and phishing

attack. Qj is re-calculated by the mobile token to verify the authenticity of

the origin of communication. Qj should not reveal any information that will

enable an adversary to generate a valid challenge. Scyther validated the

claim that ‘Qj’ is safe.

Claim 10: The proposed scheme requires that the response Kij remains a

secret

Kij is the communication sent by the mobile in response to the challenge Qj

sent by the server. The computation of Kij is done by generating an HMAC

value which uses two inputs. HMAC algorithm uses Mi as the key and hash

197

of the concatenation of Mi, the received challenge Qj and a nonce Nj

generated by the mobile token as the message whose MAC is to be

calculated. Kij is re-calculated by the server using its own set of values.

HMAC guarantees authenticity of the origin and integrity of the message. Kij

which represents the login request should not reveal any information, which

will enable an adversary to forge a valid login request. Scyther validated the

claim that ‘Kij’ is safe.

Claim 11: The proposed scheme requires that Fij is secret

Fij is the response sent from the server to the user after the authentication of

user is done. The computation of Fij includes Rij and nonce Ni sent by the user

to the server. Fij should not reveal any information, which will enable an

adversary to forge the authentication response from the server. Scyther

validated the claim that Fij is safe.

Claim 12: The proposed scheme requires that the session key SK is secret

Session key SK is calculated by the user (mobile-token) by using the

parameters Ji, Mi, and nonce values Ni, Nj. The same session key SK is

calculated by the server using the parameters Lj, Tj, and nonce value Ni, Nj.

SK should not reveal any information that will help the adversary to derive a

session key to be used for any of the future sessions. Scyther validated the

claim that SK is safe.

Claim 13: The scheme assures the user that the server remains alive and also

the server is assured that the user remains alive

The Scyther tool validates the aliveness claim since both the user and the

server receives messages from each other before the claim is made.

198

Claim 14: The scheme assures Niagree between the user (mobile-token) and

the server

Niagree claim enforces that the sender (user) and the receiver (server) agree

upon the values of variables exchanged during the running of the proposed

protocol. During the operation of the proposed protocol, the user and server

can send data confidentially and the correctness of the claim is justified by

the analysis results.

Claim 16: The proposed protocol holds Synchronization during the

registration and authentication process

Ni-Synch or Non-Injective Synchronization property requires that the

corresponding send and receive events (1) happened in the correct order and

(2) have the same contents. Ni-Synch is valid if all actions before the claim

are performed as per the description of the proposed scheme. The proposed

protocol satisfies this claim as indicated by the result of Scyther analysis.

CONCLUDING REMARKS

This chapter elaborated an authentication scheme that can be adopted by

service providers who would prefer to directly authenticate its User using a

strong Two-Factor authentication mechanism and does not require Single

Sign-on functionality. The proposed authentication scheme does not require

the server to maintain a verifier table, which makes the scheme resistant to

insider attack and stolen verifier attack. In the first section of the chapter we

have proposed an authentication protocol that uses password and Crypto-

token as authentication factors. However, Crypto-tokens need to be carried

around and involves cost, owing to which it is suggested for use by corporate

199

sector. Considering the fact that there is an increase in the number of Users

using personal mobile devices, as part of the research work we are also

proposing an authentication protocol that uses password and mobile token as

the two authentication factors. Mobile phones which is proposed as the

second factor (Mobile Token) is all pervasive now and is a required

necessity for any User. Its proposed use as the 2nd authentication factor thus

provides the convenience of using something which is readily available and

no extra cost being incurred by the User. The chapter also includes the

analysis of the proposed protocols which includes the security, efficiency

and formal analysis.

Security analysis of the protocols are done to verify the resistance to various

attacks. Efficiency analysis is done to compare the computational efficiency

with similar schemes. Formal verification is done using Scyther which

verifies the security claims made about the protocol.

200

 CHAPTER 4

4. BROKERED AUTHENTICATION SCHEME

WITHOUT VERIFIER TABLE

Direct Authentication is not always a viable solution in scenarios where

users need to access different services simultaneously, in the same session

without requiring to login for every service. Services provided via a web

portal or services provided by service providers that are functioning in a

collaborative environment can be accessed simultaneously by a user. For

example, logged-in users of research analyst site Gartner are allowed access

to research produced by research analyst site Forrester. Similarly, users may

access e-mail service by G-Mail, CRM services by Sales Force and storage

services provided by Dropbox Simultaneoulsy. In a scenario, where users are

directly authenticated by individual service providers, users have to go

through multiple authentication processes to acess these services. This

requires redundant storage of information, repetitive exchange of credentials

and repeated execution of authentication protocol.

4.1 BROKERED AUTHENTICATION SCHEME

 Brokered Authentication effectively solves the problem of direct

authentication by having an authentication broker who does the

authentication on behalf of the rest of the service providers. By doing so, the

service providers are relieved from the task of identifying and authenticating

users and the users are provided with Single sign-on functionality, where in

they are required to authenticate only once during a session. However, in

many cases users need to use services from different domains. These

services belonging to different providers need to have interoperability to

201

accept the tokens issued by the central authentication broker/ Identity

Provider.

For brokered authentication, the proposed protocols require a Security Token

Service (STS) whose functionality is executed by an Identity Provider. The

Authentication server of the IdP, authenticates the user by executing the two-

factor authentication protocol and generates a SAML token, which is signed

by the IdP and sent to the service provider (relying party). The IdP also

provides a Single Sign-on (SSO) functionality using Security Assertion

Markup Language (SAML) tokens (redirect -POST binding).

4.1.1 Identity Provider and Service Providers Association

The proposed scheme considers that the association between Service

Providers and Identity Provider takes place in an integrated trust based

environment. An established set of policies and practices are used by the

participating entites to exchange information. To exchange information there

is a need to establish interoperability and trust relationship between the

Authentication Broker/Identity Provider and the service providers whose

services (cloud services) need to be accessed by the User. To establish

interoperability, the proposed authentication scheme, require Security

Assertion Markup Language (SAML)). The SAML open standard provides

an efficient mechanism to create and exchange authentication related

information of user, between the Service Providers and the Identity Provider.

Association: The Service Providers need to register with the registration

server of the IdP by providing a unique server ID, Service Provider URL, a

short description of the service provided, and the preferred mode of

authentication as “Brokered Authentication”. It is assumed that the IdP and

202

the service providers verify each other’s authenticity using Digital

certificates.

In brokered authentication scheme, since user authentication is done by the

centralized Identity Provider (IdP), the research needs to address the concern

of the Identity Provider becoming a single point of failure. The problem of

single point of failure can be addressed by implementing redundant or back-

up authentication brokers, although this increases the complexity of the

solution.IDP application is hosted in a Cluster of servers. So even if one

server goes down another server can immediately take over the services.

This can also help in auto scaling. Also the data will be stored in a master

database and several slave databases. However, if the entire infrastructure

fails, then disaster recovery procedures will be initiated and with minimum

amount of delay, the services of IdP will be supported by another data

center.

Trust: In the proposed model, the service providers and Identity Providers

will have to trust each other to accept and process communications from

each other. In this case, when the Identity Provider, produces the identities of

the user using SAML assertions, Service Providers will have to trust these

assertions. Each Service provider enters into a Business Agreement (BA)

with the Identity Provider, thus following a “Pairwise/Direct” trust model

(Linn 2004) and both will exchange their own digital certificates issued by a

trusted CA, in order to establish trust for future exchange of secure

information.

203

4.1.2 Proposed Brokered Authentication Architecture

The proposed architecture for a Cloud environment includes four

participants’ viz. a Registration Server (RS), an Authentication Server (AS),

Service Provider’s (SP’s) and users’. The RS and AS are in the same trusted

domain and together they provide the functionality of the Identity Provider

(IdP).

The user’s and SP’s comprising the proposed architecture needs to register

with the registration server of the IdP. When a SP registers with the IdP, he

submits his identity information and the details of the services provided. The

CSP’s and IdP work in a trust based environment.

In this two-factor authentication scheme, user’s password and a registered

crypto-token/mobile-token serve as the authentication factors. When a user

wants to get the service of a CSP, he is re-directed to the IdP by the SP if he

is not a registered user. In such a scenario, the user needs to do a single

registration at IdP as illustrated in Figure 3.2 of section 3.1.2 of chapter 3, by

providing the User-ID and Password. On successful registration, IdP

provides the user with a Crypto-token/Mobile-token containing the security

parameters. The server ID’s of all the participating service providing servers

and the details of their services are also communicated to the user via an e-

mail. The login and authentication phase of the proposed scheme runs on the

IdP and the service providers redirect the users requesting their services to

the IdP for authentication. A user who wants to access the services of a

particular SP, tries to login to the provider’s web page by submitting the

login request. The user is re-directed to IdP and authentication module

within the IdP executes the proposed protocol. The second authentication

204

factor of the proposed protocols contains only a few hashed values generated

from user’s ID, password and the secret key of the server. It does not contain

any digital signature which is generated by encrypting the hash of a value by

the sender’s private key. This requires the implementation of public key

infrastructure (PKI). The proposed protocols do not require the support of

PKI.

The protocols do not require the server to maintain a password verification

table. The registration and authentication process flow is illustrated in Figure

4.1.

In a Single Sign-on platform, if users are authenticated at one service, they

do not have to re-enter their credentials and repeat the authentication process

to log on to access another service (Hillenbrand et al. 2005). Most of the

existing Single sign-on (SSO) solutions typically rely on browser cookies for

maintaining state and exchanging identity information. Cookie poisoning is

an authentication attack, which involves the modification of cookies of an

authorized user to gain unauthorized access to resources. Hence cookies are

not a reliable mechanism for sending authentication information. Browser

cookies are not transferrable across DNS domains and hence the browser

cookies, created from one security domain, for security reasons (same origin

policy) can’t be read from another one (Trosch 2008). Therefore, to solve

cross domain SSO, proprietary mechanisms to pass the authentication data

between security domains have been used. This solution which works fine

for a single enterprise, becomes impractical when different organizations

using different mechanisms collaborate. The proposed brokered

authentication protocol uses SAML to exchange authentication information

and the information is contained in an encrypted SAML token. To maintain

205

information about the sessions of authenticated users, SAML protocol uses

session cookies which contains only information such as session ID of the

user and the domain information of the IdP

The kind of Authentication Broker required by the discussed brokered

authentication scheme is a Security Token Service (STS) that issues SAML

tokens. The SAML protocol is an open standard for exchanging security

information between hosted SAML enabled applications (OASIS 2005).

SAML enables a user who has established and verified his identity in one

domain to access services hosted in another domain.

In the proposed brokered authentication scheme, IdP is representative of the

STS who does the role of the authentication authority and also provides SSO

functionality using the SAML tokens. Here both IdP who authenticates the

user and issues the SAML assertion and the Service Providers who accepts

the SAML assertions from IdP should be enabled with SAML. The IdP

carries out the two-factor authentication protocol exchange with the user

who is re-directed to the IdP by the Service Provider for the authentication

process. If the authentication is successful, IdP generates a signed SAML

token and the user is redirected to the service provider. The service provider

verifies the SAML token and ascertains the origin and the content of the

response, before providing the requested service.

To understand how SAML provides Single Sign-on functionality, let us

assume that there are two service providers viz. Safe-Cloud1.com and Safe-

Cloud2.com whose services the user Ann would like to access. The Identity

Provider who provides the authentication service operates form the domain

Safe-Cloud-IdP.com. The following scenario will explain how SSO works

206

when Ann tries to access the services of Safe-Cloud1.com and Safe-

Cloud2.com during the same session.

 Ann visits Safe-Cloud1.com and attempts to login to access the

services. The Service Provider Safe-Cloud1.com generates a SAML

authentication request and re-directs Ann’s browser to IdP site viz. Safe-

Cloud-IdP.com. Ann enters her credentials at the IdP’s login page. After

successful authentication, Ann is again re-directed to Safe-Cloud1.com along

with the SAML assertion generated by the IdP. The assertion contains the

authentication information of Ann. IdP creates a session for Ann and

generates a session cookie to identify the user (Shibboleth 2015). This

cookie is stored in Ann’s browser. [Cookies are name-value pairs that is

stored in a user’s browser and it is created by the web application with which

a user has communicated. Every cookie has a domain associated with it,

which is the domain of the application that created the cookie and a cookie

created by one domain cannot be accessed by another domain. Once a cookie

corresponding to a particular domain is created and placed in the browser of

a user by that domain, whenever the user’s browser makes an HTTP request

to the corresponding domain all the cookies associated with that domain are

also sent along with that request.]

 Later, during the same session, Ann opens another tab in her browser

and tries to access the services of Safe-Cloud2.com web site. Now, when

Ann tries to login as in the previous case, she will be re-directed to to the

IdP’s site Safe-Cloud-IdP.com and with this re-direct, the cookies set by

IdP’s domain will also be sent. The IdP receives cookies and understands

that Ann has an existing session in IdP. In such a scenario, Ann will not have

to undergo the authentication process again and IdP sends an assertion and

207

re-directs Ann’s browser back to Safe-Cloud2.com. Ann is logged into Safe-

Cloud2.com without having to enter her credentials again.

Identity Provider

`

SP1User PC 1. Registration Request

1a. Redirects Registration

Request

1. Registration Request 1a.

Redirects

Registration

Request

2
.
R

e
g
is

tr
a
ti
o
n

C
o
n
fi
rm

a
ti
o
n

1
. R

e
g
is

tra
tio

n

R
e
q
u
e
s
t

6. Authentication Response

6. Authentication Response

3. Service Request

3. Service Request

AS

4. Authentication

Request

5
.
U

s
e
r

A
u

th
e
n

ti
c
a
ti

o
n

7. Service Response

7. Service Response 4.

Authentication

Request

RS
AS

SP 2

SP 2

SP 1

Figure 4. 1 Brokered Authentication - Registration and Authentication

Process Flow

4.1.3 A Strong Single Sign-on User Authentication Scheme for Cloud

Based Services

Phases of the Proposed Protocol: The proposed protocol consists of three

phases viz., Registration, Login and Authentication & and the Password

change phase. The notations used are listed in Table 4.1.

208

Table 4.1 Notations Used in the Protocol (Brokered&Crypto-Token)

IdP, SP, Sj Identity Provider, Service Provider in the cloud, j th SP

Ui, IDi, PWi i th User, Unique Identification of Ui, password of Ui

SID, SIDj ID of the Identity Provider, ID of the jth SP

G, g0, n Cyclic group, generator of cyclic group G, Prime Number

Chosen by Ui which is the order of G

Y Secret key of server of IdP

R Random number generated by Crypto-token

h(.) , ⊕ , || One-way hash function, XOR operation, Concatenation

Operation

m1, n1 Nonce values

Registration Phase

To register for the services of a Service Provider ‘SP’, the user Ui clicks the

“register” button at the SP’s home page. SP re-directs Ui to the registration

page of IdP. The registration process illustrated in Figure 4.2 can be

explained as follows:

R1: Ui generates a cyclic group G of prime order n and selects a generator

g0.

R2: Ui selects his identity IDi and Password PWi. Computes b = h(PWi),

209

k = g0
b mod n.

R3: Ui submits h(IDi), k to IdP through a secure channel. RS of IdP checks

the availability of h(IDi). Otherwise Ui is prompted to select a new IDi.

R4: Upon receiving h(IDi), k, IdP computes

Bi = h(h(IDi)|| h(SID||h(y))); Ji = h(h(IDi) ||h(y)) ⊕ k;

Ci= h(h(IDi)|| h(h(IDi) ||h(y)) ||k); Ei = Bi ⊕ h(h(IDi) ||h(y)). Here h(y) is the

hash of the secret key ‘y’ of the IdP which is known only to the IdP.

 Ui selects IDi, PWi.

Computes k = g0
h(PWi

)

mod n
Sends h(IDi), k

 IDi available

Request Rejected
Select new IDi

N

Y

Computes Bi= h(h(IDi) ⊕h(SID||h(y)) ;

Ji = h(h(IDi) ||h(y))⊕ k ; Ci = ⊕ h(h(IDi)||

h(h(IDi) ||h(y)) ||k); Ei = Bi ⊕h(h(IDi) ||h(y))

Ui stores g0 ,n in the

Crypto-token

Stores Ji , Ci , Ei

,h(.) in crypto-token

Sends Crypto-token to Ui

IdP

Figure 4.2 Registration Phase of Brokered-Authentication Using Crypto-Token

IdP sends a registration confirmation message to Ui along with the list of

service providers registered under its domain. IdP stores {Ji, Ci, Ei, h(.)} into

crypto-token and sends to the user Ui via a secure channel such as a trusted

courier. Ui stores go, n in the crypto-token which now contains {Ji, Ci, Ei,

h(.), go, n}

210

Login and Authentication Phase

Login and authentication phase as shown in Figure 4.3 can be explained as

follows:

LA1: Ui requests for login to the Service Provider. It is assumed that there is

no existing session between SP and Ui. SP redirects Ui to the IdP with a

SAML assertion containing an authentication request and redirects the user

(HTTP Redirect) to the IdP. The authentication request contains the

information regarding the SP who initiated the request. The request also

contains the Assertion Consumer Service URL (ACS) to which the response

should be send.

LA2: IdP displays the login page and prompts Ui to enter his identity. Ui

enters IDi and IdP verifies whether IDs = h(IDi) exists in his database. If so

IdP generates a random nonce m1 and sends <h(h(IDi), m1)> to Ui. Ui is

prompted to proceed with the step LA3. Otherwise Ui is considered to be not

registered.

LA3: IdP prompts Ui to insert the crypto-token. Ui inserts the crypto-token

and keys in his password PWi and the server ID, ‘SIDj’ of the service

providing server Sj.

LA4: Crypto-token computes b = h(PWi), k* = g0
b mod n.

LA5: Crypto-token computes h(h(IDi) ||h(y))* = Ji ⊕ k* and

211

Ci* = h(h(IDi)|| h(h(IDi) ||h(y))* || K*) and checks whether it is equal to the

Ci stored in the crypto-token. If equal, the crypto-token generates the login

message as follows. Otherwise the session is terminated.

LA6: Crypto-token selects a large random value ‘r’ and generates a nonce

n1 = g0
r.

LA7: Crypto-token computes Pij = Ei ⊕h(h(h(IDi) ||h(y))* || n1);

Bi = Ei ⊕ h(h(IDi) ||h(y))*; CIDi = Ci ⊕h(Bi || n1|| SIDj) ; Mi = h(Pij || Ci || Bi

|| n1|| m1) ; t = g0 ⊕ h(h(IDi) ||h(y))* ;

Zi = (r- CIDi) ⊕ h(h(IDi) ||h(y))* ⊕ m1.

LA8: Crypto-token sends the login message, (CIDi, Pij, Mi, t, Zi) to IdP

LA9: On receiving (CIDi, Pij, M, t, Zi), IdP computes

r = (Zi + CIDi) ⊕ h(h(IDi) ||h(y)) ⊕ m1 where h(IDi) is the value submitted

by Ui in the login page of IdP and h(y) is the hash of IdP’s secret key. IdP

also ensures the freshness of nonce m1.

LA10: IdP computes g0 = t ⊕ h(h(IDi) ||h(y)) *; n1* = g0
r ;

Bi*= h(h(IDi)||h(SID||h(y)) ; Ci* = CIDi ⊕h(Bi* || n1*|| SIDj) ;

LA11: IdP computes Mi *= h(Pij || Ci*|| Bi*|| n1*|| m1) and compares with the

Mi received in the login message. If equal, IdP considers the authentication

of Ui as successful.

LA12: IdP sends a response to the user along with the message

Ti = h(h(IDi) || h(y)) ⊕ h(n1). Ti is verified by the user to ascertain the

freshness of the nonce n1 and to ensure that it is receiving a communication

from its honest communication partner. On successful authentication, server

212

generates a SAML assertion containing the authentication response. IdP

sends the token (SAML assertion) via HTTP POST to the ACS URL

mentioned in the authentication request sent by the SP. The assertion is

verified by the service provider to ascertain that the assertion was issued by

the IdP. If so the SAML token is accepted and the user is allowed to access

the resources. Otherwise the login request is rejected.

213

Figure 4.3 Login and Authentication Phase of Brokered Authentication

Using Crypto-Token

Password Change Phase

214

Password change phase as shown in Figure 4.4 can be explained as follows.

Ui inserts his Crypto-token into the system and enters his IDi, PWi. Ui

requests for a password change.

Ui enters IDi, PWi , “Change

Password”

Ci *= Ci

Request Rejected

N

Y

Computes bnew= h(PWinew) ;knew = g0
bnew mod n;

 Ji =(Ji ⊕ k*) ⊕ knew ;Cinew =h(h(IDi)|| (Ji ⊕ k*) ||knew)

Crypto-token

replaces Ji with Jinew

and Ci with Cinew in

the crypto-token

 Token computes b= h(PWi); k* =

g0
b mod n, Ji ⊕ k*= h(h(IDi)

||h(y))*; Ci *= h(h(IDi)||h(IDi)

||h(y))*||k*)

Enter New Password

Submits PWinew

Password Successfully Updated

Figure 4.4 Password Change Phase of Brokered Authentication Using

Crypto-Token

P1: Crypto-token computes b = h(PWi), k*= g0
b mod n.

P2: Crypto-token computes Ji ⊕ k* = h(h(IDi)||h(y))* ; Crypto-token

computes Ci*= h(h(IDi)|| h(h(IDi)||h(y))*|| k*) and checks whether it is equal

to the Ci stored in the Crypto-token. If equal, Ui is asked to enter the new

password.

P3: Ui submits PWinew. Crypto-token computes bnew = h(PWinew),

knew= g0
bnew mod n.

P4: Crypto-token computes Jinew = Ji ⊕ k* ⊕ knew;

 Cinew = h(h(IDi)|| h(h(IDi)||h(y))*|| knew)

P5: Crypto-token replaces Ji with Jinew and Ci with Cinew in the crypto-token.

215

Security Analysis

Security analysis is carried out to analyze the resistance of the protocol to

various attacks. The proposed protocol is secure against the following

attacks.

i. Security against Replay Attack: The proposed protocol uses nonce

values to resist replay attacks. To successfully launch a replay attack, an

adversary should be able to replay a previous login message {CIDi, Mi, Pij, t,

Zi}. Here Zi = (r- CIDi) ⊕ h(h(IDi) ||h(y)) * ⊕ m1, contains the nonce m1,

which is generated by the server and is unique to that session. Thus for every

session, a unique nonce will be generated by the server and the server will be

expecting that nonce in the message that is send by the user. This nonce m1

retained by the server, will be used to calculate Mi. Assume that an adversary

sends a previous login request containing Zip as Zip = (r- CIDi) ⊕ h(h(IDi)

||h(y)) * ⊕ m1p. Now the nonce generated for the current session is m1c and

‘r*’ = (Zi + CIDi) ⊕ h(h(IDi) ||h(y)) * ⊕ m1. The nonce n1 will be calculated

by the server as n1*= g0
r * and this value will vary from the nonce send by Ui

Also Mi will be calculated by the server as Mi *= h(Pij || Ci*|| Bi*|| n1*|| m1c)

which will not match with the Mi in the reveiced replayed login request and

the server will reject the request. Similarly, the response from the server ie.

Ti = h(h(IDi) || h(y)) ⊕ h(n1), contains the nonce generated by Ui, the

freshness of which will be checked by Ui. These nonce values n1 and m1 are

unique to each session. Also n1 is not send across the communication

channel in the plain text form and hence the possibility of capturing the

session dependent nonce value and creating a valid login request message is

also ruled out.

216

ii. Security against Guessing Attack: The values stored in the crypto-

token includes {Ci, Ei, Ji, h(.), g0, n}. Assume that an adversary guesses a

password PWguess. Then he computes bguess = h(PWguess) and Kguess = g0
bguess

mod p. Now he computes Ci= h(h(IDi)|| h(h(IDi) ||h(y)) || Kguess, Ji = h(h(IDi)

||h(y)) ⊕ Kguess. However, to check the guessed password, the adversary

should know the server’s secret key h(y), which is not stored in the crypto-

token. Neither can it be extracted from the login request send across the

communication channel nor can it be extracted from any of the parameters in

the crypto-token. Similarly, even if the stored information Ei is revealed,

h(h(IDi) || h(y)) is secure, since the adversary needs to know Bi =

h(h(IDi)||h(SID||h(y))) to retrieve the value of h(h(IDi) || h(y)). Obviously the

values g0, n will not provide information required to generate a valid login

request. Hence, from the values stored in the crypto-token, the adversary is

not able to retrieve any information required to generate a valid login

request.

Now, assume that the login message {CIDi, Mi, Pij, t, Zi} send by Ui across

the communication channel is listened to by the adversary. In the message

Pij, CIDi, Mi are all randomized by using nonce values n1 and m1 which is

unique to each session. Also to generate n1, the adversary should have the

knowledge of g0 and r which is not transmitted through the communication

channel. Even if the adversary extracts g0 from the crypto-token, he will not

be able to calculate n1 without knowing ‘r’.

iii. Security against Stolen Verifier Attack: Server does not maintain a

password verifier table which makes the protocol resistant to stolen

verification attack.

217

iv. Security against IdP Spoofing Attack: To impersonate the IdP and

to generate authentication response Ti = h(h(IDi) || h(y)) ⊕ h(n1) on behalf of

the IdP, the adversary should know the secret key ‘y’ of the IdP. This is not

known to the adversary and cannot be extracted either from the crypto-token

parameters {Ci, Ei, Ji, h(.), g0, n} or from the login request {CIDi, Mi, Pij, t,

Zi} message.

v. Security against Malicious Insider Attack: In the proposed scheme,

user submits b= h(PWi), k = g0
b mod n to IdP instead of password in the plain

text form. This prevents the IdP from knowing the correct password and

hence even if the same password is used by the user to login to other servers,

her credentials will be protected from an insider attack.

vi. Security against User Impersonation Attack: If an attacker tries to

impersonate a legitimate user, he should be able to generate a valid login

request on behalf of the user. In the discussed protocol if an attacker

intercepts the login message (CIDi, Mi, Pij, t, Zi) and tries to create a

modified message (CIDi*, Mi*, Pij*, t*, Zi*) that is similar to a valid

message, he will not succeed since the value of nonce ‘n1’ and ‘y’the secret

key of server is not known to him. Also to calculate the values of CIDi*,

Mi*, Pij* he should know Bi = h(h(IDi) || h(SID ||h(y))). Even if he manages

to extract the parameters stored in the crypto-token, to extract Bi from Ei, he

should have the knowledge of user’s password. The values stored in the

crypto-token are created in such a way that even a valid user will not be able

to impersonate another user by extracting values from his crypto-token.

vii. Security against Crypto-token lost Attack: If the adversary steals

the crypto-token containing the parameters (Ci, Ei, Ji, h(.), g0, n), he cannot

retrieve IdP’s master secret ‘y’ or user’s password from the stored value. To

218

obtain the password, the adversary should be able to extract ‘k’ from Ji =

h(h(IDi) ||h(y)) ⊕ k, which is not possible without the knowledge of h(h(IDi)

||h(y)). It is not possible to extract h(h(IDi) ||h(y)) without the knowledge of

Bi, which is not stored within the crypto-token. In addition, to retireve the

password from k = g0
b, where b= h(PWi), the adverasary should solve the

discrete logarithm problem (DLP) as b = DLg0(k). Again the password is

used in the hashed form which is irreversible.

viii. Security against Denial-of-Service Attack: Bombarding the server

with invalid login request messages created by an adversary results in a

denial-of-service attack (DoS). A DoS to a valid user can happen if an

adversary who has got control over the server’s database, modifies the

password or authentication credentials of the user stored by the server. Thus

a DoS attack will prevent legitimate users from accessing resources they are

authorized to access. In the proposed protocol, it is not possible for the

attacker to create login requests without knowing the correct password and

hence the first scenario will not work here. At the client side, password is

checked for its correctness prior to creating a login request and before

modifying the password. In the proposed protocol, a password/verifier table

is not maintained by the server and hence the possibility of attacker

modifying the password of a valid user is also ruled out.

ix. User Anonymity Preserved: The user will send the login request Pij

to the server Sj in each login session. To trace the user, the adversary will

intercept the login message and attempt to extract IDi from the message. The

irreversibility property of one-way hash functions prevents the adversary

from extracting IDi from Pij. More over each login message is made dynamic

by including the nonce n1 which is unique for each login session. Therefore,

219

an adversary cannot identify the person making a login attempt and hence

the proposed scheme preserves user anonymity.

x. Independently Change Password: The scheme allows the crypto-

token holder to change the password without the mediation of the Service

Provider or the Identity Provider. The Crypto-token verifies the legitimacy

of the user before changing the password to prevent unauthorized users from

easily changing the password if they obtain the crypto-token of some other

registered user. Thus only valid user who knows the correct ID and

password, corresponding to the crypto-token can change the password.

Efficiency Analysis

This section analyzes the efficiency of the proposed scheme in terms of the

computational and the communication cost. It is assumed that IDi, PWi, go, n

and nonce values are 128 bits long and the output of hash function is 256 bits

long (SHA-2). Let Th Tx, Te and Tc denote the time complexity for hashing,

XOR, exponentiation and concatenation operations respectively. In the

protocol, the parameters stored in the crypto-token are Ci, Ei, Ji, g0, n and the

memory (E1) needed in the crypto-token is 1024 (3*256 +2 *128) bits.

Communication cost of authentication (E2) includes the capacity of

transmitting message involved in the authentication. The capacity of

transmitting message (CIDi, Mi, Pij, t, Zi, M1, Tj) is 1664 (6*256 + 1*128)

bits. Total time taken by the user and IdP for executing all operations during

registration is considered as the computation cost during registration phase

(E3) and is equal to 7Th+ 2Tx+ 1Te + 5Tc.Computation cost of the user (E4)

and the IdP (E5) during login and authentication is the total time of all

operations executed by the crypto-token and IdP during this phase. During

authentication, the crypto-token performs 7 hash functions, 7 XOR, 2

220

exponentiations and 9 concatenations making E4 equal to 7Th+ 7Tx+ 2Te +

9Tc. Similarly, E5 is 7Th+ 6Tx+ 1Te + 8Tc. The computation cost of password

changing phase (E6) which is the total time of all operations executed in this

phase by the user is equal to 6Th+ 2Tx+ 2Te + 3Tc. Comparison with other

protocols are shown in Table 4.2.

Table 4.2 Comparison of Computational Efficiency with Other Protocols

 E1 E2 E3 E4 E5 E6

Crypto-token

based Protocol

1024

bits

1664

bits

7Th+ 2Tx+

1Te + 5Tc

7Th+ 7Tx+

2Te + 9Tc

7Th+ 6Tx+

1Te + 8Tc

6Th+2Tx

+2Te

+3Tc.

Choudhary et

al. [2011]

1024

bits

1920

bits

6Th + 3Tx +

1Te + 2Tc

10Th +2Tx+

1Te + 3Tc

8Th+1Tx +1Te

+3Tc.

4Th+4Tx

Jaidhar [2013] 1024

bits

1664

bits

5Th + 5Tx +

1Te + 5Tc

6Th + 2Tx +

9Tc+2Ts +1Td

5Th+1Tx+

8Tc+2Td

+1Ts+1Te

3Th + 2Tx

+ 3Tc

Rui Jiang

[2013]

768

bits

1152

bits

4Th + 1Tx +

1Te + 1Tc

7Th + 1Tx +

4Tc+1Td+1Te

7Th+

5Tc+1Ts+1Te

18Th +

3Tx +

11Tc+2Ts

+1Td +4Te

Results of comparison of computational efficiency demonstrate that the

proposed protocol for brokered authentication using Crypto-token is

comparable with similar protocols in terms of computation costs during

registration, login & authentication and password change phase. In the case

of the proposed crypto-token based protocol, the security of password send

to the server during registration, is enhanced by obfuscating the password,

by exponentiating the password to the power of the generator of a cyclic

221

group. In this protocol, the research is exploiting the difficulty in solving

discrete logarithm problem for cyclic groups of the form Zn where ‘n’ is a

very large odd prime number. Though these computations increase the

computation cost of the protocol and affects total computational time, the

protocol aids in providing enhanced security. In such a scenario, it can be

mentioned in the Service Level Agreement between the IdP and the Service

Providers that the authentication protocol provided by the IdP, provides

secure authentication of users that requires a certain time period for

execution. The authentication protocol can be adopted by those service

providers to whom the time duration for execution of authentication protocol

is agreeable.

Scyther Analysis

The formal analysis of protocol is done using Scyther tool. The strength of

the protocol is verified using Scyther tool which ascertains the strength by

evaluating the resistance of the protocol to various attacks. Scyther uses

strand space model for formalizing logic and uses Dolev-Yao model for

modelling the network, which caters to the requirement of a mathematical

approach for validating the protocol. The analysis results of login phase are

shown in Figure 4.5.

The protocol is written in SPDL as follows:

//Login & Authentication Phase of Brokered Authentication Protocol Using

Crypto-Token

const exp: Function; hashfunction h;

const XOR: Function; const h1: Function; const diff: Function; const

mod:Function;

protocol ssauth (I,R){

222

role I {

const IDi, x, y,r,g, n,SID,SIDj,l,k,PWi,t;

fresh n1; var m1;

macro k = mod(exp(g,h(PWi)),n); macro n1= exp(g,r);macro l

=h(h(IDi),h(y));

macro CIDi = XOR((h(h(IDi),l,k)), h(h(h(IDi), h(SID)), n1, SIDj));

macro Bi= h(h(IDi), h(SID,h(y)));

recv_1(R,I, h(IDi), m1);

send_2(I,R, (XOR((h(h(IDi), l, k)),(h((h(h(IDi),h(SID))),n1, (SIDj), //CIDi

(h((XOR((XOR((h(h(IDi),h(SID))),(l))),(h(l,n1)))),(h(h(IDi), l, k)),

(h(h(IDi),h(SID))),n1), //Mi

(XOR((XOR((h(h(IDi),h(SID))),(l))),(h(l,n1)))), //Pij

(XOR((g),l)), //t

(XOR((diff((r),(XOR((h(h(IDi), l, k)),(h((h(h(IDi),h(SID))), n1, (SIDj)

)))))),l),m1))))))); //Zi

recv_3(R,I, h(h(h(IDi),h(y)),h(n1)));

claim_i1(I,Secret, (XOR((XOR((h(h(IDi),h(SID))),(l))),(h(l,n1))))); //claim

for pij

claim_i2(I,Secret,XOR((h(h(IDi), l, k)),(h((h(h(IDi),h(SID))),n1, (SIDj)

)))); //claim for CIDi

claim_i3(I,Secret, XOR((diff((r),(XOR((h(h(IDi), l, k)),(h((

h(h(IDi),h(SID))), n1, (SIDj))))))),l,m1)); //claim for Zi

claim_i4(I,Secret,h((XOR((XOR((h(h(IDi),h(SID))),(l))),(h(l,n1)))),(h(

h(IDi), l, k)), (h(h(IDi),h(SID))), n1)); //claim for Mi

claim_i5(I,Secret, XOR((g),l)); //claim for t

claim_i7(I,Secret, l);

claim_i8(I,Secret,n1);claim_i9(I,Niagree);claim_i10(I,Nisynch);

claim_i13(I,Secret,SID);claim_i11(I,Secret,IDi);claim_i14(I,Secret,h(PWi));

claim_i12(I,Secret,k); claim_i15(I,Secret,y);

}

role R{

223

const IDi,x,y,r,g,SID,n1,PWi,t, SIDj,n;

var n1; fresh m1;

send_1(R,I, h(IDi), m1);

recv_2(I,R, (XOR((h(h(IDi), l, k)),(h((h(h(IDi),h(SID))),n1, (SIDj), //CIDi

(h((XOR((XOR((h(h(IDi),h(SID))),(l))),(h(l,n1)))),(h(h(IDi), l, k)),

(h(h(IDi),h(SID))), n1), //Mi

(XOR((XOR((h(h(IDi),h(SID))),(l))),(h(l,n1)))), //Pij

(XOR((g),l)), //t

(XOR((diff((r),(XOR((h(h(IDi), l,k)),(h((h(h(IDi),h(SID))), n1, (SIDj)

)))))),l),m1))))))); //Zi

send_3(R,I, h(h(h(IDi),h(y)),h(n1)));

claim_r14(R,Weakagree);

claim_r1(R,Secret,(XOR((XOR((h(h(IDi),h(SID))),(h(IDi,h(y))))),(h(h(IDi,h

(y)),n1))))); //claim for pij

claim_r2(R,Secret,XOR((h(h(IDi), l, k)),(h((h(h(IDi),h(SID))),n1, (SIDj)

)))); //claim for CIDi

claim_r3(R,Secret, XOR((diff((r),(XOR((h(h(IDi), h(IDi,h(y)), k)),(h((

h(h(IDi),h(SID))), n1, (SIDj))))))),h(IDi,h(y),m1))); //claim for Zi

claim_r4(R,Secret,h((XOR((XOR((h(h(IDi),h(SID))),(l))),(h(l,n1)))),(h(

h(IDi), l, k)), (h(h(IDi),h(SID))), n1)); //claim for Mi

claim_r5(R,Secret, XOR((g),l)); //t

claim_r11(R,Alive); claim_r6(R,Niagree); claim_r7(R,Nisynch);

claim_r9(R,Secret,n1); claim_r13(R,Secret,SID); claim_r10(R,Secret,IDi);

claim_r12(R,Secret,k);claim_r13(R,Secret,m1);

}}

224

Figure 4.5 Scyther Analysis of Brokered Authentication Using Crypto-

Token

Formal Analysis using Scyther

To perform the formal security analysis, this section focuses on analyzing

the parameters IDi, PWi, k, y, SID, Pij, CIDi, Zi, Mi, t, l, n1 which are used in

the proposed authentication scheme, to check their vulnerability to attacks.

There are various claims made as part of the security analysis and these

claims are validated by executing and analyzing the proposed scheme using

225

Scyther. The “No attack” results shown in Figure 4.5 proves that Scyther

validates all the claims made as part of security analysis.

Claim 1: The proposed scheme is designed to ensure the secrecy of the user

ID viz. IDi, throughout the registration and authentication process.

The user ID, IDi is submitted during registration in the hashed form to IdP.

This is used along with password and secret key ‘y’ of IdP to generate the

secret parameters to be stored in the Crypto-token. During the authentication

process, IDi in hashed form is submitted to server and server verifies

whether the user is a registered user. If so the user is prompted to proceed

with the login process and the crypto-token generates the login request

(CIDi, Mi, Pij, t, Zi). In the login request, all the parameters include the hash

of IDi which is concatenated and XOR-ed with other parameters, which

makes it difficult to extract IDi. The claim that IDi is safe is verified by

Scyther. A “No Attacks within Bounds” results for the Secrecy claim,

claim_i11(I, Secret, IDi) is indicative of the fact that whenever a run of the I

role is completed with an honest communication partner, the value IDi

transmitted by I in the run will not be revealed to the adversary. Therefore, it

can be said that the claim secret IDi of the role I holds.

Claim 2: The proposed scheme is designed to ensure the secrecy of the

variant of password ‘k’ throughout the registration and authentication

process.

The password is never transmitted in the plaintext form either to the IdP or to

the cloud server. It is converted into a modified form ‘k’, by finding the hash

of the password viz. ‘b’ and then raising g0 (generator of a cyclic group) to

the power of ‘b’. Now to obtain the password from ‘k’, we need to solve the

226

discrete logarithm problem. During authentication process, password is used

to generate login request. It is not sent to cloud service provider, but it is

used to check the stored password in the crypto-token and to calculate the

value h(h(IDi)||h(y)) which is required to generated the login request (CIDi,

Mi, Pij, t, Zi). Also the password is not stored anywhere other than in the

crypto-token. Scyther results validate the claim that ‘k’ remains a secret.

Claim 3: The proposed scheme requires ‘y’ to be a secret

 ‘y’ is the secret key of the IdP which is used in its hashed form to compute

the parameters to be stored in the crypto-token . ‘y’ is also used to generate

the values r, g0, Bi* which are used to verify the login request send by the

user during the login and authentication phase. During the transmission of

the parameters from the IdP to the user as well as during the transmission of

login request from the user to the IdP, ‘y’ should not be revealed to the

adversary and the secrecy claim for ‘y’ is validated by Scyther.

Claim 4: The proposed scheme requires that Pij is secret

Pij is one among the parameters in the login request sent from the user to the

cloud server, which contains the user ID, the secret key of the IdP and the

nonce generated by the user (crypto-token). Pij should remain a secret during

transmission. A “No Attacks within Bounds” results for the Secrecy claim,

claim_i1(I, Secret, (XOR((XOR((h(h(IDi),h(SID))),(l))),(h(l,n1))))) is

indicative of the fact that whenever a run of the I role is completed with a

honest communication partner, the value Pij transmitted by I in the run will

not be revealed to the adversary. Therefore, it can be said that the claim for

Secrecy of Pij by the role I holds.

Claim 5: The proposed scheme requires that CIDi is secret

227

CIDi is one among the parameters in the login request sent from the user to

the server, which is required to generate the value Mi * by the server. Mi * is

used to verify the authenticity of the user. CIDi contains the user ID, the

secret key of the IdP the nonce n1 generated by the user (crypto-token) and

the service provider Id, SIDj. CIDi should remain a secret during

transmission. The claim that CIDi is safe is verified and Scyther validates

that Secrecy of CIDi holds.

Claim 6: The proposed scheme requires that Zi is secret

Zi is a parameter in the login request sent from the user to the server and it is

used by the server to retrieve the value of random number ‘r’, which is used

to generate the nonce ‘n1*’. ‘n1’ in turn is required to verify the authenticity

of the user. Zi should not be revealed to the adversary during transmission.

The claim that Zi is secret is verified and validated by Scyther.

Claim 7: The proposed scheme requires that Mi is secret

Mi is a parameter in the login request, which is used by the server to verify

the authenticity of the user. The server re-calculates the value of Mi as Mi* =

h(Pij||Ci *||Bi*||n1*|| m1) and compares with the received Mi and an equality

of Mi and Mi* ascertains the authenticity of the user. Mi should not be

revealed to the adversary during transmission. The secrecy claim for Mi is

verified and validated by Scyther.

Claim 8: The proposed scheme requires that l is secret

l is written as a macro since it is repeatedly used in the calculation of various

parameters. l is calculated as h(h(IDi)||h(y)) and it is used in calculating the

values (Ji, Ci, Ei) stored in the crypto-token as well as in the calculation of

the parameters (Pij, Bi, CIDi, Zi, t, Mi) required to generate the login request

228

to be send to the server. l should remain safe during transmission and a “No

Attacks within Bounds” results for the Secrecy claim, claim_i7(I, Secret, l) is

indicative of the fact that the claim for Secrecy of l holds.

Claim 9 The proposed scheme requires that the nonce n1 is secret

n1 is the nonce generated by the crypto-token and is unique to each session.

n1 is used to calculate the parameters Pij, CIDi, Mi included in the login

request. Since the value of n1 is unique to each session, the login request will

also be different for each session. n1 should not be revealed to the adversary

and Scyther validates the claim that n1 is safe.

Claim 10: The scheme assures Niagree between the user (crypto-token) and

the cloud server

Niagree claim enforces that the sender and the receiver agree upon the values

of variables exchanged during the running of the proposed scheme. During

the operation of the proposed scheme, the user and server can send data

safely and the correctness of the claim is justified by the analysis results.

Claim 11: The proposed scheme holds Synchronization during the

authentication process

Ni-Synch or Non-Injective Synchronization property requires that the

corresponding send and receive events (1) happened in the correct order and

(2) have the same contents. Ni-Synch is valid if all actions before the claim

are performed as per the description of the proposed scheme. The proposed

protocol satisfies this claim as indicated by the result of Scyther analysis.

229

4.1.4 A Mobile Based User Authentication Scheme without Verifier

Table for Cloud Based Services

The process flow of the registration and authentication stages of the mobile-

token based protocol are depicted in Figure 4.1. The proposed architecture

for brokered authentication includes four participants’ viz. a Registration

Server (RS), an Authentication Server (AS), Service Provider’s (SP’s) and

users’. The RS and AS are in the same trusted domain and together they

provide the functionality of the Identity Provider (IdP). It is assumed that all

the service providers are registered with the IdP and they are reliable. The

users and SPs, needs to register with the IdP. A user who attempts to access

the services of a SP without registering at IdP, will be redirected by the SP to

the IdP as shown in Figure 3.2 in section 3.1.2 of chapter 3. After

registration, the user can access the services of different Service providers

(SP).

Phases of the Proposed Protocol: The registration and the authentication

phase of this protocol is executed by the IdP and the authentication response

is send as a SAML assertion to the service provider who re-directed the user

to the IdP. The proposed protocol consists of three phase’ s viz., User

registration phase, Login & Authentication phase and Password change

phase. The mobile should have Internet connectivity during registration and

authentication phase. The notations used are listed in Table 4.3.

230

Table 4.3 Notations Used in the Protocol (Brokered & Mobile-Token)

IDi, PWi Identity, Password of user Ui.

S Secret key of IdP

Rand Random number

r1, r2 Nonce values

h(.) , ⊕ , || hash function, XOR operation, Concatenation

Operation

Registration Phase

 During the registration process, user submits his credentials to IdP. IdP

generates a set of security parameters using the submitted the credentials and

his key value. IdP stores the security parameters within a secret file which is

downloaded and stored in to a secure location within the user’s mobile

phone. The secret file is encrypted using the password (PBE) of the user

which ensures that only a valid user will be able to store the token into his

mobile phone and use the same to avail secure access to the cloud services.

The registration process illustrated in Figure 4.6 can be explained as follows:

R1: The user Ui clicks the “Register” button at the SP’s web site. SP

redirects Ui to the registration page of the IdP.

R2: IdP prompts Ui to download a mobile app into his smart phone from

the URL specified by IdP. The app contains a scanning application to scan

the QR codes generated by the IdP. The mobile app provides support for

completing the registration and authentication process and for changing the

user password.

231

R3: IdP prompts Ui to submit her identity IDi and PWi. The user submits

h(IDi) and h(PWi.) to IdP through a secure communication channel.

R4: IdP checks whether h(IDi) already exists in its user table. If so Ui is

prompted to select a new IDi.

R5: IdP generates a random number ‘rand’ and computes the parameters Vi,

Ki, Mi as,

Vi = h(h(IDi)|| h(PWi)) ⊕ rand, Ki = h(PWi) ⊕ h(h(IDi)|| h(S)),

Mi = Ki ⊕ h(h(IDi) || h(PWi))

Here ‘S’ is the server’s (IdP) secret key which is a unique value and ‘rand’ is

the random value generated by the IdP for each user and is used only during

the registration phase of the user.

R6: IdP creates a file containing the authentication parameters Vi, Ki, Mi and

the file is encrypted by Password Based Encryption (PBE) using password of

Ui and a salt value.

R7: IdP generates a QR code embedding ‘rand’, Service Provider URL, Salt

and the link for downloading the secret file.

R8: The QR code will be displayed on the client PC and the user will have to

continue the registration process using her mobile phone.

R9: The mobile part of the registration phase commences from this step.

During the execution of this phase, the mobile should have internet

connection. The app, invokes the scanning application, and the user can scan

the QR code. The app will retrieve ‘rand’, salt, the service provider URL and

the link to download the secret file.

232

R10: The secret file, which is in an encrypted form, will be downloaded. The

user will be prompted to enter IDi, PWi. The app attempts to decrypt the file

using password given as input by the user and the salt value read from the

QR code. If the password does not match, then the registration is considered

unsuccessful and the mobile token will be removed from the phone. If the

decryption is successful, the secret file contents can be accessed.

R12: When the user touches the register button in the interface provided in

the mobile app, mobile app, calculates Vi’= h(h(IDi’) || h(PWi’)) ⊕ rand

where IDi and PWi are values entered by the user Ui via the mobile interface

and ‘rand’ is the value read from the QR code. The calculated Vi’ is

compared with the Vi stored in the mobile token and if equal, the registration

is considered successful. The secret file will be permanently stored into a

secure location within the phone’s storage and will serve as a mobile token.

A communication regarding successful verification is transmitted from the

mobile phone to the IdP and Ui will get the “Registration Successful”

message in both the phone and the IdP’s page. Once the registration is

successfully done, the user Ui can access the services of different service

providers. IdP stores the user identity h(IDi) and profile information such as

first name, last name and email address in its user table. If registration is not

successful, the downloaded secret file will be deleted from the phone.

233

Figure 4.6 Registration Phase of Brokered-Authentication Using Mobile-

Token

Login and Authentication Phase

As shown in Figure 4.7, the user Ui via his browser attempts to access a

protected resource of a Service Provider (SP). It is assumed that, the browser

at this point does not have an established session with the SP. On receiving

the request from Ui, SP generates a SAML assertion containing an

authentication request and redirects the user (HTTP Redirect) to the IdP. The

authentication request contains the information regarding the SP who

initiated the request and the ID of the SSO service (IdP). The request also

234

contains the assertion Consumer service (ACS) URL to which the response

should be sent. IdP checks for a valid session with the browser by verifying

whether a session cookie created in the IdP’s domain is available in the

browser or not. If there is no existing session between the browser and the

IdP, then IdP generates a login session and authenticates the user by

executing the authentication phase, as illustrated in Figure 4.7. The user uses

his password and the parameters stored within the mobile token deployed in

the mobile phone, to authenticate himself to the IdP. The procedure can be

explained as follows:

L1: Identity Provider (IdP) displays the login page and prompts the user to

enter user’s identity (IDi) and Password (PWi). The values are sent over the

communication channel as h(IDi) and h(PWi)). IdP checks whether h(IDi)

exists in its database or not. If there is no entry, then Ui is not a registered

user. Otherwise IdP calculates:
Kidp = h(PWi) ⊕ h(h(IDi) || h(S)), C1 = h(h(IDi) || h(PWi)),

B1 = h (Kidp || h(C1 ⊕ r1)) where ‘r1’ is a nonce value generated by IdP.

L2: The random nonce r1 and challenge B1 ie < B1, r1> is send to the user Ui,

via a QR code. The mobile app invokes the scanning application and scans

the QR code to retrieve < B1, r1>.

L3: The mobile app computes C2 = Mi ⊕ Ki, where Mi and Ki are values

stored in the mobile token. App computes B1‘= h(Ki || h(C2 ⊕ r1)) where ‘r1’

is retrieved from the QR code and checks whether

235

Figure 4.7 Login and Authentication Phase of Brokered Authentication

Using Mobile-Token

 B1‘= Challenge B1, received from IdP. If so, mobile app considers the

message as being received from an authenticated source and continues with

the following steps. This step is included to avoid the possibility of phishing

attack, since only the server which holds the secret key h(S) of IdP will be

able to generate this message.

236

L4: Mobile app generates a nonce r2 and computes B2 = C2 ⊕ B1’ ⊕ r2, K =

HMAC (Ki, B2) where Ki is the value stored in the mobile token. Mobile app

sends <K, r2>to IdP.

HMAC is a keyed hash function and Ki serves as the key which is used to

encrypt the message B2.

L5: IdP on receiving the message K, computes B2’ = C1 ⊕ B1 ⊕ r2 and

 K’ = HMAC (Kidp, B2’).

IdP recalculates the HMAC value by using Kidp as the key and B2’ as the

message. Since key Ki which is equal to Kidp, is known only to the user, the

value K would have been calculated only by the user.

L6: IdP checks whether K‘is equal to the received K. If equal IdP

considers the user as authenticated and that the integrity of message is

maintained. Otherwise the login request is rejected. IdP sends a successful

authentication message with < h(Kidp || r2)> to Ui . Ui verifies the freshness of

the nonce and compares h(Ki || r2) with the received < h(Kidp || r2)> and

ascertains that the response message is from a honest server.

L7: IdP sends a response to the user and on successful authentication

generates a SAML assertion containing the authentication response. IdP

sends the token (SAML assertion) via HTTP POST to the ACS URL

mentioned in the authentication request sent by the SP. The signed assertion

which is received by the service provider is verified to ascertain that the

assertion was issued by the IdP. If so the SAML token is accepted and the

user is allowed to access the resources. Otherwise the login request is

rejected.

237

Password Change Phase

The password change phase illustrated in Figure 4.8 is invoked when the

user wishes to change his password without the intervention of the IdP or the

SP and is carried out as follows:

P1: User enters his identity (IDi) and Password (PWi) and executes the

“Password Change” request. The mobile app computes Mi
’ = Ki ⊕ h(h(IDi)||

h(PWi)) and checks if it is equal to stored Mi in the mobile-token. If equal,

the mobile app prompts the user to enter the new password ‘PWinew’.

Otherwise the “password change” request is rejected.

P2: The app calculates Kinew = h(PWinew) ⊕ Ki ⊕ h(PWi). Then the app

computes Mi new = Kinew ⊕ h(h(IDi)|| h(PWi)), Vi new = h(h(IDi)|| h(PWinew))

⊕ Vi ⊕ h(h(IDi)|| h(PWi)) and the app replaces the existing values in the

mobile-token with the new values.

Ui enters IDi, PWi , “Change Password”

Mi ’= Mi

Request Rejected

N

Y

Computes kinew = h(PWinew)⊕Ki ⊕ h(PWi); ; Minew

=kinew ⊕ h(h(IDi)||h(PWinew))

Mobile-app replaces

Ki with kinew and Mi

with Minew in the

mobile-token

app computes Mi’=
Ki ⊕

h(h(IDi)||h(PWi))

Enter New Password

Submits PWinew

Password Successfully Changed

Figure 4.8 Password Change Phase of Brokered Authentication Using

Mobile-Token

238

Security Analysis

i. Security against Guessing Attack: The aim of this attack is to find

out the password of the user. One way in which this attack can be launched

by an adversary is by stealing the verifier table at the server and trying to

guess the passwords corresponding to the stored hashes. This scenario is not

possible in the proposed scheme, since the adversary does not maintain a

verifier table.

Another way of launching the dictionary attack is by trying to guess the

password from the parameters stored in the mobile token. Assume that the

adversary manages to get the mobile token containing <Vi, Ki, Mi, h(.)>. Now

he guesses a password PWguess and computes Ki = h(PWguess.) ⊕ h(h(IDi)||

h(S)). Then he should have the knowledge of the server’s secret key ‘S’ to

verify whether he is getting the Ki stored in the token. Again, if the adversary

computes Vi’ = h(h(IDi)|| h(PWguess.)) ⊕ rand, without the knowledge of

‘rand’ which is not stored within the mobile-token, he will not be able to

verify the guessed password.

ii. Security against Replay Attack: The proposed authentication

protocol uses nonce values ‘r1’ and ‘r2’generated by the server and user to

address the issue of replay attack. The nonce values are unique to a particular

session and is included in the messages exchanged between the user and the

server. Assume that an adversary intercepts the message B1, K exchanged

between the user and the server and tries to replay it a later time. However

the attack will fail because B1 = h(Kidp || h(C1 ⊕ r1)) and K = HMAC(Ki ,

B2) are computed using the nonce values ‘r1’ and ‘r2’ which are checked for

freshness by the receiver.Similarly, the nonce ‘r2’ generated by Ui is send

239

back in the response message h(Kidp || r2), the freshness of which is verified

by Ui.

iii. Security against Server Spoofing Attack: For an adversary to

masquerade as a legal service provider, he must be able to generate the

challenge B1 = h(Kidp || h(C1 ⊕ r1))) . To generate Kidp in the challenge he

should have the knowledge of user’s password and server’s secret ‘S’ which

is not known to the adversary.

iv. Security against Insider and Stolen Verifier Attack: Insider attack

is launched by an administrator who deliberately leaks secret information

resulting in security flaws of the authentication scheme. In the proposed

scheme both during registration and login phase, the h(PWi) is send to the

server. Deriving the password from h(PWi) is infeasible due to

irreversibility property of hash functions. The proposed scheme does not

maintain any verifier table and hence it is secure against stolen verifier

attack.

v. Security against User Impersonation Attack: If an adversary

attempts to impersonate a valid user, he should be able to generate K =

HMAC(Ki , B2) . Ki is the value contained in the user’s mobile token and the

generation of Ki requires the knowledge of the server’s secret key ‘S’. Again

the computation of B2 requires the knowledge of C2 which is calculated using

the parameters Mi and Ki in the mobile token, and is never transitted across

the communication channel in the plain text form. Without access to the

contents of the mobile token and the knowledge of the user’s password, the

adversary will not be able to impersonate a valid user.

Assume that the adversary attempts to capture the link to download the

secret file containing the authentication parameters of a valid user Ui, by

240

standing behind the user during the registration process. He should be able to

do this within a few seconds for which the QR code will be displayed. If the

adversary has the mobile app in his phone, he will be able to capture the link

and download the secret file. However, to decrypt the file and to complete

the registration, he should know the password of the user Ui. Therefore, the

adversary will be able to generate a response to pass the authentication of

IdP only if he knows the user’s password and he is able to access the

contents of the mobile token, and both these conditions being satisfied

simultaneously is fairly impossible within the required time limit.
vi. Security against Man-in-the-Middle Attack: In the proposed

scheme, during the login phase, Ui submits h(IDi) and h(PWi) to the IdP. The

IdP computes a challenge B1 using the submitted values and his own secret

key ‘S’. The challenge B1 = h(Kidp || h(C1 ⊕r1))) is verified by Ui by

computing B1’= h(Ki || h(C2 ⊕ r1))) and comparing B1’ with the received B1.

Only if they match will the user Ui consider the communication as coming

from a valid server and will proceed with the authentication process.

Otherwise the session will be terminated. Now if B1’= B1, then the app will

generate a response K= HMAC(Ki , B2) and the calculation of K requires the

knowledge of Ki and C2 . Ki is a value stored within the mobile-token and C2

is calculated using the challenge received from the server and using the

values stored in the mobile-token. Thus only a valid user knowing the

correct password and having the right mobile-token will be able to generate a

valid response. Again this response is verified by the server using values

generated and known only by the server. Thus both the server and the user

mutually authenticate each other during the authentication phase, which

makes the scheme resistant to man-in-the-middle-attack.

241

vii. Two-Factor Security: In a scenario where, both the user’s mobile

token and his password are stolen, there is no way to prevent the attacker

from masquerading as the user. Hence the security of the proposed two-

factor authentication scheme can be guaranteed when either the mobile-

token or the password is stolen but not both. This security property is

referred to as two-factor security. In the discussed scheme the secret

parameters < Vi, Ki , Mi, h(.)> in the mobile token are difficult to be derived if

the attacker has obtained the user’s password alone and not the mobile token.

Now if the attacker also intercepts the challenge B1 = h(Kidp || h(C1 ⊕ r1))),

it is a laborious process to extract PWi from C1 and Kidp due to the

irreversible property of one-way hash functions. Again if the attacker

intercepts the response K = HMAC(Ki, B2) from the user, it is infeasible to

derive h(S) or h(PWi) from HMAC (Ki, B2) as they are based on irreversible

hash functions.

viii. Mutual Authentication: When the user receives the challenge B1

from the server, it is verified as B1‘= h(Ki || h(C2 ⊕ r1)), where C2 = Mi ⊕

Ki is calculated using parameters Mi and Ki in the mobile token. The app

compares the calculated B1‘with the received B1 and if equal the user Ui

assumes that it is communicating with the server to whom it had sent a

communication at the start of the login phase. A response to this challenge is

generated by using C2 which is extracted from the mobile token. The server

calculates B2’ = C1 ⊕ B1 ⊕ r2 and K’ = HMAC(Kidp ,B2’). The IdP compares

K’ with the K received from the user and a successful verification proves the

authenticity of the user.

242

Efficiency Analysis

This section analyzes the efficiency of the proposed protocol in terms of the

computational and the communication cost. It is assumed that IDi, PWi ,

nonce values are 128 bits long and the output of hash function(SHA-2) is

256 bits long. Let Th, Tx , Tc and Ts denote the time complexity for hashing,

XOR , concatenation and symmetric key encryption respectively. In the

protocol, the parameters stored in the secret file are Vi, Ki, Mi and the

memory (E1) needed in the mobile is 768 (3*256) bits. Communication cost

of authentication (E2) includes the capacity of transmitting parameters (IDi,

PWi, B1, r1, r2, k, h(kidp||r2)) which makes E2 equal to 1536 (5*256 + 2* 128)

bits. The computation cost of user registration (E3) is the total time of all

operations executed in this phase by the user and IdP and is equal to 7Th +

4Tx + 3Tc + 1Ts +1Td. The computation cost of the user (E4) and the IdP (E5)

is the total time of all operations executed by the user and IdP during login

and authentication. During authentication, the user performs 7 hash

functions, 6 XOR, 4 concatenation making E4 equal to 7Th + 6Tx+ 4Tc.

Similarly, E5 is 7Th + 6Tx+ 6Tc. The computation cost of password changing

phase (E6) is the total time of all operations executed in this phase by the

user and is equal to 6Th+ 3Tx+ 2Tc. Comparison of efficiency with other

protocols are shown in table 4.4.

243

Table 4.4 Comparison of Computational Efficiency with Other Protocols

 E1 E2 E3 E4 E5 E6

Mobile-token

based protocol

768

bits

1536

bits

7Th + 3Tc +

4Tx+ 1Ts +

1Td

7Th + 6Tx+4Tc 7Th + 6Tx+

6Tc

6Th+3Tx

+2Tc.

Choudhary et

al. [2011]

1024

bits

1920

bits

6Th + 3Tx +

1Te + 2Tc

10Th +2Tx+

1Te + 3Tc

8Th+1Tx +1Te

+3Tc.

4Th+4Tx

Jaidhar [2013] 1024

bits

1664

bits

5Th + 5Tx +

1Te + 5Tc

6Th + 2Tx +

9Tc+2Ts +1Td

5Th+1Tx+

8Tc+2Td

+1Ts+1Te

3Th + 2Tx

+ 3Tc

Rui Jiang

[2013]

768

bits

1152

bits

4Th + 1Tx +

1Te + 1Tc

7Th + 1Tx +

4Tc+1Td+1Te

7Th+

5Tc+1Ts+1Te

18Th +

3Tx +

11Tc+2Ts

+1Td +4Te

Results of comparison of computational efficiency reveals that the proposed

protocol for brokered authentication using mobile-token are comparable with

other similar protocols in terms of memory needed in the token,

communication cost during authentication, and computation costs during

registration, login& authentication and password change phase.

In the case of the proposed mobile token based protocol, the authenticity of

the user is verified before storing the secrte file into the user’s smart phone,

by attempting to decrypt the encrypted file downloaded from the Identity

Provider. In addition, the protocol also ensures the integrity of the stored

parameters in the secret file which is downloaded from the server, by

recalculating the value of a parameter strored into the file by the server. Only

after these two verifications are done, will the file be permanently stored in

to user’s smart phone.

Also the proposed mobile token based protocol is using HMAC to generate

the response from the phone to the user, and HMAC requires two hash, two

244

concatenations and two XOR operations. Again the HMAC value send by

the client is verified by the server to authenticate the user. All these

processes are enhancing security though it leads to an increase number of

computations.

Though these computations increase the computation cost of the protocol

and affects total computational time and efficiency, the protocol aids in

providing enhanced security. In such a scenario, it can be mentioned in the

Service Level Agreement between the IdP and the Service Providers that the

authentication protocol provided by the IdP, provides secure authentication

of users that requires a certain time period for execution. The authentication

protocol can be adopted by those service providers to whom the time

duration for execution of authentication protocol is agreeable.

Scyther Analysis

The formal analysis of protocol is done using Scyther tool. The strength of

the protocol is verified using Scyther tool which ascertains the strength by

evaluating the resistance of the protocol to various attacks. Scyther uses

strand space model for formalizing logic and uses Dolev-Yao model for

modelling the network, which caters to the requirement of a mathematical

approach for validating the protocol. The analysis results of login phase are

shown in Figure 4.9. The protocol is written in SPDL as follows:

//Login And Authentication Phase of Brokered Authentication Protocol

using Mobile Token

const exp: Function; const hash: Function; hashfunction h; const XOR:

Function;

const h1: Function; const HMAC: Function; protocol mobileauth(I,R){

245

role I{

const IDi, PWi, s;

var r1: Nonce; fresh r2: Nonce;

macro ki = XOR(h(PWi), h(h(IDi),h(s)));

macro mi = XOR (ki, h(h(IDi),h(PWi)));

macro C2 = XOR (ki,mi);

macro B1 = XOR(h(PWi), h(h(IDi), h(s)) , h(XOR(h(h(IDi),h(PWi)),r1)));

macro B2 = XOR(C2, B1,r2);

//Sending Identity and Password of User

send_1(I,R, h(IDi), h(PWi));

//receiving B1 and r1

//recv_2(R,I, (h(XOR(h(PWi), h(h(IDi), h(s)))) ,

h(XOR(h(h(IDi),h(PWi)),r))), r);

recv_2(R,I, B1,r1);

//sending k

send_3(I,R , HMAC(ki,B2),r2);

recv_4(R,I, h(h(XOR(h(h(PWi)), h(h(IDi), h(s)))),r2));

claim_i1(I,Secret, XOR(h(PWi), h(h(IDi), h(s)),

h(XOR(h(h(IDi),h(PWi)),r1)),r1)); // claim for B1

claim_i2(I, Secret, h(XOR(h(h(PWi)),h(h(IDi), h(s)), ((XOR(h(h(PWi)),

h(h(IDi), h(s))) , h(XOR(h(h(IDi),h(PWi)),r2))))))); // claim for k

claim_i3(I,Secret,r2); //claim for r2

claim_i4(I,Secret,s); //claim for s

claim_i5(I,Secret,ki); //claim for ki

claim_i6(I,Secret, B1); //claim for B1

claim_i7(I,Secret,B2); //claim for B2

claim_i8(I,Secret, IDi); //claim for IDi

claim_i9(I,Secret,PWi); // claim for PWi

claim_i10(I, Alive); // claim for Aliveness of I

246

claim_i11(I,Niagree); // claim for Agreement of variables and values

exchanged

claim_i12(I,Nisynch); //claim for Agreement of order of execution of events

& variables and values exchanged

//claim_i13(I,Weakagree);

}

role R{

const IDi,PWi, s;

fresh r1: Nonce; var r2: Nonce;

recv_1(I,R, h(IDi), h(PWi)); // receiving h(IDi) and h(PWi)

macro B1 = XOR(h(PWi), h(h(IDi), h(s)), h(XOR(h(h(IDi),h(PWi)),r1)));

send_2(R,I, B1,r1); // sending B1 and r

recv_3(I,R , HMAC(ki,B2),r2); // receiving k

send_4(R,I, h(h(XOR(h(h(PWi)), h(h(IDi), h(s)))),r2));

claim_r1(R,Secret, XOR(h(PWi), h(h(IDi), h(s)),

h(XOR(h(h(IDi),h(PWi)),r1)),r1)); // claim for B1

claim_r2(R, Secret, h(XOR(h(h(PWi)),h(h(IDi), h(s)), ((XOR(h(h(PWi)),

h(h(IDi), h(s))) , h(XOR(h(h(IDi),h(PWi)),r2))))))); // claim for k

claim_r3(R,Secret,r1); //claim for r

claim_r4(R,Secret,s); //claim for s

claim_r5(R,Secret,ki); //claim for ki

claim_r6(R,Secret, B1); //claim for B1

claim_r7(R,Secret,B2); //claim for B2

claim_r8(R,Secret, IDi); //claim for IDi

claim_r9(R,Secret,PWi); // claim for PWi

claim_r10(R, Alive); // claim for Aliveness of I

claim_r11(R,Niagree); // claim for Agreement of variables and values

exchanged

claim_r12(R,Nisynch); //claim for Agreement of order of execution of events

& variables and values exchanged

247

claim_r13(R,Weakagree);

}

}

Formal Analysis using Scyther

To perform the formal security analysis, this section focuses on evaluating

the vulnerability of certain parameters such as IDi, PWi, s, Vi, Ki, Mi, B1, B2,

K which are used in the proposed authentication scheme. The proposed

protocol coded using SPDL is analyzed using the security analyzer Scyther,

which checks for the vulnerability of each of the parameters used in the

scheme. Scyther is configured with ten (10) runs and all possible attacks.

There are various claims made as part of the security analysis and these

claims are validated by executing and analyzing the proposed scheme using

Scyther.

248

Figure 4.9 Scyther Analysis of Brokered Authentication Using Mobile

Token

The “No attack” results shown in Figure 4.9 proves that Scyther validates all

the claims made as part of security analysis.

Claim 1: The proposed scheme is designed to ensure the secrecy of the user

ID viz. IDi, throughout the registration and authentication process.

249

The user ID, IDi is submitted in the hashed form to the registration authority

during the registration process. A “No Attacks within Bounds” results for the

Secrecy claim, claim_i8(I, Secret, IDi) is indicative of the fact that whenever

a run of the I role is completed with an honest communication partner, the

value IDi transmitted by I in the run will not be revealed to the adversary.

Therefore, it can be said that claim secret IDi of the role I holds.

Claim 2: The proposed scheme is designed to ensure the secrecy of the

password ‘PWi’ throughout the registration and authentication process.

The password is never transmitted in the plaintext form either to the IdP

during the registration process or to the service provider during the

authentication process. It is transmitted in a hashed form and as we know

hash operations are irreversible. During the authentication process, the

hashed password is used by the server along with h(IDi), h(PWi), h(S) and

nonce r1 to compute the challenge B1. The calculation of B1 involves several

hashing, XOR and conactenation operations, which makes it very difficult to

retrieve PWi or h(PWi) from B1. Though the response K generated by the

mobile token also includes the user password, it is hashed and XOR-ed with

other parameters and nonce value ‘r2’. After performing all these operations,

the HMAC of the result is taken to get the K value. This makes it all the

more difficult to extract PWi or h(PWi) from K. Also the password is not

stored anywhere other than in the mobile-token that too in a hashed form

combined with other parameters. Scyther results validate the claim that

‘PWi’ remains a secret.

Claim 3: The proposed scheme requires the secret key ‘S’ of the server to be

a secret

250

 ‘S’ is the secret key of the IdP, which is used for computing the parameters

in the mobile token. It is used in its hashed form to compute the parameters

to be stored in the mobile-token and to verify the user during the

authentication process. Scyther validates the claim that ‘S’ is safe.

Claim 4: The proposed scheme requires that the parameter Vi stored in the

mobile-token remains a secret

Vi is a value used to generate the authentication parameters calculated by the

IdP and stored in the mobile token. Vi is computed by hashing the

concatenation of hash of user ID and hash of user’s password PWi and the

result is XOR-ed with a nonce generated by the IdP. Scyther validates the

claim that ‘Vi’ is safe.

Claim 5: The proposed scheme requires that the authentication parameter Ki

stored in the mobile token remains a secret

Ki is one among the authentication parameters calculated by the IdP and

stored in the mobile token. Ki is computed by performing hash and XOR

operations on the hash of PWi and the hashed values of h(IDi), h(S). Scyther

validates the claim that ‘Ki’ is safe.

Claim 6: The proposed scheme requires that the authentication parameter Mi

stored in the mobile token remains a secret

Mi is one among the authentication parameters calculated by the IdP and

stored in the mobile token. Mi is computed by performing XOR operations

on Ki and the hashed values of h(IDi) and h(PWi). Mi should remain a secret

and should not reveal any information that will enable the adversary to

impersonate a valid user. Scyther validates the claim that ‘Mi’ is safe.

251

Claim 7: The proposed scheme requires that the challenge B1 transmitted by

the server is secret

Challenge B1 generated by the server is the hashed information containing

hash of user ID, hash of user PW, hash of server secret key, S and nonce r1

sent by the server to the user to ensure against replay attack and phishing

attack. B1 is re-calculated by the mobile token using the stored parameters

Mi and Ki to verify the authenticity of the origin of communication. B1

should not reveal any information that will enable an adversary to generate a

valid challenge. Scyther validates the claim that ‘B1’ is safe.

Claim 8: The proposed scheme requires that the response B2 generated by

the user remains secret

B2 generated by the mobile-token is the XOR of C2 and B1. Here C2 is

calculated using the Mi and Ki values stored in the mobile-token and B1 is

the value received from the server. B2 is used by the mobile-token to

generate the response K corresponding to the challenge B1 received from the

server. B2 should not reveal any information that will enable an adversary to

impersonate a valid user. Scyther validated the claim that ‘B2’ is safe.

Claim 9: The proposed scheme requires that K is secret

K is the communication sent by the mobile in response to the challenge B1

sent by the server (IdP). The computation of K is done by generating an

HMAC value which uses two inputs viz. a key value and a message. In the

proposed protocol, HMAC algorithm uses Ki as the key. The XOR of B2

generated by the mobile token and the received challenge B1 is taken as the

message whose MAC is to be calculated. K is re-calculated by the server

using its own set of values. HMAC guarantees authenticity of the origin and

252

integrity of the message. K which is representative of the login request

should not reveal any information that will enable an adversary to forge a

valid login request. Scyther validated the claim that ‘K’ is secret.

Claim 10: The scheme assures the user that the server remains alive and also

the server is assured that the user remains alive. If the proposed protocol is

used by the server for the initial (i-1) messages exchanged with the user,

when the user sends the ith message, then the server is said to be alive. The

Scyther tool validates the aliveness claim.

Claim 11: The scheme assures Niagree between the user (mobile-token) and

the server

Niagree claim enforces that the sender (user) and the receiver (server) agree

upon the values of variables exchanged during the running of the proposed

scheme. During the operation of the proposed scheme, the user and sever can

send data safely and the correctness of the claim is justified by the analysis

results.

Claim 13: The proposed scheme holds Synchronization during the

registration and authentication process

Ni-Synch or Non-Injective Synchronization property requires that the

corresponding send and receive events (1) happened in the correct order and

(2) have the same contents. Ni-Synch is valid if all actions before the claim

are performed as per the description of the proposed scheme. The proposed

protocol satisfies this claim as indicated by the result of Scyther analysis.

CONCLUDING REMARKS

This chapter elaborated an authentication scheme that can be adopted by

service providers who would prefer to have a strong Two-Factor

253

authentication mechanism to authenticate users of it’s services. The proposed

scheme can be adapted by those service providers who work in a

collaborative environment and by service providers who offer their services

via a web portal. To provide the users with a seamless authentication

experience to users who access different services during the same session,

these service providers prefer to have Single Sign-on functionality. Hence in

the proposed scheme for brokered authentication, users are authenticated by

a third party Identity Provider, who does the authentication of the users re-

directed to it by the service providers. Security Assertion Markup Language

(SAML) protocol which is used to exchange authentication related

information about users between the Identity Provider and Service Providers

is required to provide Single Sign-on functionality.

The Proposed Brokered Authentication scheme is different from “Crypt DB”

where the authentication is done by a proxy. Crypt DB provides

confidentiality of relational databases by supporting computations on

encrypted data at database server side. In Crypt DB an intermediate proxy is

trusted for connection to the database server and proxy uses secret keys to

encrypt all the user data stored in the database. The encryption keys are

encrypted using the password of the user and stored by the proxy. Since

Crypt DB stores the encryption keys, there are certain security concerns. The

concerns are (i) If an attacker manages to get hold of the password of the

user, then he can use the password to decrypt the keys stored in the proxy

database. (ii) since the proxy is storing the user’s keys an adversary may use

crypto analysis to break the encryption and retrieve the encryption keys from

the proxy. (iii) if the user’s password is lost then the proxy is not able to

254

retrieve the original encryption key as the key can be decrypted only using

the user’s password.

In the proposed brokered authentication protocol, the authentication broker

stores only the profile information of users (eg.user ID, first name, last name,

email address etc.). The authentication broker does not maintain the

password information or the user keys. Also the proposed brokered

authentication protocols use two-factor authentication which requires the

user to provide both his password and the parameters stored within the

crypto-token/mobile-token to prove his identity to the authentication server.

The proposed authentication protocols do not require the server to maintain a

verifier table. First half of the chapter discusses an authentication protocol

that uses Crypto-token as an authentication factor and second half discusses

an authentication protocol that uses a mobile token as an authentication

factor. The chapter also includes Security analysis of proposed protocols to

validate the resistance to various common attacks on authentication

protocols. In addition to security analysis, efficiency analysis is done to

compare the computational efficiency of the proposed protocol with similar

two-factor authentication schemes for cloud. Formal verification is done

using Scyther which verifies the validity of security claims made with

respect to the protocol.

255

CHAPTER 5

5. SECURE INTEGRATED FRAMEWORK FOR

AUTHENTICATION IN CLOUD

Cloud service providers can be of two categories based on their

authentication requirements;

 Category one includes those service providers dealing with highly

sensitive data and working in a controlled environment such as those

providing health-care services, financial services etc. These service

providers need a strong user authentication mechanism without any

additional functionality such as Single Sign-On.

 The second category of service providers are those dealing with secure

data while working in a collaborative environment wherein the contents are

accessed by the Users simultaneously with associated services of a different

service provider. Hence category 2 providers need a strong authentication

mechanism that also provides the Users with a Single sign-on functionality

In Chapter 3, under section 3.1, Direct authentication architecture and

protocols that can be adopted by service providers who prefer to authenticate

its users on their own (directly) using a strong authentication mechanism was

discussed. Chapter 4, section 4.1 elaborated on Brokered authentication

architecture and protocols that can be adopted by service providers who

require a Single sign-on functionality and hence prefer to delegate the

authentication to a third party.

256

However, both types of authentication architecture and protocols (Direct as

well as Brokered) are very specific in usage to service providers who adopt

the corresponding mode of authentication – viz Direct and Brokered.

A major objective of this research is to propose an authentication model that

can be adopted by the two categories of service providers mentioned above.

To achieve this objective, this research proposes an authentication

framework for Cloud which supports an integrated authentication

architecture that provides the service providers with the flexibility to choose

between Direct and Brokered authentication. The integrated two-factor

authentication protocol, which does not require the server to maintain a

verifier table, supported by the frame work allows users to do a single

registration and access services of both Direct authentication service

providers (DASP) and Brokered authentication service providers (BASP)

using the same crypto-token/mobile-token. This chapter discusses the

Architecture and components of the framework, an Integrated Authentication

model and a Two-Factor authentication protocol that can be adopted by both

the service providers preferring “Direct Authentication” or “Brokered

Authentication” of their Users. This proposed authentication model provides

users with the convenience of not having to remember different identities

and carry multiple authentication devices to access multiple services. Also,

Service Providers have the flexibility to either directly authenticate its users

or to redirect the users to a third party for Brokered Authentication thus

providing its users with a seamless authentication experience through Single

sign-on functionality. Users can access the services of both Direct &

Brokered Service Providers (DASP & BASP) by authenticating themselves

257

using a single password and a Crypto-token or a Mobile-token issued by the

Identity Provider.

5.1 FRAMEWORK ARCHITECTURE

The architecture of the proposed integrated framework is as depicted in

Figure 5.1.

Figure 5.1 Framework Architecture

258

The role of the participants of the framework and the functionality of the

components are explained in the following paragraphs.

Users: Users access the services provided by various Service Providers after

registration and authentication.

To avail the services of registered service providers, a user needs to register

with the registration server of the Identity Provider (IdP), by submitting user

name, password and other profile information. After registration at the IdP,

users will be issued with a Crypto-token or mobile-token containing the

security parameters generated using user’s credentials and IdP’s secret key.

Also a list of service providers whose services are accessible to the user will

be provided. User password is neither stored within user’s system nor at the

end of Identity Provider or Service Provider. A variant of the password is

stored inside the Crypto-token or the mobile-token. Access to services are

provided after verifying the security parameters stored within the crypto-

token/mobile-token produced by the user during authentication process. In

this integrated framework, user’s password and crypto-token/mobile-token

serves as the two authentication factors. Accessing services of service

providers adopting direct authentication require the user to authenticate

individually to each service provider. In the case of service provider’s

adopting brokered authentication, the user needs to authenticate only once

during a session.

Service Providers: Service Providers, who are part of the framework should

be registered with the registration server of the Identity Provider(IdP).

Service Provider’s who directly authenticate its users are referred to as

Direct Authentication Service Provider’s (DASP’s) and service provider’s

259

who delegate the authentication to the authentication broker (IdP) are

referred to as Brokered Authentication Service Providers (BASP’s).

Registration Component of DASP: Registration of DASP’s at the IdP is

managed by the registration component. DASP’s should undergo a

registration process by submitting a unique server ID, URL of service

provider, a short description of service provided, and the mode of

authentication preferred as “Direct Authentication”. At the end of the

registration process, Identity Provider communicates its master key to DASP

in a secure manner. This is later used by the DASP to verify an

authentication parameter during authentication of the user using the

proposed 2-factor authentication protocol. Authentication module containing

the proposed 2-factor authentication protocol is issued to DASP by the IdP

and this can be integrated with the SP’s authentication engine.

Registration Component of BASP: This component manages the registration

of service providers adopting brokered authentication. The BASP’s need to

undergo a registration task by submitting a unique server ID, URL of service

provider, a short description of service provided, and the mode of

authentication preferred as “Brokered Authentication”. At the end of the

registration process, IdP’s master key is conveyed to BASP in a secure

manner. This key is used by IdP and BASP to generate a shared key. This

shared key is used to communicate to BASP, the session key generated by

IdP and user during each authentication session.

260

Metadata Component of DASP: This component manages metadata

information of IdP which includes a unique ID, URL of IdP etc. This

information is required for establishing a communication with IdP.

Metadata Component of BASP: This component manages metadata

information of IdP which includes a unique ID, URL of IdP etc. This

information is required by the BASP to send a SAML authentication request

to the IdP and to verify the corresponding authentication response from the

IdP.

User Management Component of DASP: Users requiring an access to the

services of DASP, should first register with the registration server of the

identity provider (IdP). The IdP will then update the database of all the

service providers who prefer direct authentication, with the profile

information of users. User management component of every DASP

maintains a database of user profile information such as h(ID), email-ID,

mobile number, address etc. When a user tries to authenticate to a DASP, the

user management component will check whether the user-ID provided by the

user exists in the database. Otherwise the user is redirected to the registration

server of the IdP.

SAML Component of BASP: During authentication process, authentication

information of user is exchanged between Identity Provider and BASP using

Security Assertion MarkUp Language (SAML). Generating SAML requests

and verifying SAML responses is the responsibility of SAML component of

BASP. The request includes information about the SP (unique ID) who

261

generated the request (which is verified against the metadata information

maintained about the SP’s by the IdP), Unique ID of IdP, assertion

Consumer Service (ACS) URL which is the location to which IdP’s SAML

authentication response should be send.

The SAML assertions (responses) sent by the IdP will contain data such as

authentication statement, authorization statements, a unique assertion

identifier, an issue instant (the time at which the assertion was created), the

issuer name (the IdP name), which is verified against the metadata

information maintained about the IdP by the SP. The SAML responses are

verified by SP and on successful verification, user will be allowed access to

resources/services.

Authentication Engine of DASP: The authentication engine of DASP

executes the two-factor authentication protocol. User’s trying to access the

services of these SP’s will be authenticated by the authentication server of

these service providers. Authentication is done by the authentication module

implemented in the authentication server. To start with, the authentication

component will communicate with the user management component to

verify whether the user is registered or not. The authentication module runs

the proposed authentication protocol and crypto-token/mobile-token as the

two authentication factors. The execution of the mutual authentication

protocol culminates with the generation of a session key which is used to

secure communications occurring thereafter.

Key Management Component of BASP: Securely managing the master key of

IdP shared with the service provider’s is done by the key management

262

component of BASP. This component also does the task of securely

managing the session keys generated between user and IdP during the

brokered authentication process and communicated to BASP by IdP during

the end of the session.

 Secure Sockets Layer (SSL) Component of DASP/BASP: Credentials of user

should be securely communicated to the Identity Provider during

authentication process. Confidentiality of information flowing through the

network is ensured by transmitting the information over an SSL connection.

SSL component is responsible for setting up an SSL connection and

managing the same.

User Repository of DASP: This repository of DASP stores the profile

information of all the registered users.

Identity Provider Repository of DASP/BASP: This repository maintains the

information pertaining to the Identity Provider, which includes unique ID,

Domain name, Digital Certificate of IdP, Business Agreement (BA) terms

and policies etc.

Identity Provider: Identity Provider is a trusted entity providing

Registration service and Authentication Service on request. IdP should have

its Digital certificate and the SAML protocol configured to facilitate Single

Sign-On.

Registration Service: Service Providers who are providing cloud

applications/services will become participants of the proposed framework,

263

after registering with the Identity provider. DASP’s and BASP’s should

register with IdP’s registration server by submitting a unique server ID, URL

of service provider, description of provided service and the mode of

authentication preferred as “Direct” or “Brokered”. After registration, an

authentication module will be provided by IdP to DASP. At the end of the

registration process, the master key of the IdP is communicated securely to

DASP which is later used to verify an authentication parameter during the

execution of the 2-factor authentication protocol with the user. In the case of

BASP’s, this key is used to generate a key which is shared between IdP and

BASP.

Users who want to be a part of the system to access the services of the

DASP’s and BASP’s need to undergo a registration process. During

registration process, users submit their user name, password etc. to the RS of

IdP. This information along with the IdP’s master secret key is used to

compute a set of secret parameters which is later used by the user for

authenticating to service providers. User is prompted to download and store

these parameters into a crypto-token or into a mobile-token depending on

whether a crypto-token or mobile phone is used as the authentication factor.

If the second factor is a mobile phone user is required to download a mobile

application from the IdP’s site into his mobile phone.

User Management Component: Profile information of users registered with

IdP are managed by the user management component of IdP Users.

Metadata Component: Metadata information of all DASP’s and BASP’s

registered with IdP are managed by the metadata component. During

264

registration of users, metadata component provides support in identifying the

DASP’s to whom the profile information of registered users should be

communicated. During Brokered Authentication, the metadata component

enables the IdP to veify the source of authentication request.

Authentication Service: IdP authenticates users re-directed to it by BASP’s

and thus provides authentication as a service. After the exchange of two-

factor authentication protocol between the authentication server of IdP and

user, the result of authentication process is communicated as a SAML

response to IdP.

SAML component: The SAML component of the IdP which is invoked only

during Brokered Authentication should have, the SAML v2.0 configured for

verifying SAML requests received from BASP’s and for generating SAML

response.

Key Management Component: Generating and managing keys shared with

the BASP’s is done by this component of IdP. Also, this component is

responsible for securely communicating to BASP, the session keys generated

between IdP and user during authentication process.

SSL Component: Communication between user and server should be secure

during login and authentication process. Confidentiality of information

flowing through the network is ensured by transmitting the information over

an SSL connection. SSL component is responsible for setting up a secure

265

SSL connection and managing the same during login and authentication

phase.

Session Management Component: This component of IdP ensures that a user

authenticates once by providing his credentials, during a session, to access

multiple services (SSO).

Service Provider Repository: Information pertaining to SP’s which includes

Unique ID, Domain name of SP, Digital Certificates, SP’s preferred mode of

authentication, type of services provided by SP, Business Agreement (BA)

terms and policies etc. are maintained by this repository.

5.2 INTEGRATED AUTHENTICATION MODEL FOR CLOUD

In the integrated model for authentication of users, direct authentication

service providers and Brokered authentication service providers should be

registered with the registration server of IdP. Authentication of user will be

done by the Authentication Server (AS) of the DASP in the case of direct

authentication, and Authentication Server (AS) of the IdP will authenticate

the user in the case of brokered authentication. The registration and

authentication process flow are as illustrated in Figure 5.2.

266

Identity Provider

`

SP1User PC 1. Registration Request

1a. Redirects Registration Request

1. Registration Request

1a.

Redirects

Registration

Request

2
.
R

e
g
is

tr
a
tio

n

C
o
n
fir

m
a
tio

n

1
. R

e
g
istra

tio
n
 R

e
q
u
e
st

4. Authentication Protocol Exchange

6. Authentication Response

3. Service Request

3. Service Request

AS

5
.
A

u
th

e
n

ti
c
a

ti
o

n

P
ro

to
c
o

l
E

x
c
h

a
n

g
e

5. Service Response

7. Service Response

4. Re-directs Authentication Request

RSAS

SP 2

BASP

DASP

Identity Provider

AS

Figure 5.2 Registration and Authentication Process Flow for Framework

5.3 PROPOSED INTEGRATED-FRAMEWORK PROTOCOL

Phases of the Proposed protocol: The proposed protocol has four phase’s

viz., Registration Phase of SP, Registration phase of user, Login &

Authentication Phase and the Password change phase. Registration phase of

user is shown in Figure 5.3, login and authentication in Figure 5.4 and

Password change in Figure 5.5. The notations used in the protocol are shown

in Table 5.1.

267

Table 5.1 Notations Used in Proposed Integrated-Framework Protocol

IdP, SP Identity Provider, Service Provider in the cloud

Ui, Sj,

SIDj,

rand

i th User, j th SP, ID of the jth SP, random number of IdP

IDi,

PWi, g0,

p

Unique Identification of Ui, password of Ui, generator of

cyclic group, Prime Number Chosen by Ui.

S Secret key of server of IdP shared with service providers

N1, N2 Nonce values chosen by Server and user respectively

h(.) , ⊕

, ||

One-way hash function, XOR operation, Concatenation

Operation

5.3.1 Registration Phase - Service Provider

Service providers (SP) who would like to be a part of the proposed

framework should register with the RS of the IdP. During registration phase,

each SP submits his unique ID viz. SIDj, the URL of the service provider, a

short description of the service and the preferred mode of authentication as

either “Direct Authentication” or “Brokered Authentication”. If the preferred

mode of authentication is “Direct Authentication”, then the RS of the IdP

will securely communicate IdP’s master secret ‘S’ to the service provider.

During this phase, the key management component of the IdP will calculate

a shared key SKj for each registered service provider supporting brokered

authentication as h(h(S)||h(SIDj)) where h(S) is the hash of the master secret

of IdP and h(SIDj) is the hash of the unique ID of the service provider Sj.

This shared key can be calculated by Sj at his end since he knows the master

secret ‘S’ of IdP and his own unique ID, SIDj.

268

5.3.2 Registration Phase - User

This phase illustrated in Figure 5.3, is invoked when the user needs to

register and obtain the second authentication factor (crypto-token/mobile-

token) using which he can authenticate to gain access to the services of

registered service providers. User Ui, generates a cyclic group Zp where ‘p’ is

a prime number. Element ‘g0’ of Zp is selected as the generator of Zp.

R1: Ui selects his identity IDi and password ‘PWi’. Calculates

b = h(PWi), k = g0
b mod p.

R2: Ui submits h(IDi), k to the registration server (RS) of IdP through a

secure communication channel.

R3: Upon receiving <h(IDi), k>, the RS checks with the user management

component whether h(IDi) already exists in the server’s ID table. If so, user

has to choose a new identity value. Otherwise, RS proceeds to the next step.

R4: RS generates a random number ‘rand’ and computes:

I = h(S); Vi = h(h(IDi)||k) ⊕ rand; Keyi = h(k) ⊕ h(h(IDi)||I);

Mi = h(h(IDi)||I) ⊕ h(h(IDi)||k|| rand)

R5: RS stores (Vi, Keyi, Mi), h(.)) in a secret file.

R6: If the second authentication factor is a Crypto-token, the IdP will

display the download link from which the file is to be downloaded and

stored into the Crypto-token. Ui stores g0 and ‘p’ into the Crypto-token.

If the second authentication factor is a mobile phone, then users phone

should have internet connection during registration process. Ui will be

prompted to download and install a mobile app in his phone. Then, IdP will

display a QR code which will contain the link to download the secret file.

269

When the QR code is scanned using the mobile phone, the contents of the

secret file are stored into a secure location within the mobile phone. The

secret file is subjected to Password Based Encryption (PBE) and hence Ui

needs to provide the password while attempting to store the secret file into

his phone’s internal storage. Ui stores g0 and ‘p’ into the secret file.

R7: RS sends a registration confirmation message to Ui along with the list of

service providers registered under its domain. RS updates the service

providers preferring direct authentication with profile information of all the

registered users. Thus the service providers providing direct authentication

will maintain a database of user profile information which includes the

unique user identity IDs = IDi in the hashed form ie. h(IDi) as one entry along

with other profile information such as first name, last name, email-ID etc.

RS communicates with the metadata component of the IdP and identifies the

registered Service Providers with the preferred mode of authentication as

“Direct Authentication”. RS updates the user management component of all

these service providers with the h(IDi) and the profile information of the

registered user Ui.

270

Figure 5.3 User Registration Phase of Integrated-Framework Protocol

5.3.3 Login and Authentication Phase

This phase illustrated in Figure 5.4, is invoked whenever the user attempts to

login to access the services of a registered service provider. Login and

Authentication phase supports two use case scenarios (i) Authentication of

user is done by the service provider (ii) Authentication of user is done by the

Identity Provider.

i. Direct Authentication by the Service Provider

L1: Ui attempts to access the services of service provider (SP). SP prompts

Ui to enter his identity IDi. SP checks whether h(IDi) exists in his database. If

271

not Ui is re-directed for registration to IdP. Otherwise, SP generates a nonce

N1 and computes C1 = h(h(IDi) || I) ⊕ N1. Ui is prompted to select his

authentication factor from the given choices of Crypto-Token and Mobile-

Token. If Ui selects Crypto-token, SP sends < h(IDi), C1> to Ui and then he is

prompted to insert Crypto-token and enter his password ‘PWi’. Crypto-token

proceeds to step L2 to generate the authentication request.

or

If Ui selects the Mobile-token, then the server generates a QR code

embedded with <h(IDi), C1, URL of SP> and prompts Ui to scan the QR

code. The QR code scanning application of the mobile app, captures the QR

code and Ui is prompted to enter his password ‘PWi’ in the mobile interface.

The mobile app proceeds to step L2 to generate the authentication request.

L2: The Crypto-token / Mobile app calculates b = h(PWi), k = g0
b mod p,

rand = Vi ⊕ h(h(IDi)||k), h(h(IDi)||I) = Keyi ⊕ h(k) and

Mi
’ = h(h(IDi)||I) ⊕ h(h(IDi)||k|| rand). Crypto-token / Mobile app compares

Mi
’ with Mi stored in the file. On equality, Ui is considered as a valid user by

the Crypto-token / Mobile app and proceeds to step L3 to generate the

authentication request. If there is a mismatch, request for login is rejected.

The checking of the password at client side prevents unauthorized users from

submitting invalid login requests to the server and thus eliminates the

chances of DOS attack.

L3: Ui generates ‘N2’, a random nonce. Ui calculates

t = Keyi ⊕ h(k) = h(h(IDi)||I),

272

N1’ = t⊕ C1, l = t⊕ N2, j = h(k) ⊕(l|| N2) , CIDi = h((j||t) || h(k)|| N1’). Ui

sends < h(IDi), l, j, CIDi> to Service provider Sj.

L4: Sj on receiving < h(IDi), l, j, CIDi> proceeds to compute the following:

I’ = h(S), t’ = h(h(IDi) || I’), N2
’ = l ⊕ t’, h(k)’ = j ⊕ (l || N2

’),

CIDi
’ = h((j||t) || h(k)’ || N1).

SP checks the freshness of the nonce and compares CIDi
’ with the received

CIDi
 and if equal, successfully authenticates Ui and executes step L5. Else

request for login is rejected.

L5: Service provider Sj computes F = h(h(k)’ || t’), B = h(h(CIDi’) || F|| N2’),

C2 = N2’ ⊕ N1 and sends {B, C2} to Ui.

L6: On receiving the response, Ui calculates C2
’ = N2 ⊕ N1 where N2 is its

own nonce generated during this session and N1 is the nonce received from

SP during this session. Thus Ui checks the freshness of the nonce values to

avoid the possibility of a replay attack. Ui computes

 B’ = h(h(CIDi)|| F’ || N2
’). B’ is compared with B and if equal Ui

authenticates Service provider Sj. The freshness of the nonce ‘N2’, in the

response ‘B’ from SP, assures Ui that the message is not a replay. Thus

mutual authentication is done successfully upon which Ui and Sj calculate the

session key, SK = h(h(IDi) || N2 || j || t || N1). This session key SK is used to

secure the communications exchanged thereafter between Ui and Sj.

ii. Brokered Authentication by the Identity Provider

L1: Ui attempts to login to SP. SP generates a SAML authentication request

and redirects Ui to IdP. Authentication server (AS) of the IdP does the

authentication process. AS of IdP prompts Ui to enter his identity IDi. AS

273

checks whether h(IDi) exists in the database. If not Ui is re-directed for

registration. Otherwise, authentication server of IdP, generates a nonce N1

and computes C1 = h(h(IDi) || I) ⊕ N1. Ui is prompted to select his

authentication factor from the given choices of Crypto-Token and Mobile-

Token. If Ui selects Crypto-token, IdP sends < h(IDi), C1> to Ui and then he

is prompted to insert Crypto-token and enter his password ‘PWi’. Crypto-

token proceeds to step L2 to generate the authentication request.

or

If Ui selects the Mobile-token, then the AS generates a QR code embedded

with <h(IDi), C1, URL of SP> and prompts Ui to scan the QR code. The QR

code scanning application of the mobile app, captures the QR code and Ui is

prompted to enter his password ‘PWi’ in the mobile interface. The mobile

app proceeds to step L2 to generate the authentication request.

L2: The Crypto-token / Mobile app calculates b = h(PWi), k = g0
b mod p,

rand = Vi ⊕ h(h(IDi)||k), h(h(IDi)||I) = Keyi ⊕ h(k) and

Mi
’ = h(h(IDi)||I) ⊕ h(h(IDi)||k|| rand). Crypto-token / Mobile app compares

Mi
’ with Mi stored in the file. If equal, Ui is considered as a valid user by the

Crypto-token / Mobile app and proceeds to step L3 to generate the

authentication request. If there is a mismatch, request is rejected.

L3: Ui generates ‘N2’, a random nonce. Ui computes

t = Keyi ⊕ h(k) = h(h(IDi)||I), N1’ = t⊕ C1, l = t⊕ N2,

j = h(k) ⊕ (l|| N2), CIDi = h((j||t) || h(k)|| N1’).

Ui sends < h(IDi), l, j, CIDi> to AS.

L4: AS on receiving < h(IDi), l, j, CIDi> proceeds to compute the following:

274

I’ = h(S), t’ = h(h(IDi) || I’), N2
’ = l ⊕ t, h(k)’ = j ⊕ (l || N2

’),

CIDi
’ = h((j||t’) || h(k)’ || N1).

AS checks the freshness of the nonce and compares CIDi
’ with the received

CIDi
 and if equal, successfully authenticates Ui and executes from step L5. If

there is no match, request is rejected.

L5: AS computes F = h(h(k)’ || t’), B = h(h(CIDi’) || F|| N2’), C2 = N2’ ⊕ N1

and sends {B, C2} to Ui.

L6: On receiving the response, Ui computes C2
’ = N2 ⊕ N1 where N2 is its

own nonce generated during this session and N1 is the nonce received from

AS of IdP during this session. Thus Ui checks the freshness of the nonce

values to avoid the possibility of a replay attack. Ui computes B’ =

h(h(CIDi)|| F’ || N2
’) where F’ = h(h(k) || t). B’ is compared with B and if

equal Ui authenticates IdP. The freshness of the nonce ‘N2’, in the response

‘B’ from IdP, assures Ui that the message is not a replay. Thus mutual

authentication is done successfully upon which Ui and AS of IdP agree upon

the session key, SK = h(h(IDi) || N2 || j || t || N1).

275

Figure 5.4 Login and Authentication Phase of Integrated-Framework

Protocol

 Ui tries to access a protected resource

SP IdP

Authentication

Mode

Direct Brokered

Display Login form

Submits h(IDi)
Generate SAML

 request for

authentication

h(IDi) Exists

Not a

Registered

User

N

Y

Authentication

Factor

Crypto-Token

Mobile-TokenInsert’s token and

enter PWi Send <h(IDi), C1 ,SP URL >

Enter PWi

Send <h(IDi), C1 >

Authentication

Failed

M1= M1’N Y

Computes t,l,j,CIDi

Send <h(IDi),l,j,CIDi >

CIDi= CIDi’
Ui authenticated , <B, C2 >

B= B’

Authentication

Failed

N Y

Computes SK=

h(h(IDi)||N2||j||t||N1)
Computes SK=

h(h(IDi)||N2||j||t||N1)

 SAML Request

Display Login form
Submits h(IDi)

 SAML Request

h(IDi) Exists

Not a

Registered

User

N

Y

Authentication

Factor

Crypto-Token

Mobile-Token

Send <h(IDi), C1 ,SP URL >

Insert’s token and

enter PWi

Enter PWi

Authentication

Failed

M1= M1’
Y

Computes t,l,j,CIDi

CIDi= CIDi’

N

Send <h(IDi),l,j,CIDi >

N

Authenticati

on Failed

Y

Ui authenticated , <B, C2 >

B= B’

N

Authentication

Failed

Y

Authentication

Failed

N

Computes SK=

h(h(IDi)||N2||j||t||N1)

Computes SK=

h(h(IDi)||N2||j||t||N1)

Y

 SAML Authentication

Response

Verifies response

Ui is granted or denied access

Send <h(IDi), C1 >

276

L7: SAML authentication response generated by IdP and session key

generated between Ui and AS of IdP is communicated to the service provider

Sj. Session key is encrypted using the key that is shared between IdP and

service provider Sj. This key is maintained by the key management

component of IdP corresponding to unique server ID, SIDj of each service

provider Sj. The unique server ID, SIDj will be included in the SAML

authentication request generated by Sj which is sent to the IdP when the user

is re-directed to the IdP for authentication.

5.3.4 Password Change Phase

This phase illustrated in Figure 5.5 is invoked when the user wants to change

the password without the intervention of the service provider or the Identity

Provider.

P1: If the second authentication factor is a Crypto-token, Ui inserts the

Crypto-token into the system and sends the password change request.

Crypto-token prompts Ui to enter his identity IDi and password ‘PWi’. Then

the Crypto-token proceeds to P2 to modify the password in the device. If the

second authentication factor is the mobile phone, Ui selects the password

change option in the mobile app. Ui is prompted to enter his identity IDi and

password ‘PWi’.

P2: The Crypto-token / Mobile app calculates b = h(PWi), k = g0
b mod p,

rand’= Vi ⊕ h(h(IDi)||k) , h(h(IDi)||I) = Keyi ⊕ h(k) and

Mi
’ = Keyi ⊕ h(k) ⊕ h(h(IDi)||k|| rand). Crypto-token / Mobile app checks

whether it is equal to the Mi stored in the token. If so, Ui is considered as a

valid user by the Crypto-token / Mobile app and prompts the user Ui to enter

277

the new password PWinew. Otherwise the password change request is

rejected.

P3: The Crypto-token / Mobile app calculates bnew= h(PWinew),

knew = g0
bnew mod p, Vinew = h(h(IDi)|| knew) ⊕ Vi⊕ h(h(IDi)|| k) ,

Keyinew = h(knew) ⊕ Keyi⊕ h(k)

and Minew = (Keyi⊕ h(k))⊕ h(h(IDi)|| knew || (Vi ⊕ h(h(IDi)||k))).

The Crypto-token / Mobile app replaces Vi, Keyi Mi with Vinew , Keyinew and

Minew respectively.

Ui enters IDi, PWi , “Change

Password”

Request

Rejected

N

Y

Mobile-app /Crypto-

token computes b=

h(PWi) , k = g0
b mod

p; rand = Vi ⊕
h(h(IDi)||k); h(h(IDi)||I)

=Keyi ⊕ h(k); Mi’=
h(h(IDi)||I) ⊕

h(h(IDi)||k||rand)

Enter New Password

Submits PWinew

Password Successfully Updated

Computes bnew = h(PWinew); knew = g0
bnew mod p;

Vinew = h(h(IDi)||knew)⊕Vi ⊕ h(h(IDi)||k); Keyinew =

h(knew)⊕Keyi ⊕ h(k); Minew=Keyi ⊕ h(k) ⊕
h(h(IDi)||knew ||(Vi ⊕ h(h(IDi)||k))

Crypto-Token/Mobile-app

replaces Vi with Vinew , Keyi

with keyinew and Mi with

Minew respectively

Mi ’= Mi

Figure 5.5 Password Change Phase of Integrated-Framework Protocol

278

5.4 ANALYSIS OF PROPOSED INTEGRATED-FRAMEWORK

PROTOCOL

This section briefly discusses the security, efficiency and formal analysis of

the proposed protocol.

5.4.1 Security Analysis

Security analysis of the protocol verifies the resistance of proposed protocol

to different attacks.

i. Mutual Authentication: In the case of direct authentication, this

phase is executed between the SP and the user, Ui. In the case of brokered

authentication, this phase is executed between the Identity Provider (IdP)

and the user, Ui.

In authentication phase, the SP/IdP calculates, CIDi
’ = h((j||t) || h(k)’ || N1)

and checks with CIDi received from Ui. If equal, SP/IdP successfully

authenticates Ui and sends the response {B, C2} to Ui. Ui computes B’ =

h(h((CIDi’) || F’ || N2) and compares with B received from SP/IdP. Again Ui

computes C2
’ = N2 ⊕ N1 where N2 is its own nonce generated during this

session and N1 is the nonce received from AS of IdP during this session. If

B’ = B and C2
’ = C2, Ui successfully authenticates SP/IdP. Thus, the proposed

integrated protocol acheieves mutual authentication, which is one among the

requirements of a strong two-factor authentication protocol.

ii. User Impersonation Attack: To impersonate a valid user, an

adversary should be able to generate a fresh CIDi to pass SP/IdP’s

authentication. Computing CIDi requires h(k) and N1. Here h(k) is the hash

value of a user’s password in a modified form (k = g0
b mod p) and N1 is the

session dependent IdP generated nonce value. The h(k) can neither be

279

extracted from the Crypto-token/Mobile -token nor can it be retrieved from

any authentication related data transmitted during execution of protocol.

iii. Server Impersonation Attack: To impersonate the SP/IdP to fool the

requesting user, an adversary should forge the message {B, C2} to respond to

authentication request {h(IDi), l, j, CIDi} sent by Ui. However, to compute B,

the adversary should know the session dependent nonce N1 generated by

SP/IdP and the value t. Even if he attempts to compute N1 from C1, he should

know the value of h(h(IDi) || I). Both the nonce values N1 and N2 are never

send across the communication channel in the plain text form. Also to

calculate the value ‘t’ which is never transmitted across the communication

channel, the adversary should know server’s secret key ‘S’. Thus the

adversary will not be able to generate a valid response to impersonate the

SP/IdP.

iv. Replay Attack: This involves capturing messages exchanged between

a valid user and a server and retransmitting the same later. Time stamps are

commonly used to resist replay attacks. However, in a distributed cloud

environment, using time stamps might lead to time synchronization problems

if the clocks of sender and receiver are not synchronized properly. Hence the

proposed integrated protocol uses nonce values to overcome replay attacks.

In each session, the SP/IdP and Ui generate different nonce values N1 and N2

respectively. The attacker must send a fresh message {h(IDi), l, j, CIDi} to

pass authentication by the SP/IdP or send fresh message {B, C2} to be

authenticated by user. This mechanism involving challenges and responses

using session dependent nonce values can overcome replay attack.

v. Key Secrecy: In the proposed protocol, session key is derived from the

session dependent nonce values N1 and N2 generated by SP/IdP and Ui

280

respectively. Adversary cannot calculate the shared secret SK = h(h(IDi) ||

N2 || j || t || N1) from the eavesdropped authentication messages exchanged

between Ui and SP/IdP.

vi. Known-Key security: This property ensures that a future session key

cannot be generated based on a compromised past session key. For every

request for login, the protocol generates session varying nonce values N1 and

N2 to calculate the session key SK. Hence session keys of different runs of

protocol are independent and one compromised session key will not reveal

information required to calculate other session keys.

vii. Forward Secrecy: Forward secrecy property ensures that even if the

attacker manages to obtain the master secret ‘S’ of the Identity Provider, it

will not contribute to the compromise of any previous session. In the

integrated Protocol, the random values N1 and N2 are independent among

every protocol execution. Hence, the compromise of the user’s password

‘PWi’ or the IdP’s master secret ‘S’ will not result in a compromise of past

session keys. The protocol thus achieves forward secrecy.

viii. Privileged administrator resilience: In the proposed scheme, a

user can choose his password ‘PWi’ on his own for registration. The user

obfuscates PWi by computing b = h(PWi), k = g0
b mod p and sends ‘k’ to the

IdP. Without solving the discrete logarithm problem and by reversing the

hash value in polynomial time, the IdP has no option to retrieve or guess the

password ‘PWi’. Proposed protocol is thus resistant to attacks by the attacker

with administrator’s privilege.

281

Proposed protocol does not require password or verification table. This

eliminates maintenance cost of password information and avoids the

probability of stolen-verifier attacks.

ix. Key Control Resilience: The authentication phase of the proposed

integrated protocol provides mutual authentication and generation of the

session key SK = h(h(IDi) || N2 || j || t || N1) to secure the transmitted

messages. Since N1 and N2 used for session key generation, created

independently and randomly by Ui and SP/IdP for each session, even the

user Ui and the server cannot speculate the session key value in advance.

x. Independent Password Selection: In the proposed protocol, user can

select his password during registration phase and he can change his

password, independent of IdP or SP, in the password change phase. The

scheme allows the crypto-token/mobile-token holder to modify password

without the assistance of Identity Provider or service provider. Crypto-token

verifies the current password of user before changing password so as to

prevent unauthorized users from easily changing the password if they obtain

the crypto-token/mobile-phone of some other registered user. Thus only a

valid user who knows the correct ID and password, corresponding to the

crypto-token/mobile-token can change the password.

xi. Two-Factor Security: Assume that an adversary understands a valid

user’s password ‘PWi’. If he desires to impersonate the user to login to the

server, he should generate the login request, (h(IDi), l, j, CIDi). However,

without knowing the server’s secret key ‘S’ and random nonce value ‘N2’ he

cannot compute the parameter ‘l’. Again without knowing g0 and p stored in

the Crypto-token/Mobile-token, the adversary cannot create

282

CIDi
 = h((j||t)||h(k)|| N1).

Assume that an adversary gets a valid user’s Crypto-token/Mobile-phone. In

such a scenario, we discuss the possibility of two of the most common

attacks.

Case 1: Offline-guessing Attack: If a Crypto-token/Mobile-phone is lost the

adversary gets Vi = h(h(IDi)||k) ⊕ rand; Keyi = h(k) ⊕ h(h(IDi)||I);

Mi = h(h(IDi)||I) ⊕ h(h(IDi)||k|| rand), where I = h(S). When the adversary

attempts to check the correctness of a guessed password, he will not be able

to verify without knowing the secret key ’S’ of the server or the ‘rand’ value.

Case 2: Impersonation Attack: Consider a scenario where an attacker has

stolen a Crypto-token/Mobile-phone of a valid user, but does not know the

password. If the attacker attempts to impersonate user ‘Ui’ to gain access to

server, he cannot create the valid request {h(IDi), l, j, CIDi} without knowing

the user’s password ‘PWi’, and the nonce values ‘N1’, ‘N2’.

From the above analysis, it is evident that the proposed protocol offers two-

factor security.

xii. Availability: When user attempts to change his password, by giving a

request for change, he is verified by the Crypto-token/Mobile-token before

the request is accepted. If the adversary obtains the user’s Crypto-

token/Mobile-phone temporarily, without knowledge of current password of

the user, adversary will not be able to modify the password. Also without

knowing the correct password, it is not possible to generate the login request

which makes the protocol resistant to Denial-of-Service attack. Again, since

the SP/IdP does not maintain password/verification table, there is no need to

synchronize the password with user.

283

xiii. Man-in-the-Middle Attack: In the proposed protocol, if the

adversary modified any of the message exchanged between the client and the

server, then the session will be terminated. For example, assume that IDi is

modified into IDi
* in the authentication message {h(IDi), l, j, CIDi}

exchanged during the login phase. The server during the login phase checks

whether an IDs corresponding to the IDi
* is there in its user table. If it is not

there, then the login request will be rejected.

If IDi* is some other user’s ID, then CIDi’ calculated using the following

computations, I’ = h(S), t’ = h(h(IDi) || I’), N2
’ = l ⊕ t, h(k)’ = j ⊕ (l || N2

’),

CIDi
’ = h((j||t) || h(k)’ || N1) where k = g0

b mod p corresponds to the

password of IDi*. Hence, this attack will fail since the adversary will not be

able to impersonate a valid user without knowing his password.

xiv. Security against Stolen Verifier Attack: In the proposed scheme,

only h(IDs) and profile information are stored in the server. Anyways, using

h(IDs) alone, the attacker cannot compute values used for authentication and

hence the attack will fail.

5.4.2 Efficiency Analysis

This section analyzes the efficiency of the proposed protocol in terms of the

computational and the communication cost. It is assumed that IDi, PWi,

nonce values are 128 bits long and the output of hash function (SHA-2) is

256 bits long. The variable ‘rand’ is a 256-bit hexadecimal value which is

uniquely generated for each user. Let Th Tx, Te and Tc denote the time

complexity for hashing, XOR, exponentiation and concatenation operations

respectively. In the protocol, the parameters stored in the crypto-

token/mobile-token are Vi, Keyi, Mi, g0, p and the memory (E1) needed in

284

the crypto-token/mobile-token is 1024 (3*256 +2 *128) bits.

Communication cost of Login and Authentication phase (E2) includes the

capacity of transmitting parameters {h(IDi), l, j, CIDi, C1, B, C2} which

makes E2 equal to 1664 (6*256 + 128) bits. The computation cost of user

registration (E3) is the total time of all operations executed in this phase by

the user and Registration server and is equal to 6Th + 3Tx + 1Te + 3Tc+ 1Ts +

1Td. The computation cost of the user (E4) and the server (E5) authentication

is the total time of all operations executed by the crypto-token/mobile-token

and Server during login and authentication phase. During login &

authentication, the crypto-token/mobile-token performs 7 hash functions, 8

concatenation operations, 6 XOR and 1 exponentiation making E4 equal to

7Th +8Tc+ 6Tx + 1Te. Similarly, E5 is equal to 5Th + 10Tc +4Tx. The

computation cost of password changing (E6) is the total time of all

operations executed in this phase by the user and is equal to 8Th + 6Tx

+5Tc+2Te. A comparison of computational efficiency with other protocols is

shown in Table 5.2.

285

Table 5.2 Comparison of Computational Efficiency with Other Protocols

 E1 E2 E3 E4 E5 E6

Proposed

Integrated

Protocol

1024

bits

1664

bits

6Th +

3Tx+1Te+

3Tc+1Ts+1

Td

7Th + 6Tx+8Tc

+ 1Te

5Th + 4Tx+

10Tc

8Th+6Tx

+5Tc+2Te.

Choudhary

et al. [2011]

1024

bits

1920

bits

6Th + 3Tx +

1Te + 2Tc

10Th +2Tx+

1Te + 3Tc

8Th+1Tx +1Te

+3Tc.

4Th+4Tx

Jaidhar

[2013]

1024

bits

1664

bits

5Th + 5Tx +

1Te + 5Tc

6Th + 2Tx +

9Tc+2Ts +1Td

5Th+1Tx+

8Tc+2Td

+1Ts+1Te

3Th + 2Tx +

3Tc

Rui Jiang

[2013]

768

bits

1152

bits

4Th + 1Tx +

1Te + 1Tc

7Th + 1Tx +

4Tc+1Td+1Te

7Th+

5Tc+1Ts+1Te

18Th + 3Tx

+

11Tc+2Ts

+1Td +4Te

The analysis results of computational efficiency, demonstrate that the

proposed integrated-framework protocol is comparable with other similar

protocols, in terms of memory needed to store the parameters,

communication cost during authentication and computation cost of

registration, login and password change phase.

5.4.3 Formal Analysis

The formal analysis of protocol is done using Scyther tool. The strength of

the protocol is verified using Scyther tool which ascertains the strength by

evaluating the resistance of the protocol to various attacks. Scyther uses

286

strand space model for formalizing logic and uses Dolev-Yao model for

modelling the network, which caters to the requirement of a mathematical

approach for validating the protocol. The analysis results of login phase are

shown in Figure 5.6. The protocol is written in SPDL as follows:

//login Phase of Integrated Protocol

const exp: Function;

const hash: Function;

hashfunction h;

const XOR: Function;

const h1:Function;

const mod :Function;

protocol Directandbrokeredauthlogin(I,R){

role I {

const ID,PW,g,k,s, p;

var N1;

fresh N2;

macro k = exp(g,h(PW));

macro t = h(h(ID), h(s));

macro j = XOR(h(k), (XOR(t,N2), N2));

macro CIDi = h(h(j,t), h(k), N1);

recv_1(R,I, XOR(h(h(ID),I), N1));

send_2(I,R,h(ID),XOR(h(h(ID),h(s)),N2),XOR(h(k),(XOR(h(h(ID),h(s)),N2

),N2)),h(h(j,t),h(k),N1)); //h(ID) , l, j , CIDi

//send_2(I,R,XOR(h(h(ID),h(s)),N2)); //l

//send_3(I,R,XOR(h(k),(XOR(h(h(ID),h(s)),N2),N2))); //j

//send_4(I,R,h(h(j,t),h(k),N1)); //CIDi

287

recv_3(R,I,h(h(CIDi),h(h(k), t),N2),XOR(N1,N2)); //B and C

//recv_6(R,I, XOR(N1,N2));

claim_i1(I,Secret,N1);

claim_i2(I,Secret,s);

claim_i3(I,Secret,ID);

claim_i4(I,Secret,h(s));

claim_i5(I,Secret,h(k));

//claim_i6(I,Secret,h(ID));

//claim_i7(I,Secret,k);

//claim_i8(I,Secret,N2);

//claim_i9(I,Niagree);

claim_i10(I,Nisynch);

claim_i11(I, Alive);

claim_i12(I,Weakagree);

claim_i12(I,Secret,XOR(h(h(ID),h(s)),N2)); // claim for l

claim_i13(I,Secret,XOR(h(k),(XOR(h(h(ID),h(s)),N2),N2))); //claim for j

claim_i14(I,Secret,h(h(j,t),h(k),N1)); //claim for CIDi

}

role R{

const ID,k,PW,g,s;

fresh N1;

fresh N2;

send_1(R,I, XOR(h(h(ID),I), N1));

recv_2(I,R,h(ID),XOR(h(h(ID),h(s)),N2),XOR(h(k),(XOR(h(h(ID),h(s)),N2)

,N2)),h(h(j,t),h(k),N1)); //h(ID) , l, j , CIDi

send_3(R,I,h(h(CIDi),h(h(k), t),N2),XOR(N1,N2)); //B and C

claim_r1(R,Secret,N1);

288

claim_r2(R,Secret,s);

claim_r3(R,Secret,ID);

//claim_r4(R,Secret,h(s));

//claim_r5(R,Secret,h(k));

//claim_r6(R,Secret,h(ID));

//claim_r7(R,Secret,N2);

//claim_r8(R,Alive);

//claim_r9(R,Niagree);

//claim_r10(R,Nisynch);

//claim_r11(R,Weakagree);

//claim_r12(R,Secret,XOR(h(h(ID),h(s)),N2)); //claim for l

//claim_r13(R,Secret,XOR(h(k),(XOR(h(h(ID),h(s)),N2),N2))); //claim for j

//claim_r14(R,Secret,h(h(ID),h(k),N1)); //claim for CIDi

}

}

289

Figure 5.6 Formal Analysis of Integrated-Framework Protocol

To carry out formal security analysis, this section focuses on verifying the

vulnerability of a few parameters such as IDi, K, S, l, j, N1, N2, CIDi which

are used in the proposed authentication scheme. If there is a high

vulnerability, then the argument that the proposed authentication scheme is

secure will not be justifiable. There are various claims made as part of the

security analysis and these claims are validated by executing and analyzing

290

the proposed scheme using Scyther. The “No attack” results shown in Figure

5.6 proves that Scyther validates all the claims made as part of security

analysis.

Claim 1: The proposed scheme is designed to ensure the secrecy of the user

ID, throughout the registration and authentication process.

The user ID is submitted in the hashed form to the registration authority

during the registration process. This is used along with the password and the

secret key of IdP to generate the secret parameters to be stored in the crypto-

token/mobile-token. During the authentication process, user ID is hashed and

sent to the SP/IDP along with other parameter’s in the authentication request.

Security claim that user ID, IDi is safe is verified by Scyther.

Claim 2: The proposed scheme is designed to ensure the secrecy of the

variant of password ‘k’ throughout the registration and authentication

process.

The password is never transmitted in the plaintext form either to the

registration authority or to the service providing server. It is converted into a

modified form ‘k’, by finding the hash of the password viz. ‘b’ and then

finding exponentiation of g0 (generator of a cyclic group) to the power of ‘b’.

Now to obtain the password from ‘k’, the DLP should be solved. During the

authentication process, password is used to generate login request. It is not

sent to service provider, but it is used to calculate the parameters in the

authentication request. Also the password is not stored anywhere other than

the crypto-token/mobile-token which is in the possession of the owner of the

password. Scyther results validate the claim that ‘k’ remains a secret.

291

Claim 3: The proposed scheme requires the master key ‘S’ of the Identity

Provider to be a secret

 ‘S’ is the secret key of the Identity Provider. It is used in its hashed form to

compute the parameters to be stored in the crypto-token/mobile-token and to

verify the user during the authentication process. Scyther validated the claim

that ‘S’ is safe.

Claim 4: The proposed scheme requires that the authentication parameter ‘l’

is secret

The parameter ‘l’ is the information containing hash of user ID concatenated

with the IdP’s master secret ‘S’, XOR-ed with the nonce N2 generated by the

user. ‘l’ is one of the authentication parameters sent by the user to the SP/IdP

which is verified by the SP/IdP to ensure the authenticity of the user. Scyther

validated the claim that ‘l’ is safe.

Claim 5: The proposed scheme requires that the authentication parameter ‘j’

is secret

The parameter ‘j’ is the information containing hash of ‘k’ (variant of user’s

password) XOR-ed with ‘l’ concatenated with the nonce N2 generated by the

user. ‘j’ is one of the authentication parameters sent by the user to the SP/IdP

which is verified to ensure the authenticity of the user and Scyther validated

the claim that ‘j’ is safe.

Claim 6: The proposed scheme requires that the nonce ‘N1’ is secret

The nonce ‘N1’ is randomly generated by the SP/IdP during each session.

‘N1’ is unique for each session which makes each authentication request

unique and thus eliminates the probability of a replay attack. Scyther

validated the claim that ‘N1’ is safe.

292

Claim 7: The proposed scheme requires that the nonce ‘N2’ is secret

The nonce ‘N2 is randomly generated by the Ui during each session to

calculate the parameters in the authentication request sent by the user to

SP/IdP. ‘N2’ is unique for each session which makes each authentication

request unique and thus eliminates the probability of a replay attack. Scyther

validated the claim that ‘N2’ is safe.

Claim 8: The proposed scheme requires that the authentication parameter

‘CIDi’ is secret

The parameter ‘CIDi’ is the one of the parameter’s in the authentication

request sent from the user to the server, which contains the user ID, hash of

the obfuscated password of the user and the nonce N1 generated by the user.

The parameters in the authentication request should not reveal any

information, which will enable an adversary to forge a valid authentication

request. Scyther validated the claim that ‘CIDi’ is safe.

Claim 9: The scheme assures the user that the server remains alive and also

the server is assured that the user remains alive, since both the user and

server receives messages from each other prior to making the claim. The

Scyther tool validates the aliveness claim.

Claim 10: The scheme assures Niagree between the user (crypto-

token/mobile-token) and the server

Niagree claim enforces that the sender (user) and the receiver (server) agree

upon the values of variables exchanged during the running of the proposed

scheme. During the operation of the proposed scheme, the user and sever can

send data without being modified by the adversary and the correctness of the

claim is justified by the analysis results.

293

Claim 11: The proposed scheme holds Synchronization during the

authentication process

Ni-Synch or Non-Injective Synchronization property requires that the

corresponding send and receive events (1) happened in the correct order and

(2) have the same contents. The proposed protocol satisfies this claim as

indicated by the result of Scyther analysis.

CONCLUDING REMARKS

This chapter discussed an authentication framework for cloud which

provides the service providers with the flexibility to choose between Direct

Authentication and Brokered Authentication. The users who are part of the

framework can access the service of both the categories of service providers

viz. those supporting Direct Authentication and those providing Brokered

Authentication along with Single Sign-on functionality. Users can do a one-

time registration at the Identity Provider, be issued with an authentication

factor such as crypto-token /Mobile token and then authenticate using the

same token to access the services of multiple service providers.

294

CHAPTER 6

 6. CONCLUSIONS

Most of the cloud service providers use password to authenticate its users

necessitating the server to maintain a verification table. This requirement of

storing verification information of User undermines the security of the

authentication system. Though there are Two-Factor authentication schemes

used by service providers to overcome the limitation of password based

authentication, most of them are based on one-time-passwords (OTP) which

require a shared secret seed to be stored by the server. Also, there is no

authentication scheme that simultaneously caters to the authentication

requirement of various categories of service providers.

The research proposes an authentication framework that addresses the

concern of providing a secure and flexible authentication mechanism. This

research aims at achieving security for User authentication using Crypto-

Token/Mobile-Token as the second factor and providing flexibility of

authentication mode to service providers by allowing them to choose

between brokered and direct authentication.

6.1 PRESENT WORK

The research work, aimed at designing a secure Authentication Framework

by enhancing and mitigating the concerns of the typical and most prevalent

password based authentication in the cloud environment. The framework is

also conceived such that it could be seamlessly applied by different

categories of cloud based Service Providers and will also cater to

requirement of users that avail the services of multiple categories of Service

295

Providers. As the first step, the research identified two categories of Service

providers in cloud as Direct Authentication Service Providers (DASP) who

directly authenticate its users and Brokered Authentication Service Providers

(BASP) who use the authentication service of a trusted third party. To cater

to the authentication requirements of both the Service Providers, the research

proposed two separate authentication architectures comprising of a

centralized Identity Provider (IdP), Service Providers and users. In the case

of Direct Authentication, users are authenticated by the DASP using the

authentication module provided by the IdP and in the case of Brokered

Authentication, Users are authenticated by the IdP who also provides the

Users with the Single Sign-on functionality.

Next level of the research, proposes user authentication schemes for both

DASPs and BASPs. To overcome the limitations of the password based

authentication and to address the concern of storing verification information

by server, the research proposes Two-Factor Authentication Protocols

without Verifier table. The authentication protocols proposed in the research

work provides the users with the flexibility to authenticate using either a

Crypto-Token or a Mobile-Token and access the services of the Service

Providers. At this level, the research work had taken into cognizance issue of

the Service Providers having to issue the tokens and the users managing

multiple tokens to access different services. The research work addresses this

concern by entrusting the IdP with the responsibility of both registering the

users and also issuing the Crypto-Token / Mobile-Token. Considering the

mode of authentication as Direct or Brokered and considering the

authentication factor as Crypto-Token or Mobile-Token, the research has

proposed four separate authentication protocols viz. Crypto-token Based

296

Direct Authentication Protocol without Verifier Table, Mobile-token Based

Direct Authentication Protocol without Verifier Table, A Strong Single Sign-

on User Authentication Scheme without Verifier Table for Cloud Based

Services and A Mobile Based Remote User Authentication Scheme without

Verifier Table for Cloud Based Services. In the case of Mobile-Token based

protocols, parameters generated by the server process are embedded in QR-

Codes which are scanned by the mobile phone to complete the verification

process during the Registration and Authentication.

 The protocols proposed for Direct Authentication provides mutual

authentication and supports session key generation which can be used to

secure future communication between the users and the Service Providers.

The Direct Authentication protocols are executed by the Authentication

Server of the DASP to authenticate users requesting its services. The

Brokered Authentication Protocols are executed by the Authentication

Server of the IdP to authenticate users re-directed to it by the BASPs. To

facilitate the exchange of authentication information about users between the

IdP and service providers during the authentication process, proposed

protocols require Security Assertion Markup Language (SAML), which

provides Single Sign-on functionality.

The authentication architecture and protocols proposed for Direct

Authentication can be adopted only by the DASPs to authenticate its Users.

Similarly, the authentication architecture and protocols proposed for

Brokered Authentication can be adopted only by the BASPs to authenticate

Users of its services. The next level of requirement envisaged as part of the

research was an authentication model that can be adopted by both the DASPs

and the BASPs along with a single two-factor authentication protocol that

297

can be used to authenticate Users of both the categories of Service Providers.

The research addressed this requirement by proposing an authentication

framework which includes, Framework Architecture, Integrated

Authentication Model that provides the flexibility to either directly

authenticate the Users or re-direct them to the Centralized Identity Provider,

Integrated Two-Factor Mutual Authentication Protocol without Verifier table

that allows the User to authenticate to both the DASPs and the BASPs by

using a Crypto-Token or a Mobile-Token and a set of components that

enables the Identity Provider and the Service Providers to carry out their

functionalities.

The strength of the proposed protocols is analyzed by verifying its resistance

to common attacks on authentication and it is observed that the protocols are

resistant to guessing attack, user impersonation attack, stolen verifier attack,

replay attack etc. To verify the efficiency of the proposed protocols the

communication and computation costs are compared with similar schemes

and it is seen that the costs are comparable. The formal analysis of the

proposed protocols is done using the security protocol analyzer “Scyther”

and the “No Attacks” results prove that the security claims made as part of

the analysis are valid.

6.2 LIMITATIONS OF STUDY AND FUTURE ENHANCEMENTS

This research has resulted in a secure and usable authentication framework

that can be adopted by service providers in a Public cloud environment.

However, there are many areas that can still be explored to enhance the

adoption of the proposed work in a practical business environment. These

areas are discussed in this section.

298

I. Implementation of Integrated-Framework: A detailed proof-of-Concept

implementation of the proposed authentication framework will be a

further improvement to this research considering the following:

 Majority of the existing authentication systems for cloud are based on

password authentication and requires a password verification table to be

maintained by the server.

 Single sign-on functionality is provided by many of the service providers

using proprietary mechanisms which fail to support cross domain Single

sign-on.

 Though there are many works related to authentication in cloud, there is a

lack of a two-factor authentication system that provides the service

providers with the flexibility to choose between brokered and direct

authentication.

Considering the above mentioned gaps, implementation of Integrated

Framework will further help to:

 Evaluate the practical feasibility of implementing a Two-Factor

authentication protocol, that provides the user with the flexibility of

authenticating using either a Crypto-token or a Mobile-Token.

 Understand the security benefits of an authentication scheme that does not

require the server to store password verification information of user.

 Achieve cross-domain Single sign-on functionality using Security

Assertion Markup Language (SAML).

 Understand the convenience and usability of a flexible authentication

system, that allows the service providers to choose between directly

authenticating its users or delegating the authentication to a third party.

299

II. Analyzing the resistance of Protocols to Attacks: The security analysis of

the protocols is done to identify the vulnerability to attacks. Nevertheless, a

strong and fool proof analysis of possible attacks and vulnerability

evaluation of protocols is to be done for testing their resistance to common

attacks such as Cross-Site Request Forgery, Phishing, Cross Site Scripting,

Password Guessing, SQL Injection etc.

III. Improving Computational Efficiency: Proposed authentication protocols for

direct and brokered authentication using Crypto-token and Mobile-Token

can be improved to achieve better computational efficiency than the

currently achieved level of efficiency. This can be made possible by

reducing the number of hash and XOR operations.

IV. Zero Knowledge Proof (ZKP): Furthermore, the feasibility of a usable

authentication mechanism without verifier table that provides security using

Zero Knowledge Proof protocols can be explored as an enhancement of the

current work.

V. EID as an Authentication Factor: As the proposed Integrated Framework

for Authentication is flexible enough to accept any type of authentication

information of users, electronic ID’s (EID’s) equivalent to Aadhar numbers

can be used as an authentication factor. EID is a knowledge factor, known to

the user and aids in providing one more level of verification thereby

achieving greater efficiency and security.

300

BIBLIOGRAPHY

1. Abraham D, “Why 2FA in the Cloud?” September 2009, Network

Security.

2. Armando A, Basin D, Boichut Y, Chevalier Y, Compagna L, Ceullar J,

Hankes P D, Heam P C, Kouchneranko O, Mantovani J, Modersheim S,

Oheimb D V, Rusinowitch M, Santiago J, Turuani M, Vigano L and

Vigneron L, “The AVISPA Tool for The Automated Validation of

Internet Security Protocols and Applications,” in Proceedings of

Computer Aided Verification (CAV), Vol. 3576 of LNCS. Springer, pp.

281- 285, 2005.

3. Ashraf U, “Securing Cloud Using Two-Factor Authentication,” 2013,

M. Sc Infotech Thesis, University of Stuttgart, [Online], Available:

ftp://ftp.informatik.uni-

stuttgart.de/pub/library/medoc.ustuttgart_fi/MSTR-3452/MSTR-

3452.pdf.

4. Asoke T and Manish C, “Architecting Secure Software Systems”,

CRC Press, Taylor and Francis Group, 2009, ISBN:978-1-4200-

8785-7, pp.11.

5. Atreya M, “Password Based Encryption,” [Online], Available:https://

web.cs.ship.edu/~cdgira/courses/CSC434/Fall2004/docs/course_docs/

Article3-PBE.pdf.

6. Aguiar E, Zhang Y and Blanton M, “An overview of Issues and

Recent Developments in Cloud Computing and Storage Security”,

pp.1-31, Springer, Berlin, 2013.

301

7. Ahuja S P and Komathukattil D, “A Survey of the State of Cloud

Security”, Network and Communication Technologies, Vol.1, No.2,

pp. 66-75, 2012.

8. Alexander S, Marc S, Jacob A, Arjen L, David M, Dag A O and

Benne W, “MD5 considered harmful today: Creating a rogue CA

certificate,” December 30, 2008, [Online], Available:

http://www.win.tue.nl/hashclash/rogue-ca/.

9. Allison M, “Global Insurance Assurance Certification Paper,” March

29, 2000, [Online], Available:

https://www.giac.org/paper/gsec/16/risks-biometric-based-

authentication-schemes/100271.

10. Armbrust M, Fox A, Griffith R, Joseph A.D, Katz R, Konwinski A,

Lee G, Patterson D, Rabkin A, Stoica I and Zaharia M, “Above the

Clouds: A Berkeley View of Cloud Computing,” 2009, Technical

report UCB/EECS-2009-28. Electrical Engineering and Computer

Sciences University of California.

11. Banyal R K, Jain P and Jain V K, “Multi-factor Authentication

Framework for Cloud Computing,” in Proceedings of Fifth

International conference on Computational Intelligence, Modelling

and Simulation, pp. 105-110, 2013.

12. Barker E, Barker W, Burr W, Polk W and Smid M, “NIST Special

Publication 800-57, Recommendation for Key Management-Part 1:

General (revision 3),” [Online], Available:

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-

57_part1_rev3_general.pdf, 2012.

302

13. Beachy J, A and Blair W D , “Definition of a Group,” Abstract

Algebra, 2nd edition, Chapter 3, Waveland Press, Inc. Illinois, 2005.

14. Bellare M, Canetti R and Krawczyk H, “keying Hash Functions for

Message Authentication,” in: Advances in Cryptology – Crypto’96,

Lecture Notes in Computer Science, Vol. 1109, ed. N. Koblitz, pp.1-

15, Springer, 1996.

15. Bellowin S M and Merritt M, “Augmented Encrypted Key Exchange:

A Password Based Protocol Secure Against Dictionary Attacks and

Password File in Proceedings of First ACM Conference on Computer

and Communications Security, pp.244-250, 1993.

16. Bhadauria R and Sanyal S, “Survey on Security Issues in Cloud

Computing and Associated Mitigation Techniques,” International

Journal of Computer Applications, pp. 47-66, 2012.

17. Blanchet B, “An efficient Cryptographic protocol verifier based on

Prolog rules,” in Proceedings of 14th IEEE Computer Security

Foundations Workshop (CSFW), pp. 82 -96,2001.

18. Blumenthal M, “Encryption: Strengths and Weaknesses of Public Key

Cryptography,” Villanova University, Villanova, Computing Research

Topics, CSC 3990, 2007, [Online], Available: http://www.csc.

villanova.edu/~tway/courses/csc3990/f2007/csrs2007/01-pp1-7-

MattBlumenthal.pdf.

19. Boyd C and Mathuria A, “Protocols for Authentication and Key

Establishment,” Information Security and Cryptography, Springer

Science and Business Media, 2013, ISBN: 3662095270,

303

9783662095270., pp.42.

20. Brian P, “Code Hosting Service Shuts down after Cyber Attack”, June,

2014, http://www.darkreading.com/attacks-breaches/code-hosting-

service-shuts-down-after-cyber-attack/d/d-id/1278743.

21. Brawley J and Gao S, “Mathematical Models in Public Key

Cryptography,” 1999, [Online], Available:

http://www.math.clemson.edu/~sgao/papers/crypto_mod.pdf.

22. Buchanan R T, “Dropbox Passwords Leak: Hundreds of Accounts

Leak After Third Party Security Breach,” 2014, INDEPENDENT,

[online], Available: http://www.independent.co.uk/life-style/gadgets-

and-tech/nearly-seven-million-dropbox-passwords-hacked-pictures-

and-videos-leaked-in-latest-third-party-9792690.html.

23. CardLogix, “Smart Card and Security Basics,” 2009, [Online],

Available:http://www.smartcardbasics.com/pdf/7100030_BKL_Smart-

Card-Security-Basics.pdf.

24. Cryptomate64, Cryptographic USB(Token), Advanced Card Systems

Holdings Limited, 2016 [Online], Available:

http://www.acs.com/hk/en/products/18/cryptomate64-cryptographic-

usb-tokens.

25. Crypt-token, The Right Answer to All Your Authentication Needs

Marx, Last Updated 25 April 2016 [Online], Available:

https://www.cryptoken.com.

26. Carlin S and Curran C,” Cloud Computing Security,” International

Journal of Ambient Computing and Intelligence, Vol. 3, pp, 14-19,

304

2011.

27. Carlson C, “Side-Channel Attacks Threaten Data in the Cloud,” May

30, 2012, [Online], Available: http://www.fiercecio.com/storey/side-

channel-attacks-threaten-data-cloud/2012-05-30.

28. Celesti A, Tusa F, Villari M and Puliafito A, “Security and Cloud

Computing, “Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprises, pp.263-265, 2010.

29. Chang C and Lee J, “An Efficient and Secure Multi-Server Password

Authentication Scheme Using Smart Cards,” in Proceedings of the

2004 International Conference on Cyberworlds (CW’04), pp.6/1 – 6/6,

2004.

30. Chang Y, Chang C, Su Y, “A Secure Improvement on the User-

Friendly Remote User authentication Scheme with No Time

Concurrency Mechanism,” in the Proceedings of 20th International

Conference on Advanced Information Networking and Applications,

AINA,” Vol.2, pp.18-20, 2006.

31. Chein H and Jan J, “Robust and Simple Authentication Protocol,” The

Computer Journal, Vol.46, No.2,2003.

32. Chen Y, Pascon V and Katz R H, “What’s New about Cloud

Computing Security?” Technical Report, 2010 [Online], Available:

http://www.eecs.berkeley.edu/pubs/Techrpts/2010/EECS.2020-5.pdf.

33. Chen Y and Yeh h, “An Efficient Nonce-Based Authentication

Scheme with Key Agreement,” Science Direct, Applied Mathematics

and Computation, Vol.169, pp.982-994, 2005.

305

34. Chien H Y and Chen C H, “A Remote Authentication Scheme

Preserving User Anonymity,” in Proceedings of Advanced Information

Networking and Applications, Vol.2, pp. 245-248, 2005.

35. Chien H Y, Jan J K, and Tseng Y M, “An Efficient and Practical

Solution to Remote Authentication: Smart Card,” Computers &

Security, Vol. 21, No. 4, pp. 372– 375, 2002.

36. Choudhury A J, Kumar P, Sain M, Lim H and Jae-Lee H, “A Strong

User Authentication Framework for Cloud Computing,” in

Proceedings of IEEE Asia-Pacific Services Computing Conference,

pp.110-115, 2011.

37. Chow, Jakobsson M, Masuoka R, Molina J, Niu Y, Shi E and Song Z,

“Authentication in the Clouds: A Framework and its Application to

Mobile Users,” CCSW’10, Chicago, Illinois, USA, 2010.

38. Chung C and Wu T, “Remote Password Authentication with Smart

Cards,” in IEE Proceedings-E, Vol.138, No.3, 1991.

39. Cisco, “Cisco Global Cloud Index: Forecast and Methodology, 2014-

2019,” 2015, [Online], Available:

http://www.cisco.com/c/en/us/solutions/collateral/service-

provider/global-cloud-index-gci/Cloud_Index_White_Paper.pdf.

40. Coviello A, “Open Letter to Customers”, 2011, [Online], Available:

https://www.sec.gov/Archives/edgar/data/790070/0001193125110701

59/dex991.htm

41. Cremers C and Casimier J F, “Scyther - Semantics and Verification of

Security Protocols,” 2006, PhD Thesis, [Online], Available:

306

http://alexandria.tue.nl/extra2/200612074.pdf

42. Cremers C and Lafourcade P, “Comparing State Spaces in Automatic

Protocol Verification,” in Proceedings of the 7th International

Workshop on Automated Verification of Critical Systems (AVoCS’ 07).

ENTCS, 2007, [Online], Available,

https://www.cs.ox.ac.uk/people/cas.cremers/downloads/papers/CrLa20

07-Comparing.pdf

43. Cremers C, “The Scyther Tool Verification, Falsification, and

Analysis of Security Protocols,” Tool Paper, 2008, [Online],

Available:

https://www.cs.ox.ac.uk/people/cas.cremers/downloads/papers/Cr2008

-Scyther_tool.pdf

44. Cremers C: “The Scyther Tool: Verification, Falsification, and

Analysis of Security Protocols?,” in Proceedings of the 20th

International Conference on Computer Aided Verification (CAV

2008), Department of Computer Science, ETH Zurich, Switzerland

Princeton, USA, 2008.

45. Cristofaro C E, Hongle D, Freudiger J F and Norcie Greg, “A

Comparative Study of Two Factor Authentication,” in. Proceedings on

the Workshop on Usable Security USEC’14, San Diego, CA, USA,

2014.

46. CSA, “Security guidance for critical areas of focus in Cloud

Computing V2.1,” 2009, Prepared by the Cloud Security Alliance.

47. Damgard I and Nielsen J B, “Discrete Logarithms,” Introduction to

307

Cryptography, 2012.

48. Darren P, “Google App Engine has THIRTY flaws, says researcher,”

The Register, December 2014, [Online]. Available: http://www.the

register.co.uk/2014/12/09/google_app_engine_has_thirty_flaws_says_

researcher/.

49. Das M L, Saxena A and Gulati V P, “A Dynamic-ID Based Remote

User Authentication Scheme,” IEEE Transactions on Consumer

Electronics, Vol. 50, No.2, pp.629-631, 2004.

50. Dictionary Attack, Wikipedia, [Online], Available:

https://en.wikipedia.org/wiki/Dictionary_attack.

51. Diffie W and Hellman M, “New Direction in Cryptography”, IEEE

Transactions on Information Theory, Vol. 22, No.6, pp. 644-654.,

1976.

52. Dalal N, Shah J, Hisaria K and Jinwala D, “A comparative Analysis of

Tools for Verification of Security Protocols,” International Journal of

Communications, Network and System Sciences, Vol.3, pp. 779-787,

2010.

53. Das M L, Saxena A and Gulati V P,” A Dynamic ID-Based Remote

User Authentication Scheme,” IEEE Transactions on Consumer

Electronics, Vol. 50, No.2, pp. 629-631, 2004.

54. David P M, “QRP: An Improved Secure User Authentication Method

Using QR codes,” [Online], Available:

https://www.grc.com/sqrl/files/QRP-secure-authentication.pdf, 2012.

55. Denning D and Sacco G, “Timestamps in Key Distribution Protocols,”

308

Communications of the ACM, vol. 24, No.8, pp. 533-536, 1981.

56. Dinesha H A and Agrawal V K, “Multi-level Authentication

Technique for Accessing Cloud Services,” in Proceedings of

International Conference on Computing, Communication and

Applications (ICCCA), IEEE, pp. 1-4, 2010.

57. Dodson B, Sengupta D, Monica D B and Lam S, “Snap2Pass:

Consumer-Friendly Challenge-Response Authentication with a Phone

or Secure, Consumer-Friendly Web Authentication and Payments with

a Phone,” Mobile Computing, Applications, and Services, pp.17-38,

2012.

58. Dolev D and Yao A C, “On the Security of Public Key Protocols,”

IEEE Transactions on Information Theory, Vol. 29, No. 12, pp.198-

208,1983.

59. Entrust, Entrust in Authentication, Data Breach, “CRM Provider

Salesforce Hit with Malware Attack”, September, 2014, [Online].

Available: http://www.entrust.com/crm-provider-salesforce-hit-

malware-attack/.

60. Falas T and Kashani H, “Two-Dimensional Bar-code, Decoding with

Camera-Equipped Mobile Phones,” in Proceedings of the Fifth Annual

IEEE International Conference on Pervasive Computing and

Communications Workshops, pp. 597-600, 2007.

61. Fernandes D A B, Soares L F B, Gomes J V, Freire M M, Mário,

Inácio P R M, “Security Issues in Cloud Environments: A Survey,”

International Journal of Information Security, Vol.13, No.2, pp.113-

309

170.

62. Fenton W, “AceProject(Free)”, 2011, [Online], Available:

http://www.pcmag.com/article2/0,2817,2374923,00.asp.

63. Gao S, “Cryptosystems Based on Discrete Logarithms,” 1999,

[Online], Available:

http://www.math.clemson.edu/~sgao/crypto_mod/node4.html.

64. Gartner Inc., “Forecast: Public Cloud Services, Worldwide 2010-2016,

2Q12 Update,” 2012, report by Gartner, Inc.

65. Gens F, “IT Cloud Services User Survey, pt.2: Top Benefits and

Challenges,” 2008, IDC, [Online], Available:

http://blogs.idc.com/ie/?p=210.

66. Gens F, “New IDC IT Cloud Services Survey: Top Benefits and

Challenges,” IDC Exchange, 2009, [Online]. Available:

http://blogs.idc.com/ie/?p=730.

67. Gong L, “A Security Risk of Depending on Synchronized Clocks,” in

ACM Operating Systems Review, Vol.26, No.1. pp.49-53, 1992.

68. Gong L, Lomas M A, Needham R M and Saltzer J H, “Protecting

Poorly Chosen Secrets from Guessing Attacks,” IEEE Journal on

selected Areas in Communications, Vol.11, No.5, 1993.

69. Google Authenticator, Wikipedia, May 2016, [Online], Available:

https://en.wikipedia.org/wiki/Google Authenticator.

70. Google Inc. “Google Authenticator Project – Two-Step verification.

2016,[Online]. Available: http://code.google.com/p/google-

authenticator/.

310

71. Gowrie C, “Session Hijacking and the Cloud,” Comp 116, Final

Project, 2014, [Online], Available:

http://www.cs.tufts.edu/comp/116/archive/fall2014/cgowrie.pdf.

72. Granneman J, “Password-based Authentication: A Weak Link in

Cloud Authentication,” August 2012, [Online], Available:

http://searchcloudsecurity.techtarget.com/tip/Password-based-

authentication-A- weak-link-in-cloud-authentication.

73. Halpert B, “Auditing Cloud Computing: A Security and Privacy

Guide,” Hoboken, NJ: John Wiley & Sons, Inc., 2011.

74. Hamdan O A, Zaidan B B, Hamid A J, Shabbir M, Al-Nabhani Y,

“New Comparative Study between DES, 3DES” and AES within

Nineteen Factors, Journal of Computing, Vol.2, No. 3, March 2010.

75. Hao Z, Zhong S and Yu N, “A Time Bound Ticket-Based Mutual

Authentication Scheme for Cloud Computing,” International Journal

of Computers, Communications & Control, ISSN 1841-9836, Vol. 6,

No.2, pp. 227-235, 2011.

76. Hardesty L, “Thwarting the Cleverest attack”, May 1, 2012, [Online],

Available: http://news.mit.edu/2012/thwarting-eavesdropping-data-

0501

77. Hart J, “Remote Working: Managing the Balancing Act Between

Network Access and Data Security,” Computer Fraud & Security,

Vol.11, pp.14-17, 2009.

78. Hash Function, “Cryptographic Hash Function,” Wikipedia, [Online],

Available: https://en.wikipedia.org/wiki/Cryptographic_hash_function.

311

79. Hillenbrand M, Gotze J, Muller J, Muller P, “A Single Sign-on

Framework for Web-Services-based Distributed Applications,” in

Proceedings of 8th International Conference on Telecommunications,

ConTEL 2005, Vol 1, pp. 273-279, 2005.

80. HMAC, “Keyed–Hash Message Authentication Code,” 2002, FIPS

PUB 198, [Online], Available:

http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf.

81. Housley R, Ford W, Polk W, Solo D, “Internet X.509 Public Key

Infrastructure and CRL Profile,” RFC 2459, January 1999, http://www.

ietf.org/rfc/rfc2459.txt.

82. Hsiang H C and Shih W K, “Improvement of the Secure Dynamic ID

Based Remote User Authentication Scheme for Multi-Server

Environment,” Computer Standards and Interfaces, Vol.31, pp.1118-

1123, 2009.

83. Hsiang H C, Shih W K, “Weaknesses and improvements of the Yoon–

Ryu–Yoo Remote User Authentication Scheme Using Smart Cards,”

Computer Communications, Vol. 32, No. 4, pp. 649-652, 2009.

84. Hsu C L, “Security of Chien et al.’s Authentication scheme using Smart

Cards,” Computer Standards and Interfaces, Vol.26, pp.167-169, 2004.

85. Hwang M S and Li L H, “A New Remote User Authentication Scheme

Using Smart Cards,” IEEE Transactions on Consumer Electronics,

Vol.6, No. 1, pp.28–30, 2000.

86. Imperva, “Cookie Poisoning,”,2013 [Online], Available:

http://www.imperva.com/resources/glossary/cookie_ poisoning.html.

312

87. ISO/IEC 18004:2000. Information technology-Automatic identification

and data capture techniques-Bar code Symbology-QR Code, 2000.

88. Jaidhar C D, “Enhance Mutual Authentication Scheme for Cloud

Architecture,” in Proceedings of 3rd IEEE International Advanced

Computing Conference (IACC), pp. 70-75, 2013.

89. Jensen M, Schwenk J, Gruscka N and Iacono L L,” On Technical

Security Issues in Cloud Computing,” in Proceedings of the IEEE

International Conference on Cloud Computing, pp.109-116, 2009.

90. Jin H, Sunghwan M, “A comparison of Cryptanalytic Tradeoff

Algorithms,” Journal of Cryptology, Vol. 26, pp.559-637, 2013.

91. Joan D, Vincent R, “AES Proposal: Rijndael “, 2003, National Institute

of Standards and Technology, [Online], Available:

http://csrc.nist.gov/archive/aes/rijndael/Rijndael-

ammended.pdf#page=1.

92. Juang W S, “Efficient Password Authenticated Key Agreement using

Smart Cards.”, Computers and Security, Vol.23, pp.167-173, 2004.

93. Juang W S, “Efficient Multi-Server password authenticated Key

Agreement using Smart Cards,” IEEE Transactions on Consumer

Electronics, Vol. 50, No. 1, pp.251-255, 2004.

94. Kang and Zhang, “Identity-Based Authentication in Cloud storage

sharing,” in Proceedings of International Conference on Multimedia

Information Networking and Security, pp.851-855, 2010.

95. Krutz R L and Vine R D, “Cloud Security: A Comprehensive Guide to

Secure Cloud Computing,” Chapter 5, Wiley Publishing, Inc, 2010.

313

96. Kulshrestha A, Dubey S K, “A literature Review on Sniffing Attacks in

Computer Networks”, International Journal of Advanced Engineering

Research and Science, Vol.1, No.2, July 2014.

97. Lamport L, “Password Authentication with Insecure Communication”,

Communications of the ACM, Vol. 24, No.11, pp.770-772, 1981.

98. Lee C, Lin T and Chang R, “A Secure Dynamic ID Based Remote User

Authentication Scheme for Multi-Server Environment Using Smart

Cards,” Expert Systems with Applications, Vol. 38, pp. 13863–13870,

2011.

99. Lee S, Ong I, Lim H T and Lee H J, “Two factor Authentication for

Cloud Computing,” International Journal of KIMICS, Vol.8, pp. 427-

432, 2010.

100. Lee Y S, Kim N H, Lim H, Jo H and Lee H J, “Online Banking

Authentication System Using Mobile-OTP with QR code,” in

Proceedings of 5th International Conference on Computer Sciences and

Convergence Information Technology, pp.644-648, 2010.

101. Lewis G, “Basics About Cloud Computing,” September 2010, Software

Engineering Institute, Carnegie Mellon, [Online], Available:

http://resources.sei.cmu.edu/asset_files/WhitePaper/2010_019_001_288

77.pdf.

102. Li L, Lin I, and Hwang M, “A Remote Password Authentication

Scheme for Multi Server Architecture Using Neural Networks,” IEEE

Transactions on Neural Networks, Vol. 12, No. 6, pp.1498-1504, 2001.

103. Li X, Ma J, Wang W, Xiong Y and Zhang J, “A Novel Smart Card and

Dynamic ID Based Remote User Authentication Scheme for Multi-

314

Server Environments,” Mathematical and Computer Modelling, Vol.58,

pp.85-95, 2013.

104. Liang C, “The Five Major Authentication Issues in the Current Cloud

Computing Environment,” 2011, [Online], Available:

https://chenliangblog.wordpress.com/tag/e-commerce/.

105. Liao I E, Lee C C and Hwang M S, “Security Enhancement for a

Dynamic ID-Based Remote User Authentication Scheme,” in

Proceedings of Conference on Next Generation on Web Services

Practice, pp. 437-440, 2005.

106. Liao K, Lee W, Sung M and Lin T, A One-Time Password Scheme

with QR-Code Based on Mobile Phone,” in Proceedings of Fifth

International Joint Conference on INC, IMS and IDC, IEEE, pp. 2069-

2071, 2009.

107. Liao Y P and Wang S S, “A Secure Dynamic ID Based Remote User

Authentication Scheme for Multi Server Environment,” Computer

Standards and Interfaces, Vol.31, No. 1, pp.24-29, 2009.

108. Lin I, Hwang M and Li L, “A New Remote User Authentication

Scheme for Multi-Server Architecture,” Future Generation Computer

Systems, Vol 19, pp. 13-22, 2003.

109. Linn J, “OASIS, Trust Model Guidelines,” 2004, [Online], Available:

https://www.oasis-open.org/committees/download.php/6158/sstc-saml-

trustmodels-2.0-draft-01.pdf.

110. Liou Y P, Lin J and Wang S S,” A New Dynamic ID-Based Remote

User Authentication Scheme Using Smart Cards,” in Proceedings of

16th Information Security Conference, Taiwan, pp. 198-205, 2006.

315

111. Liu Z, Wu F, Shang K, and Shai W, “C-MAS: The Cloud Mutual

Authentication Scheme,” in Proceedings of the 2012 2nd International

conference on Computer and Information Application (ICCIA 2012),

pp.0769-0772, 2012.

112. Macmillan D and Yadron D, “Dropbox Blames Security Breach on

Password Reuse,” 2014, The Wall Street Journal, [Online], Available:

http://blogs.wsj.com/digits/2014/10/14/dropbox-blames-security-

breach-on-password-reuse/.

113. Madhusudhan and Adireddi, “Weaknesses of Dynamic ID Based

Remote User Authentication Protocol for Multi-Server Environments,”

Journal of Computer and Communications, Vol.2, 196-200, 2014.

114. Media O, “Assembla Software Review: Overview-Features-Pricing,”

2012, [Online], Available: http://project-management.com/assembla-

software- review/.

115. Meena B and Challa K A,” Cloud Computing Security Issues with

Possible solutions,” International Journal of Computer Science and

Technology, Vol.2, No. 1, 2012.

116. Meier J D, Mackman A, Dunner M, Vasireddy S, Escamilla R and

Murukan A, “Improving Web Application Security: Threats and

Counter Measures,” Microsoft Corporation, January 2006, [Online],

Available: https://msdn.microsoft.com/en- us/library/ff648641.aspx.

117. Mell P and Grance T, “The NIST Definition of Cloud Computing,”

2011, NIST Special Publication 800-145, [Online] Available:

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf.

118. Meyer R, “Secure Authentication on The Internet,” SANS Institute

Infosec Reading Room, 2007, [Online], Available:

316

https://www.sans.org/reading- room/whitepapers/securecode/secure-

authentication-internet-2084.

119. Microsoft, Brokered Authentication, 2005,

https://msdn.microsoft.com/en-us/library/aa480560.aspx.

120. Microsoft, Direct Authentication, December 2005,

https://msdn.microsoft.com/en-us/library/ff647715.asp.

121. Microsoft, Web Service Security, Scenarios, Patterns and

Implementation Guidance for Web Services Enhancements (WSE) 3.0,

2005, [Online], Available: https://msdn.microsoft.com/en-

us/library/ff648183.aspx.

122. Misbahuddin M, “Secure Image Based Multi-Factor Authentication

(SIMFA): A Novel Approach for Web Based Services”, 2010, PhD

Thesis, Jawaharlal Nehru Technological University [Online], Available:

http://shodhganga.inflibnet.ac.in/handle/10603/3473.

123. Misbahuddin M, Aijaz A M, Shastri M H, “A Simple and Efficient

Solution to Remote User Authentication Using Smart Cards”, in

Proceedings of IEEE Innovations in Information Technology

Conference (IIT 06), Dubai, 2006.

124. Misbahuddin M, Premchand P and Govardhan A, “A User Friendly

Password Authenticated Key Agreement for Multi Server

Environment,” in Proceedings of the International Conference on

Advances in Computing, Communication and Control, pp. 113-119,

2009.

125. Moskowitz R,” Are Biometrics Too Good?”, Network Computing,

pp.85, No.1002,1999.

317

126. Mukhopadhyay S and Argles D, “An Anti-Phishing mechanism for

Single Sign-On,” in Proceedings of International Conference on

Information Society, IEEE, pp.505-508, 2011.

127. Mulliner C, Burgaonkar R, Stewin P, Siefert J P, “SMS Based One

Time Passwords: Attack and Defense,” Lecture Notes in Computer

Science, Vol. 7967, pp. 150-159, 2013.

128. MULTOS and JavaCard, WhitePaper, Jan Kremer Consulting Services,

[Online], Available:

http://jkremer.com/White%20Papers/MULTOS%20and%20JAVACAR

D%20White%20Paper%20JKCS.pdf.

129. Needham R and Schroeder M, “Using Encryption for Authentication in

Large Networks of Computers,” Communications of the ACM, Vol. 21,

1978. pp. 993-999, 1978.

130. Nicole Lewis, “Utah’s Medicaid Data Breach Worse than Expected”,

2012, [Online]. Available: http://www.darkreading.com/risk-

management/utahs-medicaid-data-breach-worse-than-expected/d/d-

id/1103823.

131. NIST, “FIPS-PUB:186-4 Digital Signature Standard (DSS), July2013,

[Online], Available: http://csrc.nist.gov/publications/nistpubs/800-

57/sp800-57_part1_rev3_general.pdf.

132. NIST, “SHA-3 standardization,” 2013, [Online], Available:

http://csrc.nist.gov/groups/ST/hash/sha-3/sha-3_standardization.html.

133. NIST, “Standards for Security Categorization of Federal Information

and Information Systems,” FIPS PUB 199, 2004, [Online], Available”

http://csrc.nist.gov/publications/fips/fips199/FIPS-PUB-199-final.pdf.

318

134. NIST,” NIST Cloud Computing Program,” 2012, [Online], Available:

http://www.nist.gov/itl/cloud/.

135. NIST,” Verifier Impersonation Attack,” Electronic Authentication

Guideline, NIST Special Publication 800-63, Version 1.0.2, April 2006.

136. OASIS, “Security Assertion Markup Language (SAML) 2.0 Technical

overview, working draft 03,” 20 February 2005. https://www.oasis-

open.org/committees/download.php/27819/sstc-saml-tech-overview-

2.0-cd-02.pdf.

137. Ocrho, RSA SecurID Token (Model SID700), Uploaded on 19

December 2008, Wikipedia, [Online], Available:

https://en.wikipedia.org/wiki/RSA_SecurID#/media/File:SecureID_tok

en_new.JPG.

138. Password Cracking, Wikipedia, [Online], Available:

https://en.wikipedia.org/wiki/Password_cracking.

139. PBworks, Authentication Technologies, 2007, [Online], Available:

http://biometrics.pbworks.com/w/page/14811351/Authentication%20te

chnologies.

140. Pearce M, Zeadally S, Hunt R, “Virtualization: Issues, Security Threats,

and Solutions,” ACM Computing Surveys (CSUR), Vol. 45, No. 2, pp.

1:71-1:739 2013.

141. Pearson S, “Privacy, Security and Trust in Cloud Computing”, in

Pearson S, Yee G (editors) Privacy and Security for Cloud Computing,

pp. 3-42. Springer, London 2013.

142. Perez-Botero D, Szefer J and Lee R B, “Characterizing Hypervisor

Vulnerabilities in Cloud Computing Servers”, in Proceedings of the

319

2013 International Workshop on Security in Cloud Computing (SCC),

pp. 3-10. ACM, New York, NY, USA, 2013.

143. Public Key Infrastructure, Wikipedia, [Online], Available:

https://en.wikipedia.org/wiki/ Public_key_infrastructure.

144. Rainbow Table, Wikipedia, [Online], Available:

https://en.wikipedia.org/wiki/Rainbow_table.

145. Raza M, Iqbal M, Sharif M and Haider W, “A Survey of Password

Attacks and Comparative Analysis on Methods for Secure

Authentication,” World Applied Sciences Journal, Vol.19, No.4, pp.

439 - 444, 2012.

146. Rick wash, “Lecture Notes on Stream Ciphers and RC4”,

http://rickwash.com/papers/stream.pdf, Un-Published.

147. Rivest R L, Shamir A, Adleman L, “A Method for Obtaining Digital

Signatures and Public Key Cryptosystems”, Communications of the

ACM Vol. 21, No. 2, pp. 120–126., 1978.

148. Rodero-Morieno L, Vaquero L M, Caron E, Desprez F, and Muresan A,

“Building Safe PaaS Clouds: A Survey on Security in Multi-Tenant

Software Platforms,” Computers & Security, Vol.31, No. 1, pp.96-108,

2012.

149. Rouse M, Single-factor Authentication (SFA), March 2015, [Online],

Available: http://searchsecurity.techtarget.com/definition/single-factor-

authentication-SFA.

150. RSA Inc., “RSA SecurID Hardware Authenticators,” 2015, [Online].

Available: http://www.emc.com/security/rsa-securID/rsa-securID-

hardware-authenticators.htm.

320

151. RSA SecurID, Wikipedia, May 2016, [Online], Available:

https://en.wikipedia.org/wiki/RSA_SecurID.

152. Rui Jiang, “Advanced Secure User Authentication Framework for

Cloud Computing,” International Journal of Smart Sensing and

Intelligent Systems, Vol. 6, No.4, 2013.

153. Saurabh D, Srinivas S and Qiang Y, “Message Digest as Authentication

Entity for Mobile Cloud Computing,” in proceedings of Performance

computing and communications conference (IPCCC), IEEE 32nd

International Conference, 2013.

154. Scheuermann D, “The Smartcard as a Mobile Security Device”,

Electronics & Communication Engineering Journal, Vol. 14, No. 5,

pp.205-210, 2002.

155. Schneier B, Applied Cryptography, Second Edition: protocols,

Algorithms and Source Code in C, Wiley Computer Publishing, 1996.

156. Schneier, B. "Cryptanalysis of MD5 and SHA: Time for a New

Standard". Computerworld, August, 19, 2004, [Online], Available:

https://www.schneier.com/essays/archives/2004/08/cryptanalysis_of_m

d5.html.

157. Shen Z, Li L, Yan F and Wu X, “Cloud Computing System based on

Trusted Computing Platform,” in Proceedings of International

Conference on Intelligent Computation and Trusted Computing

Platform, pp.942-945, 2010.

158. Shibboleth, “Identity Provider and Service Provider Single Log Out,”

2015, [Online], Available:

http://www.utexas.edu/its/help/shibboleth/2299.

321

159. Shieh W G and Wang J M, “Efficient remote Mutual Authentication

and Key Agreement,” Computers and Security, Vol. 25. pp.72-77,

2006.

160. Shih H C, “Cryptanalysis on Two Password Authentication Schemes,”

Laboratory of Cryptography and Information Security, National Central

University, Taiwan, 2008.

161. Song D, Berezin S and Perrig A, “Athena: A Novel Approach to

Efficient Automatic Security Protocol Analysis,” Journal of Computer

Security, Vol. 9, pp. 47-74, 2001.

162. Stallings W, “Cryptography and Network Security, Principles and

Practices,” Fifth edition, Pearson Publications, 2011.

163. Stallings W, “Cryptography and Network Security: Principles and

Practices,” 4th edition, Pearson Edition, ISBN-10, 0131873164 ISBN-

13: 9780131873162, 2006.

164. Stienne D S, Nathan C and Paul R, “Strong Authentication for Web

Services Using Smart Cards,” in the Proceedings of Australian

Information Security Management Conference, 2013.

165. Subashini S and Kavitha V, “A Survey on Security Issues in Service

Delivery Models of Cloud Computing,” Journal of Network and

Computer Applications, Vol. 34, No.1, pp. 1 -11, 2011.

166. Sun, “An Efficient Remote Use Authentication Scheme Using Smart

Cards,” IEEE Transactions on Consumer electronics, Vol. 46, No.4,

2000.

167. Takabi H, Joshi J B D and Ahn G, “SecureCloud: Towards a

Comprehensive Security Framework for Cloud Computing

322

Environments,” in Proceedings of the IEEE 34th Annual Computer

Software and Application Conference Workshops, pp. 393-398, 2010.

168. Thawte, “History of Cryptography,” [Online], Available:

http://book.itep.ru/depository/crypto/Cryptography_history.pdf, 2013.

169. Trosch J, “Identity Federation with SAML 2.0,” 2008, [Online],

Available:

http://security.hsr.ch/theses/DA_2008_IdentityFederation_with_SAML

_20.pdf.

170. Tsai H, Siebenhaar M, Miede A, Yulun H and Steinmetz R, “Threat as

A Service? The Impact of Virtualization on Cloud Security,” IT

Professional, Vol. 14, No.1, pp.32-37, 2011.

171. Tsai J, “Efficient Multi-Server Authentication Scheme Based on One-

way Hash Function without Verification Table,” Computers & Security,

Vol.27, pp. 115-121, 2008.

172. Tsaur W J, Wu C C and Lee W B, “A Smart-Card Based Remote

Scheme for Password Authentication in Multi-Server Internet

Services,” Computer Standards and Interfaces, No. 27, pp. 39-51,

2004.

173. Oracle, “Understanding Web Service Security Concepts,” copyright @

2016, Oracle® Fusion Middle ware understanding oracle web services

manager,” [online],

Available:https://docs.oracle.com/middleware/1212/owsm/OWSMC/o

wsm-security-concepts.htm#OWSMC116.

174. Vaquero L M, Rodero-Morieno L and Moran D,” Locking The Sky: A

Survey on IaaS Cloud Security”, Computing Vol.91, No.1, 93-118,

2011.

323

175. Vmware, “How to Choose the Right Virtual Data Center for Your

Needs,” 2012, [Online], Available:

http://ww2.frost.com/files/8714/2113/2896/Whitepaper-

Choosing_the_Right_Virtual_Datacenter.pdf.

176. Walter S, “Smart Card Icons,”, 2011, [Online], Available:

http://stef.thewalter.net/smart-card-icons.html

177. Warren H, “Passwords and Passion”, Software, IEEE, Vol.23, No. 4,

pp.5-7, 2006.

178. Whittaker Z, “Microsoft Admits Patriot Act Can Access EU Based

Cloud Data,” 2011, [Online], Available:

http://www.zdnet.com/article/microsoft-admits-patriot- act-can-access-

eu-based-cloud-data/.

179. Woodward J D, "Believing in Biometrics". Information Security

Magazine, 21 March 2000, [Online], Available:

http://www.infosecuritymag.com/biometrics.htm.

180. Xiao Z and Xiao Y,” Security and Privacy in Cloud Computing,” IEEE.

Communications Surveys and Tutorials, Vol.15, No. 2, pp.843-859,

2013.

181. Xiaoyun W, Dengguo F, Xuejia L, Hongbu Y, “Collisions for Hash

Functions MD4, MD5, HAVAL-128 and RIPEMD,” in the Crypto

2004 conference, August 2004, [Online], Available:

http://eprint.iacr.org/2004/199.pdf.

182. Xiaoyun W, Yiqun L Y, and Hongbo Y, “Finding Collisions in the Full

SHA-1, 2005,” Advances in Cryptology, -CRYPTO 2005, Vol. 3621,

Lecture Notes in Computer Science, pp.17-36.

324

183. Xiong L, Yongping X, Jian M, and Wendong W, “An Efficient and

Security Dynamic Identity Based Authentication Protocol for Multi-

Server architecture Using Smart Cards”, Journal of Network and

Computer Applications Vol.35, pp. 763-769, 2012.

184. Yoon E J and Yoo K Y,” Improving the Dynamic ID-Based Remote

Mutual Authentication Scheme,” in Proceedings of OTM Workshops

2006, LNCS 4277, pp. 499-507, 2006.

185. Zarandioon S, “Improving the Security and Usability of Cloud Services

with User-Centric Security Models,” May 2012, Ph.D Thesis, [Online],

Available:

http://www.cs.rutgers.edu/~vinodg/students/samanzarandioon_phdthesi

s.pdf.

186. Zetter K, “FBI defends Disruptive Raid on Texas data Centers”, April

2009, [Online], Available:

http://www.wired.com/threatlevel/2009/04/data-centers-ra/.

187. Zhang Y, Juels A, Opera A and Reiter M K, “Home Alone: Co-

Residency Detection in The Cloud Via Side-Channel Analysis,” in

Proc. IEEE Symposium on Security and Privacy, pp. 313-328, 2011.

188. Zhou M, Zhang R, Xie W, Qian W and Zhou A,” Security and Privacy

in Cloud Computing: A Survey,” in Proceedings of the 6th International

Conference on Semantics Knowledge and Grid, IEEE Computer

Society, Washington, DC, USA, pp. 105-112, 2010.

189. Zhu B, Fan X and Gong G, “Loxin – A Solution to Password-Less

Universal Login,” in Proceedings of 2014 IEEE INFOCOM Workshop

on Security and Privacy in Big Data, pp. 488-493, Toronto, ON, 2013.

325

190. Zhu H, He Q, Tang H and Cao W, “Voiceprint-Biometric Template

Design and Authentication Based on Cloud Computing Security,” in

Proceedings of International Conference on Cloud and Service

Computing, pp. 302-308, 2011.

191. Zunnurhain K, Vrbsky S, “Security Attacks and Solutions in Clouds,”

Poster from CloudCom 2010, 2010, [Online], Available:

http://salsahpc.indiana.edu/CloudCom2010/Poster/cloudcom2010_sub

mission_98.pdf.

192. Zwattendorfer B and Tauber A, “Secure Cross-Cloud Single Sign-on

(SSO) Using eIDs,” in Proceedings of the 7th International conference

for Internet Technology and Secured Transactions (ICITST 2012), pp.

1501-155, London, 2012.

326

PUBLICATIONS AND PROCEEDINGS

I. Papers in Journals

1. An Enhanced Secure Remote User Authentication Scheme without

Verification Table

Sumitra Binu, Pethuru Raj and Mohammed Misbahuddin

International Journal of Computer Applications (IJCA), 114(10), pp.1-

5, 2015.

2. A Survey of Cloud Authentication Attacks and Solution Approaches

Sumitra Binu, Mohammed Misbahuddin and Pethuru Raj

International Journal of Innovative Research in Computer and

Communication Engineering (IJRCCE), 114(10), pp.1-5, 2014.

3. A Security Framework for an Enterprise System on Cloud

Sumitra Binu, Meena Kumari

International Journal of Computer Science and Engineering (IJCSE),

3(4), pp.548-552, 2012.

II. Conference Proceedings

1 A Mobile Based Remote User Authentication System without Verifier

Table for Cloud Based Services.

Sumitra Binu, Mohammed Misbahuddin and Pethuru Raj

Proceedings of International Symposium on Women in Computing and

Informatics(WCI-2015), held on 10-13 August, 2015, Kochi, Kerala,

India.

http://dl.acm.org/citation.cfm?id=2791487&dl=ACM&coll=DL&CFID=7

44472768&CFTOKEN=25120408.

2 A Strong Single Sign-on User Authentication Scheme without Verifier

Table for Cloud Based Services.

327

Sumitra Binu, Mohammed Misbahuddin and Pethuru Raj

Proceedings of International Conference on Security and

Management(SAM’15), held on 27-30 July, 2015, Las Vegas, Nevada,

USA.

http://worldcomp-proceedings.com/proc/p2015/SAM9742.pdf

3 A Secure Authentication Framework for Cloud Environment.

Sumitra Binu, Pethuru Raj and Mohammed Misbahuddin

Doctoral Colloquium & Demos Sessions(SAM’15), the 2015 World

Congress in Computer Science, Computer Engineering and Applied

Computing (WORLDCOMP’15) held on 27-30 July, 2015, Las Vegas,

Nevada, USA.

4 SAFE-CLOUD: A Secure and Usable Authentication Framework for

Cloud Environment.

Sumitra Binu, Pethuru Raj and Mohammed Misbahuddin

Proceedings of 2nd International Doctoral Symposium on Applied

Computation and Security Systems (ACSS), held on 23-25 May, 2015,

Kolkata, India.

http://link.springer.com/chapter/10.1007%2F978-81-322-2650-5_12

5 A Proof of Concept Implementation of a Mobile Based Authentication

Scheme without Password Tabel for Cloud Environment.

Sumitra Binu, Archana Mohna, Deepak K.T, Manohar S, Mohammed

Misbahuddin, Pethuru Raj

Proceedings of fifth IEEE International Advanced Comuputing

Conference, held on 12-13 June, 2015, BMSCE, Bangalore, India.

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7154897&url=http

%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%

3D7154897

6 An Enhanced Dynamic Identity Based Remote User Authentication

Scheme Using Smart Card without Verification Table.

Sumitra Binu, Pethuru Raj, Mohammed Misbahuddin

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7154897&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7154897
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7154897&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7154897
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7154897&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7154897

328

Proceedings of Security and Privacy Symposium 2015, held on 14

February, 2015, IIIT, Delhi, India.

7 A Single Sign-on Based Secure Remote User Authentication Scheme

for Multi-Server Enviroments.

Sumitra Binu, Mohammed Misbahuddin, Pethuru Raj.

Proceedings of International Conference on Computing and

Communication Technologies, held on 11-13 December, 2014,

Organized by Osmania University, Hyderabad, India.

8 A Survey of Traditional and Cloud Specific Security Issues.

Sumitra Binu, Mohammed Misbahuddin, Pethuru Raj.

Proceedings of International Symposium on security in computing and

Communication(SSCC’13), held on 22-24 August 2013, at SJCE,

Mysore, India.

http://link.springer.com/chapter/10.1007%2F978-3-642-40576-1_12

