Browse Items (2150 total)
Sort by:
-
Bibliometric Analysis: A Trends and Advancement in Clustering Techniques on VANET
In recent years, Traffic management and road safety has become a major concern for all countries around the globe. Many techniques and applications based on Intelligent Transportation Systems came into existence for road safety, traffic management and infotainment. To support the Intelligent Transport System, VANET has been implemented. With the highly dynamic nature of VANET and frequently changing topology network with high mobility of vehicles or nodes, dissemination of messages becomes a challenge. Clustering Technique is one of the methods which enhances network performance by maintaining communication link stability, sharing network resources, timely dissemination of information and making the network more reliable by using network bandwidth efficiently. This study uses bibliometric analysis to understand the impact of Clustering techniques on VANET from 2017 to 2022. The objective of the study was to understand the trends & advancement in clustering in VANET through bibliometric analysis. The publications were extracted from the Dimension database and the VOS viewer was used to visualize the research patterns. The findings provided valuable information on the publication author, authors country, year, authors organization affiliation, publication journal, citation etc. Based on the findings of this analysis, the other researchers may be able to design their studies better and add more perception or understanding to their empirical studies. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Theoretical Studies ond(?,p)n atAstrophysical Energies
The photonuclear reactions using deuterium target finds application in nuclear physics, laser physics and astrophysics. The studies related to deuteron photodisintegration using polarized photons has been the focus of interest since 1998 which influenced many experimental studies which were carried out using 100% linearly polarized photons at Duke free electron Laser laboratory. Theoretical study on deuteron photodisintegration was carried out and in these studies the possibility of 3 different E1v amplitudes leading to the final n-p state in the continuum was discussed. As there is experimental evidence about the splitting of 3 E1vp- wave amplitudes at slightly higher energies, we hope that the same may be true at near threshold energies also. As the spin dependent variables are more sensitive to theoretical inputs and the data obtained on polarization observables are more sensitive to theoretical calculations, there is a considerable interest on studies related to the reaction. More recently, neutron polarization in d(?,n)p was studied at near threshold energies. In this regard the purpose of the present contribution is to extend this study to discuss proton polarization in d(?,p)n reaction using model independent irreducible tensor formalism at near threshold energies of interest to astrophysics. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Strategic Integration of HR, Organizational Management, Big Data, IoT, and AI: A Comprehensive Framework for Future-Ready Enterprises
This exploration paper proposes a comprehensive frame aimed at fostering unborn-ready enterprises through the strategic integration of Human coffers(HR), Organizational Management, Big Data, the Internet of Things (IoT), and Artificial Intelligence(AI). By synthesizing these critical factors, the frame seeks to optimize organizational effectiveness, enhance decision-making processes, and acclimatize proactively to evolving request dynamics. Through a methodical review of being literature and empirical substantiation, the paper delineates the interconnectedness of these rudiments and elucidates their collaborative impact on organizational performance and dexterity. likewise, it explores perpetration strategies and implicit challenges associated with espousing such an intertwined approach. This paper not only contributes to the theoretical understanding of strategic operation but also provides practical perceptivity for directors and directors seeking to navigate the complications of the contemporary business geography and place their associations for sustained success in a decreasingly digitized and competitive terrain. 2024 IEEE. -
Brain Tumor Localization Using Deep Ensemble Classification and Fast Marching Segmentation
A brain tumor is an unusual and excessive growth of brain cells, which can be cancerous (malignant) or noncancerous (benign). These growths can be risky as they press on healthy brain tissue or expand in the brain. Detecting brain tumors early is tough for radiologists. A typical brain tumor can double in size in just 25days, and without the right treatment, patients often have limited chances of survival, about six months. Initial symptoms can be confused with other illnesses, and brain cancer is difficult to diagnose because of the complex nature of the brain and tumor locations. In this study, we propose a strategy where we first sort medical images based on the presence of a brain tumor. Then, we pinpoint the part of the image containing the tumor through segmentation. We use a combined model of MobileNet-V3 and EfficientNetV2 for image classification. To segment the tumor in the image, we use a fast marching method. The combined model's classification accuracy is 98%, and the segmentation accuracy is 99.6%. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Enhancing Mobility: A Smart Cane with Integrated Navigation System and Voice-Assisted Guidance for the Visually Impaired
Blindness is a condition which affects many people, and for the affected people, quality of life can take a big hit. Most blind people already use walking sticks to feel the terrain in front of them as they move around and navigate using touch and sound. However, they cannot judge distances to objects until the cane actually hits the object. In some cases, the contact with the cane may damage the object. Hence, it may be better to have some early warning system so that there is less likelihood of causing damage. This paper presents the design and development of a 'Smart Cane' aimed at enhancing mobility and safety for visually impaired individuals. The cane incorporates ultrasonic sensors to detect objects in the user's surroundings. When an object is detected within a specified distance range, the cane provides haptic feedback through a bidirectional vibration motor, alerting the user to its presence. The microcontroller-based system processes data from both sensors and efficiently manages power consumption to ensure extended battery life. The device's design includes user-friendly controls and an ergonomic enclosure to offer ease of use and protection for the electronic components. Further, there is built-in navigation via online Map API. With the convenience of navigating oneself without external assistance, the 'Smart Cane' demonstrates great potential to improve the independence and confidence of visually impaired individuals in navigating their environments safely. 2024 IEEE. -
An Analysis of Manufacturing Machine Failures and Optimization Using Replacement Year Prediction
The manufacturing industry is highly susceptible to equipment failures, leading to costly downtime, production delays, and increased maintenance expenses. Effective maintenance planning and resource allocation depend on the early detection of possible faults and the precise forecasting of replacement years. The fundamental technique for assuring operational resilience, limiting disruptions, and improving preventative maintenance processes is manufacturing failure analysis. It entails the methodical analysis of failures and spans several sectors, including the automobile, aerospace, electronics, and heavy machinery. In this research, an integrated methodology for predicting replacement years in the manufacturing industry using operations research approaches and the Python-based machine learning algorithm Random Forest Classifier (RFC) is proposed. The program first calculates the total failure rate after importing manufacturing data from a dataset. The failure rate for each manufacturing line is then determined, and the lines with a high failure rate are identified. The program uses machine learning to improve the analysis by teaching a Random Forest classifier to anticipate failures. The model's performance is assessed by measuring the accuracy of a test set. To determine machine replacement years, it also incorporates replacement theory assumptions. Based on the company's founding year and the current year, it determines the replacement year considering the machine's lifespan. This program's advantages include recognizing production lines with high failure rates, employing machine learning to forecast problems, and offering suggestions on when to replace machines. Manufacturers may enhance their processes, lower failure rates, and increase overall efficiency by utilizing statistical analysis, machine learning, andoptimizationstrategies. As technology advances, the field of failure analysis will continue to evolve, enabling firms to achieve improvements. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Analysing Employee Management Using Machine Learning Techniques and Solutions in Human Resource Management
In the contemporary landscape of Human Resource Management (HRM), organizations are increasingly turning to advanced technologies to streamline employee management processes. This study explores the integration of machine learning (ML) techniques as a transformative solution for optimizing HRM practices, with a specific focus on employee management. By leveraging the power of ML algorithms, this research aims to enhance decision-making, efficiency, and overall effectiveness in HRM. The study encompasses a comprehensive analysis of existing HRM challenges, such as talent acquisition, performance evaluation, and employee retention, and proposes ML-based solutions to address these issues. By applying natural language processing, pattern identification, and predictive analytics, businesses may learn a great deal about employee behavior, performance patterns, and possible areas for development. HR professionals are more equipped to make well-informed choices, customize employee experiences, and put proactive talent development initiatives into action thanks to this data-driven approach. Additionally, the study examines the moral issues and difficulties surrounding the use of ML in HRM, stressing the significance of openness, justice, and privacy. By understanding and mitigating these concerns, organizations can successfully harness the transformative potential of ML in employee management, fostering a more dynamic and adaptive HRM framework. The study's conclusions add to the growing body of knowledge on the relationship between technology and HRM and offer useful advice to businesses looking to use cutting-edge approaches to improve labor management procedures. 2024 IEEE. -
AI Based Seamless Vehicle License Plate Recognition Using Raspberry Pi Technology
This research presents the implementation of an innovative Vehicle Management System designed specifically for the Christ University Project 'CampusWheels.' The system incorporates cutting-edge technologies, including YOLOv8 and Tesseract OCR, for robust license plate recognition. Addressing the unique challenges faced by Christ University in managing and securing vehicular movements within the campus, this project becomes crucial as the number of vehicles on campuses continues to grow. It not only provides an effective solution to these challenges but also introduces innovative methodologies, marking a significant departure from conventional campus management practices. The paramount importance of this project lies in its ability to enhance campus security through real-time vehicle monitoring and identification. The utilization of YOLOv8 for vehicle detection and Tesseract OCR for license plate recognition ensures a high level of accuracy in identifying and tracking vehicles entering and leaving the campus. This precision significantly contributes to the prevention of unauthorized vehicle access, a common security concern on educational campuses. Moreover, the system's ability to streamline traffic flow and improve efficiency in parking and access control addresses practical issues faced by campus administrators and security personnel. 2024 IEEE. -
Cognitive outcomes prediction in children using machine learning and big data analytics
This study explores the potential of machine learning (ML) and big data analytics in predicting cognitive outcomes in children, aiming to enhance early identification and intervention strategies. Leveraging a diverse dataset comprising neurocognitive assessments, genetic markers, socio-economic factors, and environmental variables, our research employs advanced ML algorithms to develop predictive models. The interdisciplinary approach integrates neuroscience, psychology, and data science to discern patterns and correlations within the expansive dataset. The study emphasizes the importance of early cognitive assessment for optimal child development and academic success. By harnessing the power of big data, our models seek to uncover nuanced relationships that traditional methodologies may overlook. Preliminary results indicate promising accuracy in predicting cognitive outcomes, offering a valuable tool for educators, healthcare professionals, and policymakers. Additionally, the model's interpretability allows for a deeper understanding of the factors influencing cognitive development. Ethical considerations, privacy safeguards, and data governance are integral components of this research, ensuring responsible use of sensitive information. The implications of this study extend beyond academia, with the potential to inform educational policies, personalized learning strategies, and targeted interventions for at-risk populations. As technological advancements continue, the integration of ML and big data analytics in predicting cognitive outcomes heralds a new era in pediatric research, promoting proactive approaches to support children's cognitive well-being. 2024 IEEE. -
Analysis of Multinomial Classification for Legal Document Categorization
A major area of research today is the application of Machine Learning Techniques for Document or Text Classification. Document Classification is an important aspect of Electronic Discovery in the Legal domain. The need for the process to be automated has been realized over the past few years. Multinomial Classification is a well-known Supervised Machine Learning Technique that helps us classify if there are more than two classes used for the purpose of Classification. Evaluation metrics such as Precision, Recall, and F1 Score have been used to measure the efficiency of Classification. Logistic Regression and Gradient Boosting Algorithms have outperformed other Multiclass Classification techniques. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Enhancing Network Security with Comparative Study of Machine Learning Algorithms for Intrusion Detection
With the ever-increasing network systems and dependency on digital technologies, ensuring the security and integrity of these systems is of paramount importance. Intrusion detection systems (IDS) play a major role in sheltering such systems. Intrusion detection systems are technologies that are designed to monitor network and system activities and detect suspicious, unauthorized, malicious behavior. This research paper conducts a comprehensive comparative analysis of three popular machine learning algorithmsK-Nearest Neighbors (KNN), Random Forest (RF), and Logistic Regression (LR)in the context of intrusion detection using the renowned NSL-KDD dataset. Preprocessing techniques are applied, and the dataset is split for rigorous evaluation. The findings of this research highlight the effectiveness of Random Forest in detecting intrusions, showcasing its potential for real-world network security applications. This study contributes to the field of intrusion detection and offers valuable insights for network administrators and cybersecurity professionals to enhance network protection. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Cost Effective and Energy Efficient Drip Irrigation System for IoT Enabled Smart Agriculture
The conventional methods of smart farming consume a significant percentage of the resources such as water, electricity, and manpower. This approach demands more time, money, and effort. The state of the art drip irrigation methods make use of the solenoid valve to control the water flow. The problem with such a system is reflected in its power consumption which is a significant factor for large-scale demands. The method proposed in this paper addresses this problem by developing an automated drip irrigation system that replaces components used in conventional methods with its economical counterparts in the market. A system using Node MCU, DC submersible motor, and soil moisture sensor is developed to automate the irrigation process ensuring efficient water and energy consumption. Since the proposed system utilizes economically cheaper components, it provides an upper edge over other systems in terms of expenditure and in turn economically feasible for large-scale demands. A mobile application is also developed to control, monitor, and schedule irrigation processes. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Sliced Bidirectional Gated Recurrent Unit with Sparrow Search Optimizer for Detecting the Attacks in IoT Environment
In an era characterized by pervasive interconnectivity facilitated by the widespread adoption of Internet of Things (IoT) devices across diverse domains, novel cybersecurity challenges have emerged, underscoring the imperative for robust intrusion detection systems. Conventional security frameworks, constrained by their closed-system architecture, struggle to adapt to the dynamic threat landscape marked by the continual emergence of unprecedented attacks. This paper presents a methodology aimed at mitigating the open set recognition (OSR) challenge within IoT-specific Network Intrusion Detection Schemes (NIDS). Leveraging image-based representations of data, our approach focuses on extracting geographical traffic patterns. We observe that the Recurrent Neural Network exhibits suboptimal classification accuracy and lacks parallelizability for attack analysis tasks. Our investigation concludes that the Sparrow Search Optimization Algorithm (SSOA) serves as a foundation for constructing an effective assault classification model. This research contributes significantly to the field of network security by emphasizing the importance and ramifications of meticulous hyperparameter tuning. It represents a critical stride toward developing IDSs capable of effectively navigating the evolving cyber threat landscape. In the experimental analysis of proposed model reached the accuracy and 0.963% respectively. 2024 IEEE. -
Blockchain Integrated Retail Logistics Chain: An Adoption Perspective
The task of managing public health and safety is a multifaceted and delicate one that demands the careful upkeep of numerous processes and systems, with a particular emphasis on cold chain logistics. The primary objective of this research is to investigate how blockchain technology can meet the needs of a retail cold chain. To accomplish this goal, we employed a comprehensive technological adoption model, partial least squares structural equation modeling, and a quantitative cross-sectional survey approach to ascertain stakeholder adoption intentions toward a blockchain-enabled cold supply chain. Our findings suggest that blockchain technology has the capacity to effectively facilitate the goals of the retail cold chain. 2024 IEEE. -
An Investigation on Machine Learning Models in Classification and Identifications Cervical Cancer Using MRI Scan
This study analyzes the effectiveness of machine learning models in the classification of cervical cancer using a dataset of 900 cancer and 200 non-cancer images gathered from online resources and hospitals. The dataset, covering both CT and MRI images, undergoes rigorous preprocessing, including standardization, normalization, and noise reduction, to enhance its quality for model training. Four machine learning models, namely VGG16, CNN, KNN, and RNN, are recruited to predict cancer and non-cancer cases. During the testing phase, VGG16 emerges as the most accurate, achieving an impressive accuracy of 95.44%, followed by CNN at 92.3%, KNN at 89.99%, and RNN at 86.233%. Performance parameters, such as precision, recall, F1 score, and accuracy, are fully analyzed, providing insights into each model's strengths and capabilities. These discoveries not only contribute to the advancement of cervical cancer diagnostic techniques but also underscore the potential of machine learning in medical imaging. The study emphasizes the relevance of model selection and provides a framework for future research endeavors seeking to enhance the accuracy and performance of cervical cancer diagnosis through the merger of advanced computational techniques with standard diagnostic practices. 2024 IEEE. -
Pixels to Pathogens: A Deep Learning Approach to Plant Pathology Detection
It is known that accurately identifying, early and timely treatment and elimination of the plant diseases is essential for crop protection and healthy crop growth. In traditional or conventional methods, identification and classification were done by testing in laboratories or through visual inspection by farmers. Now going through the testing in labs is very time consuming, while the visual inspection requires enough experience and knowledge. To solve this problem, our study proposes a robust plant pathogen detection method based on a Deep Learning approach on a large dataset containing about 38 categories of different species like Maize, Potatoes, Tomatoes, Bell Pepper, Peach, Strawberry etc. and diseases like rust, molds, blight (late and early). This crop disease detection model leverages the power of the EfficientNetB3 architecture, a state-of-art convolutional neural network(CNN). The main backbone is served by EfficientNetB3and then it is fine-tuned using different hyperparameters and other regularization techniques like weight decay, dropout method and optimizers like RAdam,to enhance the overall accuracy coupled with dynamic learning rate adjustment. In the testing set of the dataset, the proposed model shows encouraging accuracy of about 99.25%, high precision of about 97.35%. A thorough evaluation of the model's functionality is given by the help of training and validation line chart and loss chart that gives the in-depth information on the prediction. And then we implemented the detection model in our mobile application whose interface screen shots are given below. In the application the image can be taken by camera or fed from folders and it will detect the type of disease. 2024 IEEE. -
Comparative Analysis of Machine Learning Models in Predicting Academic Outcomes: Insights and Implications for Educational Data Analytics
In the evolving landscape of educational research, the predictive analysis of student performance using data science has garnered significant interest. This study investigates the influence of diverse factors on academic outcomes, ranging from personal demographics to socioeconomic conditions, to enhance educational strategies and support mechanisms. We employed a diverse ml models to analyze a information containing academic records and socioeconomic information. The models tested include Logistic Regression, Random Forest (RF), Gradient Boosting (GB), Support Vector Machines (SVC), K-Nearest Neighbors (KNN), Gaussian Naive Bayes, and Decision Trees. The process involved comprehensive data preprocessing, exploratory analysis, model training, and evaluation based on metrics such as precision, recall, accuracy, and F1 score. The results indicate that ensemble methods, specifically RF and GB, demonstrate superior efficacy in accurately predicting categories of student performance such as 'Enrolled,' 'Graduated,' and 'Dropped Out.' These models excelled in handling the complex interplay of varied predictors affecting student success. The results further underline the potential of advanced ensemble ML techniques in significantly outperforming the prediction accuracy in the academic domain, hence facilitating the tailoring of educational interventions to foster improved engagement and better outcomes for students. This has provided a comparative analysis of the methods that guide the future application of predictive analytics in education. 2024 IEEE. -
A Heuristic Model For Personalised Risk Assesment of PCOS
According to WHO 8-13% of women are affected by Polycystic Ovary Syndrome (PCOS) out of which 70% women remain undiagnosed, it is a common endocrine disorder necessitating early diagnosis for timely intervention. In this paper a heuristic model is developed for PCOS prediction, by combining XGBoost and Random Forest through stacking techniques. Class imbalance was addressed using Random Oversampling. Cross-validation demonstrated the meta-model's superior accuracy compared to individual XGBoost and Random Forest models, highlighting its potential for reliable PCOS prediction. It is observed that the best possible results that the meta-model was able to provide was a score of 93.5% which was acquired in the 4th sample, the lowest score was 87.90% attained in the 2nd sample. To finalise the results, the mean accuracy was calculated which is 90.98% with a standard deviation of 1.96. deterministic model offers reproducible results and interpretability, aiding clinical decision-making. Future research could explore additional biomarkers and probabilistic techniques for personalized risk assessment. 2024 IEEE. -
Classification of Diseased Leaves in Plants Using Convolutional Neural Networks
The article focuses on the classification of diseased leaves using a machine learning algorithm. The main focus in agriculture is controlling pests and weeds, for which farmers spray chemical pesticides to get a good yield. The issue here is over-usage and under-usage of pesticides, which might harm the end consumer. To achieve the goal of reducing pesticide use and detecting pests in the crop early, the machine learning algorithm is deployed on the leaf image. The image data of the leaf of the cauliflower plant is collected for 40days. The data was collected from the day the plant was seeded in a pot until the day it was ready to be planted in the soil. From this data, the pest attack on the plants is tracked without the application of pesticides. To achieve this, the CNN algorithm is used on the collected image data. The outcome of the study would be to classify the diseased leaves based on the pest attack and know the right time to spray the pesticides to reduce the damage to the plant. This also reduces the use of pesticides and costs to the farmer. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Taming theComplexity ofDistributed Lag Models: A Practical Approach toMulticollinearity, Outliers, andAuto-Correlation inFinance
This research investigates the application of robust estimators within the finite distributed lag model (DLM), a critical framework in finance research capturing temporal dependencies between lagged explanatory variables and a response variable. Traditional Ordinary Least Squares (OLS) estimation faces challenges when dealing with high lag counts, multicollinearity, and outliers, potentially compromising parameter estimates and model reliability. Employing real-world data from the RBI, spanning the years 20222023 encompassing budgetary and economic variables of Indian states and Union Territories, the study demonstrates that the MMS estimator emerges as the most efficient estimator, showcasing enhanced robustness against outliers and multicollinearity. Additionally, the study reveals positive autocorrelation in residuals, underscoring the importance of robust methods in addressing such issues in financial modeling. This research contributes valuable insights to financial analysts and offers a more accurate understanding of dynamic relationships in financial systems. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.