Browse Items (2150 total)
Sort by:
-
Analysis and Forecasting of Crude Oil Price Based on Univariate and Multivariate Time Series Approaches
This paper discusses the notion of multivariate and univariate analysis for the prediction of crude oil price in India. The study also looks at the long-term relationship between the crude oil prices and its petroleum products price such as diesel, gasoline, and natural gas in India. Both univariate and multivariate time series analyses are used to predict the relationship between crude oil price and other petroleum products. The Johansen cointegration test, EngleGranger test, vector error correction (VEC) model, and vector auto regressive (VAR) model are used in this study to assess the long- and short-run dynamics between crude oil prices and other petroleum products. Prediction of crude oil price has also been modeled with respect to the univariate time series models such as autoregressive integrated moving average (ARIMA) model, Holt exponential smoothing, and generalized autoregressive conditional heteroskedasticity (GARCH). The cointegration test indicated that diesel prices and crude oil prices have a long-run link. The Granger causality test revealed a bidirectional relationship between the price of diesel and the price of gasoline, as well as a unidirectional association between the price of diesel and the price of crude oil. Based on in-sample forecasts, accuracy metrics such as root mean square logarithmic error (RMSLE), mean absolute percentage error (MAPE), and mean absolute square error (MASE) were derived, and it was discovered that VECM and ARIMA models can efficiently predict crude oil prices. 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Analysis of an Existing Method for Detecting Adversarial Attacks on Deep Neural Networks
Analyzes the existing method of detecting adversarial attacks on deep neural networks, proposed by researchers from Carnegie Mellon University and the Korean Institute of Advanced Technologies (KAIST) Ko, G. and Lim, G in 2021. Examines adversarial attacks, as well as the history of research on the topic. The paper considers the concepts of interpreted and not interpreted neural networks and features of methods of protection of the types of neural networks considered. The method for protecting against adversarial attacks is also considered to be applicable to both types of neural networks. An example of an attack simulation is given, which makes it possible to identify a sign showing that an attack has been committed. The Author(s), under exclusive license to Springer Nature Switzerland AG 2024. -
Analysis of benchmark image pre-processing techniques for coronary angiogram images
Coronary Artery supplies oxygenated blood and nutrients to the heart muscles. It can be narrow by the plaque deposited on the artery wall. Cardiologists and radiologists diagnose the disease through visual inspection based on x-ray images. It is a challenging part for them to identify the plaque in the artery in the given imagery. By using image processing and pattern recognition techniques, a narrowed artery can be identified. In this paper, pre-processing methods of image processing are discussed with respect to coronary angiogram image(s). In general the angiogram images are affected by device generated noise / artifacts; pre-processing techniques help to reduce the noise in the image and to enhance the quality of the image so that the region of interest is sensed. The main objective of the medical image analysis is to localize the region of interest by removing the noise. It is essential to find the structure of the artery in the angiogram image, for that preprocessing is useful. 2021 IEEE. -
Analysis of Cardiovascular Diseases Prediction Using Machine Learning Classification Algorithms
Worldwide healthcare systems have faced enormous hurdles because of the COVID-19 pandemic, especially when it comes to treating individuals who already have pre-existing disorders such as cardiovascular diseases (CVDs). Prioritizing medical therapies and resources for COVID-19 patients who are at increased risk of mortality from underlying CVDs requires early identification. In this work, we investigate how well three machine learning algorithms-, Random Forest, XGBoost, and Logistic Regression-predict death in COVID-19 patients who already have cardiovascular disease. We performed grid search and cross-validation using a dataset of clinical and demographic features of COVID-19 patients with and without CVDs to reduce overfitting and maximize model performance. Our findings show that among patients with CVDs, Logistic Regression had the best accuracy in predicting COVID-19 fatality, followed by Random Forest and Decision Tree coming in a close second. These results highlight how machine learning algorithms can help clinical professionals detect high-risk COVID-19 patients who have underlying cardiovascular diseases (CVDs), enable prompt interventions, and enhance patient outcomes. 2024 IEEE. -
Analysis of Challenges Experienced by Students with Online Classes During the COVID-19 Pandemic
In the current context of the COVID-19 pandemic, due to restrictions in mobility and the closure of schools, people had to shift to work from home. India has the worlds second-largest pool of internet users, yet half its population lacks internet access or knowledge to use digital services. The shift to online mediums for education has exposed the stark digital divide in the education system. The digitization of education proved to be a significant challenge for students who lacked the devices, internet facility, and infrastructure to support the online mode of education or lacked the training to use these devices. These challenges raise concerns about the effectiveness of the future of education, as teachers and students find it challenging to communicate, connect, and assess meaningful learning. This study was conducted at one of the universities in India using a purposive sampling method to understand the challenges faced by the students during the online study and their satisfaction level. This paper aims to draw insight from the survey into the concerns raised by students from different backgrounds while learning from their homes and the decline in the effectiveness of education. 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Analysis of error rate for various attributes to obtain the optimal decision tree
The competitiveness and computational intelligence are required to increase the gross profit of the product in a market. The classification algorithm rpart is applied on retail market dataset. The regression rpart decision tree algorithm is implemented with principal component analysis to impute data in the missing part of the dataset. The objective is to obtain an optimal tree by analysing cross validation error, standard deviation error, and number of splits and relative error of various attributes. The results of various attributes by ANOVA method are compared to choose the best optimal tree. The tree with minimum error rate is considered for the optimal tree. Copyright 2022 Inderscience Enterprises Ltd. -
Analysis of Fine Needle Aspiration Images by Using Hybrid Feature Selection and Various Machine Learning Classifiers
Women die of breast cancer most often worldwide. Breast tissue samples can be examined by radiologists, surgeons, and pathologists for evidence of this cancer. Fine needle aspiration cytology (FNAC) can be used to detect this cancer through a visual microscopic examination of breast tissue samples. This sample must be examined by a cytopathologist in order to determine the patient's risk of breast cancer. To determine if a tumor is malignant, the nuclei of the cells must be characterized by their chromatin texture patterns. A machine learning method is used in order to categorize FNA images into two classes, respectively Malignant and Benign. For detecting abnormalities, numerous feature collection methods and machine learning means are applied here. Using features extracted from the FNA image set, UCI machine learning datasets are used to validate the proposed approach. This paper compares three classification methodologies, namely random forests, Naive Bayes, and artificial neural networks, by examining their accuracy, specificity, precision, and sensitivity, respectively. With the ANN and PCA along with the Chi-square selection method, 99.1% of the classifiers are correctly classified. 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Analysis of Flexoelectricity with Deformed Junction in Two Distinct Piezoelectric Materials Using Wave Transmission Study
Analysis of flexoelectricity in distinct piezoelectric (PE) materials bars (PZT-7A, PZT-6B) with deformed interface in stick over Silicon oxide layer is studied analytically with the help of Love-type wave vibrations. Using the numerical data for PE material, then research achieves the noteworthy fallouts of flexoelectric effect (FE) and PE. The effect of flexoelectricity is compared first between biomaterials of piezoelectric ceramics. Dispersion expressions are procured logically for together electrically unlocked/locked conditions under the influence of deformed interface in the complex form which is transcendental. Fallouts of the research identify that contexture consisting of FE has a noteworthy impact on the acquired dispersion expressions. Existence of FE displays that the unreal section of the phase velocity rises monotonically. Competitive consequences are displayed diagrammatically and ratified with published outcomes. The outcomes of the present research done on both the real and imaginary section of the wave velocity. The comparative study between the two piezo-ceramics bars helps us to understand the properties of one piezo-material over the another and as an outcomes the significance of the present study helps in structural health monitoring, bioengineering for optimizing the detection sensitivity in the smart sensors. 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG. -
Analysis of Fraud Prediction and Detection Through Machine Learning
In today's world the rate of fraudulent activities has significantly elevated, because of which a need for a competent system is required. Among all the fraudulent activities insurance fraud has the most dominating rate of growth. Fraud studies have suggested, that upon identifying the similar characteristics of a fraudulent claim with the claimants, a system of forensic and data-mining technologies for fraud detection can be set up. In this, seek to define fraud and fraudster, and look at the types of fraud and followed by the consequences of fraud to financial systems. As fraud is getting widespread these days epically in the health care insurance system, dealing with this problem has become a necessity. Unsupervised machine learning algorithms such as K-Means clustering along with supervised algorithms used in machine learning, like support vector machines, logistic regression, design trees etc. can play a very vital role in binary class classifications, which would ultimately help in identifying and outreaching the desired goal of fraudulent detection. In the end, this paper specifies the best or the most appropriate model that could be used in the given dataset to produce the most accurate results, based on certain parameters of confusion metrics like accuracy, precision, and specificity. 2023 IEEE. -
Analysis of Human Physiological Parameters Using Real-Time HRV Estimation from Acquired ECG Signals
The overall healthiness of the heart can be computed from Electrocardiogram. The healthiness of the heart depends on several lifestyle parameters, like as- stress, sleeping pattern, smoking habit etc. In this paper, an algorithm to determine Heart Rate Variability from the acquired ECG signal on a real-time basis is presented. Impacts of above-stated lifestyle parameters on cardiac health using Heart Rate Variability analysis are also computed. ECG signal gets contaminated with different sources of noises while acquisition. Multi-rate FIR Impulse Filter is used for de-noising of the acquired signal. Heart Rate Variability analysis and real-time plotting are done on de-noised output for accurate feature extraction. A simple robust hardware realizable algorithm was developed for analyzing obtained HRV to state different health conditions of the heart. 2019 IEEE. -
Analysis of Kidney Ultrasound Images Using Deep Learning and Machine Learning Techniques: A Review
Ultrasonography is the most accepted and widely used imaging technique due to its non-invasive and radiation-free nature. The heterogeneous structure of kidney makes the disease detection a difficult task. Hence, more efficient models and methods are required to assist radiologists in making precise decisions. Since ultrasound imaging is considered to be the initial step in the diagnosis, more efficient processing techniques are needed in the interpretation of images. The presence of speckle noise is a challenge task in image processing. It diminishes the clarity of the images. In this article, an in-depth review has been performed on various machine learning and deep learning techniques, which are helping to improve the quality of images. The pre-processing, segmentation, feature extraction, and classification are described in detail using kidney cyst, stone, tumor, and normal kidney images. Deep learning techniques are enhancing the quality of the images with better accuracy. The remaining challenges and directions for future research are also explored. 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Analysis of Market Behavior Using Popular Digital Design Technical Indicators and Neural Network
Forecasting the future price movements and the market trend with combinations of technical indicators and machine learning techniques has been a broad area of study and it is important to identify those models which produce results with accuracy. Technical analysis of stock movements considers the price and volume of stocks for prediction. Technical indicators such as Relative Strength Index (RSI), Stochastic Oscillator, Bollinger bands, and Moving Averages are used to find out the buy and sell signals along with the chart patterns which determine the price movements and trend of the market. In this article, the various technical indicator signals are considered as inputs and they are trained and tested through machine learning techniques to develop a model that predicts the movements accurately. 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Analysis of MRI Images to Discover Brain Tumor Detection Using CNN and VGG-16
Brain tumor is a malignant illness where irregular cells, excess cells and uncontrollable cells are grown inside the brain. Now-a-days Image processing plays a main role in discovery of breast cancer, lung cancer and brain tumor in initial stage. In Image processing even the smallest part of tumor is sensed and can be cured in early stage for giving the suitable treatment. Bio-medical Image processing is a rising arena it consists of many types of imaging approaches like CT scans, X-Ray and MRI. Medical image processing may be the challenging and complex field which is rising nowadays. CNN is known as convolutional neural network it used for image recognition and that is exactly intended for progression pixel data. The performance of model is measured using two different datasets which is merged as one. In this paper two models are used CNN and VGG-16 and finding the best model using their accuracy. 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Analysis of Multinomial Classification for Legal Document Categorization
A major area of research today is the application of Machine Learning Techniques for Document or Text Classification. Document Classification is an important aspect of Electronic Discovery in the Legal domain. The need for the process to be automated has been realized over the past few years. Multinomial Classification is a well-known Supervised Machine Learning Technique that helps us classify if there are more than two classes used for the purpose of Classification. Evaluation metrics such as Precision, Recall, and F1 Score have been used to measure the efficiency of Classification. Logistic Regression and Gradient Boosting Algorithms have outperformed other Multiclass Classification techniques. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Analysis of Nine Level Single-Phase Cascaded H-Bridge Inverters for EVs
This paper explores the design and operation of a Modular Nine-Level Inverter (MLI)-Electric Vehicle (EV) charging system, incorporating solar energy to power domestic loads and charge EVs. The system comprises a solar panel, DC-DC regulator, and MLI for efficient energy conversion. The MLI's modular design reduces complexity and enhances efficiency. Equivalent circuits illustrate voltage level generation, while PWM control regulates power device switching for precise output control. Performance metrics, including regulated DC supply voltage and staircase nine-level output voltage, demonstrate the system's capability for diverse applications. A nearly sinusoidal current waveform and harmonic analysis underscore the system's effectiveness in delivering stable power with reduced harmonic distortion. Comparisons between filtered and unfiltered output highlight the importance of filtering techniques in improving power quality. Overall, the MLI-EV charging system showcases advancements in renewable energy integration, offering a versatile solution for sustainable electricity generation and EV charging. 2024 IEEE. -
Analysis of Reinforced Concrete Structure Subjected to Blast Loads Without and with Carbon Fibres
In the past few decades, the terrorist attack on buildings has significantly increased. Blast loads due to explosions cause severe damage to the buildings structural and non-structural elements which may also lead to progressive collapse of the building. Hence, there is a need for the structures to be analysed and designed for blast loads in addition to the conventional loads. An investigation is undertaken to minimize the damage of a G+3 storied building and by improving the mechanical properties such as compressive strength, nonlinear behaviour of M40 grade concrete by adding carbon fibres in different dosages. A finite element model of G+3 storied building has been created using Ansys/LS Dyna to analyse the structure subjected to a blast load with charge weights of 50 kg, 100 kg, 150 kg at 3000 mm standoff distance. The lateral deflections and strains of the structure are determined for different charge weights to study the behaviour of the structure when subjected to blast loads. The addition of carbon fibres has improved the behaviour of structure by reducing the strains and deflections and optimum dosage of fibres is also determined in this paper. 2023, Springer Science and Business Media Deutschland GmbH. All rights reserved. -
Analysis of Routing Protocols in MANET Networks
The scientific article is a review and comparative analysis of routing protocols for MANETs. The study examines the main protocols connected to mobile ad hoc networks such as B.A.T.M.A.N, BMX7, OLSRv1, Babel and provides a detailed analysis of their characteristics, advantages and disadvantages. To empirically evaluate performance, tests were carried out in a network simulator. The results of the study allow us to draw conclusions about the effectiveness and reliability of each of the monitoring protocols under various operating conditions of MANET. This article is a valuable contribution to the field of MANET research and can be used in the development of new technologies and solutions for mobile wireless networks. The work is relevant and practically significant because it helps researchers and engineers make informed decisions when choosing the optimal routing protocol in MANET networks. The results obtained can be useful in the design of mobile applications, emergency communication systems, transport management and other areas where the efficient operation of wireless networks is important. The Author(s), under exclusive license to Springer Nature Switzerland AG 2024. -
Analysis of Social Media Marketing Impact on Customer Behaviour using AI & Machine Learning
The study of client behaviour has been revolutionized by the combination of social media marketing with cutting-edge technology like Artificial Intelligence (AI) and Machine Learning (ML) in today's age of digital transformation. This study delves into the complex interplay between AI/ML, consumer involvement, and social media marketing methods. Our research exposes crucial insights via careful data collecting, sentiment analysis, and the construction of prediction models. By stressing the importance of catering content to individual interests, AI-driven customization emerges as a potent tool, increasing user engagement by 18%. Analysis of online sentiment shows how important it is to keep people feeling good about a business; postings with positive feelings get 30% more likes and comments on average. Accurate and time-saving insights from machine learning models provide up new avenues for optimizing marketing's use of available resources. As a result of the study's conclusions, companies will be able to better connect with their customers, use their resources more efficiently, and behave ethically moving forward. Promising new developments in the subject include the next steps, which include sophisticated AI models, temporal dynamics analysis, and investigation of long-term consequences, ethical issues, and multichannel techniques. This study helps companies, marketers, and policymakers better understand the convergence of technology and marketing in today's ever-changing digital world so that they may better serve their customers and build a successful brand over time. 2024 IEEE. -
Analysis of the UAV Flight Logs in Order to Identify Information Security Incidents
The article discusses issues related to the analysis of the UAV flight logs to identify information security incidents that occurred during flights. Existing methods and tools for analyzing logs are described, and sources for obtaining logs are presented. In the main part of the article, first, the parameters important for the analysis are highlighted. The features of analyzing the values in the flight logs for the detection of two types of attacksGPS Spoofing and GPS Jamming are also given. For this purpose, the parameters that are most important for the detection of each of these attacks have been identified, systems of equations have been compiled to analyze these parameters, the calculations of which make it possible to detect the fact of attacks with high efficiency. The paper also presents the developed software that implements a number of functions that allow automating the analysis of flight logs, as well as determining the presence of information security incidents that occurred during the flight. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Analysis of U-Net and Modified VGG16 Technique for Mitosis Identification in Histopathology Images
One of the most frequently diagnosed cancers in women is breast cancer. Mitotic cells in breast histopathological images are a very important biomarker to diagnose breast cancer. Mitotic scores help medical professionals to grade breast cancer appropriately. The procedure of identifying mitotic cells is quite time-consuming. To speed up and improve the process, automated deep learning methods can be used. The suggested study aims to conduct analysis on the detection of mitotic cells using U-Net and modified VGG16 technique. In this study, pre-processing of the input images is done using stain normalization and enhancement processes. A modified VGG16 classifier is used to classify the segmented results after the altered image has been segmented using U-Net technology. The suggested method's robustness is evaluated using data from the MITOSIS 2012 dataset. The proposed strategy performed better with a precision of 86%,recall of 75% and F1-Score of 80%. 2024 IEEE.