Browse Items (11810 total)
Sort by:
-
English language traning for core course instruction in commerce courses :
Tracing the scope and growth of English in the globalised world, this research focusses on helping the learners to improve their English language proficiency through core course instruction. The research has identified the scope of study in the Commerce discipline of higher education setting. The study aims to locate the possibility of learning and improving general vocabulary for the purpose of communication. It traces the existing studies in integrating English language in core course content at various levels and establishes the gap in the study. The mileage that English Language Teaching has covered in the past few decades is far newlinefrom listing. However, areas of study that might seem familiar and established still newlineseem to provide more scope for research. English language, no doubt has become newlinethe medium of instruction in most of the higher education settings. Students get newlineexposed to different course content through English, and training teachers for various skills has become an important quarter in the education setting. With each passing generation, there is a need to create a training approach that suits the lifestyle, advancements in various forums and needs of the learners. This research attempts to create a training module for the purpose of equipping teachers with the ability to teach English, which is the medium of instruction, through core course instruction in the higher education scenario. The research provides a module that could serve as a model for teachers to use language effectively and equip their learners not just with the knowledge of the subject, but also the knowledge of the language through which the content is delivered. The purpose of this study is to highlight the need for a holistic understanding of the language used for content delivery and also to enable students to be able to use the language inputs received here, in daily life communication too. -
English to Hindi Translation System Using Hybrid Techniques
Good communication is critical for overcoming cultural and linguistic divides in today's internationalized society. An essential communication component is the Translation of written materials, primarily academic papers, from one language into another. This abstract focuses on the research involved in translating academic publications from Hindi to English. Translating Hindi academic papers into English is naturally hard due to the significant linguistic and cultural differences between the two languages. The proposed work provided an analytical analysis of various models used in language translation, including the seq-to-seq model, MT5, and LSTM, with the help of BLEU score, Learning rate, and average loss. MT5 model outshines others in terms of an average loss of 4.75; meanwhile, LSTM has an average loss of 5.56, and the seq-to-seq model has an average loss of 6.09, implying weaker Translation. 2024 IEEE. -
Enhanced AIS Based Intrusion Detection System Using Natural Killer Cells
Intrusion detection system is used to monitor the system and network activities to identify anomalies and attacks so that integrity, availability, and confidentiality can be preserved. Here an intrusion detection system based on Artificial Immune System is proposed based on Natural Killer (NK) cells with immunological memory. NK cells are created and each NK cells detection radius is determined using the negative selection algorithm and is trained to detect various attacks. Effective cells with high fairness values are proliferated and distributed to the network using clonal selection algorithm. In this paper, two types of NK cell are used-a Heavyweight NK cell (HWNK) and a number of Lightweight NK cells (LWNK). The incoming data is vectorized and Major Histocompatibility Complex Class I (MHC1) is created. Then based on this MHC1, any of the receptors i.e. Activating Receptor or Inhibiting Receptor is activated. If it is the signature of an attack, Activating Receptor is activated. Activating receptor activation results in either cytokine release or apoptosis. Here cytokine release means an alarm is generated informing the administrator and apoptosis stands for dropping of the packet. If Inhibiting Receptor is activated, it's a normal packet there is no action taken. The technique proposed yields high accuracy, better detection rate and quick response time. 2020 River Publishers. All Rights Reserved. -
Enhanced Automated Online Examination Portal Using Convolutional Neural Network
In recent years, the digital evolution of education has significantly shaped the landscape of learning, steering it away from traditional classroom settings towards more agile e-learning platforms. This shift has underscored the urgency for comprehensive online examination systems, tailored to meet the unique challenges and demands of virtual education. Online learning platforms have seen a rapid rise in popularity, given their flexibility, cost-effectiveness, and capability to cater to learners worldwide. Such a widespread audience brings along the challenge of conducting exams without the constraints of geography and scale. Traditional examinations, with their manual paper based formats, fail to fit within this digital mold due to their logistical challenges and inefficiencies. Consequently, an online examination system not only introduces convenience but also operational efficiency, eliminating many of the logistical nightmares associated with manual exams. While existing tools might provide online testing capabilities, the integration of Artificial Intelligent driven proctoring in this portal elevates the standards of academic integrity to unprecedented levels. The main aim of this article is to create online test platform with the support of Artificial Intelligence technology. The result detect the malpractice activity and electronic device usage detection while online examination. 2023 IEEE. -
Enhanced Automated Oxygen Level controller for COVID Patient By Using Internet of Things (IoT)
The Internet of Things (IoT) shall be merged firmly and interact with a higher number of altered embedded sensor networks. It provides open access for the subsets of information for humankind's future aspects and on-going pandemic situations. It has changed the way of living wirelessly, with high involvement and COVID-related issues that COVID patients are facing. There is much research going on in the recent domain, like the Internet of Things. Considering the financial-economic growth, there isn't much significance as IoT is growing with industry 5.0 as the latest version. The newly spreading COVID-19 (Coronavirus Disease, 2019) will emphasize the IoT based technologies in a greater impact. It is growing with an increase in productivity. In collaboration with Cloud computing, it shows wireless communication efficiently and makes the COVID-19 eradication in a greater way. The COVID-19 issues which are faced by the COVID patients. Many patients are suffering from inhalation because of lung problems. The second wave attacks mainly on the lungs, where there is a shortage of breathing problems because of less supply of oxygen (insufficient amount of oxygen). The challenges emphasized as proposed are like the shortage of monitoring the on-going process. Readily being active in this pandemic situation, the mentioned areas are from which need to be discussed. The frameworks and services are given the correct data and information for supply of oxygen to the COVID patients to an extent. The Internet of Things also analyzes the data from the user perspective, which will later be executed for making on-demand technology more reliable. The outcome for the COVID-19 has been taken completely to help the on-going COVID patients live, which can be monitored through Oxygen Concentration based on the IoT framework. Finally, this article discusses and mentions all the parameters for COVID patients with complete information based on IoT. 2022 IEEE. -
Enhanced Battery Life with Supercapacitor Applied to Renewable Energy Based Electric Vehicles
The main goal of this work is of developing a control approach, which is able to obtain the smooth switching between energy sources, battery, and Supercapacitor (SCAP). With four separate math functions, a new math function-based (MFB) controller is designed, and this MFB will generate four output signals corresponding to the motor's speed. Further, the MFB is combined with an FLC/PI controller to reach the theme of the work. Two-hybrid different controllers are intended as per the proposed control strategy termed as MFB with FLC and MFB with PI and both are implemented individually in MATLAB/Simulink in four different modes. The entire model is implemented including a solar panel to charge the battery, this solar panel (SP) is connected to the battery and UDC through various control switches. Finally, a comparative analysis is made between two hybrid controllers to know the better-performed controller. 2023 Ecole Polytechnique de Montreal. All rights reserved. -
Enhanced Channel Division Method for Estimation of Discharge in Meandering Compound Channel
Accurate prediction of shear force distribution along the boundary in open channels is a key to the solution of numerous hydraulic problems. The problem becomes more complicated for meandering compound channels. A model is developed for predicting the percentage of shear force at the floodplain (%Sfp) of two-stage meandering channels using gene-expression programming (GEP) by considering five dimensionless parameters viz. the width ratio, relative depth, sinuosity, bed slope, and meander belt width ratio as the inputs in the model. Basing on the %Sfp, the apparent shear force along the division lines of separation in compound channels is selected for discharge calculation using the conventional channel division methods. An Enhanced Channel Division Method (ECDM) is introduced to calculate discharge by assuming interface line at main channel and floodplain junction. A modified variable-inclined (MVI) interface is suggested having zero apparent shear determined from flow contribution in the main channel and floodplain. The MVI interface is further used to calculate discharge in the meandering compound channels. Performance of the GEP model is tested against other analytical methods of calculating %Sfp. Error between the observed and calculated discharges using the MVI interface is found to be the minimum when compared to other interface methods. The enhance channel division method is successfully applied for validating the two available overbank discharge values for the river Baitarani at Anandapur (drainage area of 8570 sq. km), giving the minimum errors of 0.31% and 1.02% for flow depths of 7.5m and 8.63m, respectively. 2020, Springer Nature B.V. -
Enhanced Data Security Architecture in Enterprise Networks
Encryption and storing important information is one of the risky and most challenging tasks. It is the need of the hour in todays fast growing technological transformations that the world is undergoing. A simple Enterprise network is the communication backbone of any organization. It mostly provides better information storage and efficient retrieval, which helps the organization to function smoothly, without having to think twice about their crucial datas security aspects. The information technology paradigm, cloud computing is used to help the organization to focus on its core business. In cloud computing is dealing with many services. That service is used for provide Platform service with infrastructure and software service. This paper, promotes the idea of combining various security and encryption algorithms to connect different enterprise networks using cloud computing, security layer concepts and giving no room for hackers to intrude into the confidential system of data. Springer Nature Switzerland AG 2020. -
Enhanced Design and Performance Analysis of a Seven-Level Multilevel Inverter for High-Power Applications
The structure and performance analysis of a seven-level multilevel inverter is discussed in this study. Due to their capacity to get around the drawbacks of traditional two-level inverters, like high voltage stress on power devices and harmonic distortion, multilevel inverters have attracted a lot of attention lately. Multiple voltage levels can be produced by the seven-level multilevel inverter which is being proposed because it uses a sequential arrangement of power sources and capacitors. The design methodology involves selecting appropriate power devices and capacitance values to achieve the desired voltage levels while minimizing losses and ensuring reliable operation. Total harmonic distortion (THD), inverter efficiency, and voltage stress on power devices are all considered as part of the performance analysis. In comparison to conventional two-level inverters, simulation results indicate that the proposed seven-level multilevel inverter offers lower THD, increased efficiency, and reduced voltage stress. This research contributes to the advancement of multilevel inverter technology and its potential applications in various power conversion systems. 2023 IEEE. -
Enhanced dielectric and supercapacitive properties of spherical like Sr doped Sm2O3@CoO triple oxide nanostructures
Integrating the hybrid nanostructures exhibiting enhanced storage and electrical properties requires tuning of composition of constituents. To address this issue, we prepared Sr2+ nanoparticles (NPs) decorated over Sm2O3@CoO nanostructures (NS) by chemical precipitation. The structure integrity of the composite was determined by analytical tools. Based on the strongest peak of X-ray diffraction (XRD), crystallite size of the nanoparticles was determined to be 26.14 nm, indicating a mixed phase of monoclinic and tetragonal crystal formation. FESEM revealed a spherical-like morphology with a homogeneous distribution of microstructures with average sizes ranging from 68 nm to 60 nm. The optical absorptivity revealed a redshift in absorption bands centred at 337.0 nm, 343.9 nm, and 353.0 nm in UV-region. The optical band gap of NS was found to be in the range of 3.38 eV to 3.15 eV, and the BET surface area of Sr15%:Sm2O3@CoO was found to be 458469 cm2/g with a corresponding pore size of 13.17 nm. All Sr-doped Sm2O3@CoO NS exhibited higher ionic conductivity and dielectric constant than undoped material. In an aqueous KOH electrolyte, the NS showed a specific capacity of 234.2C/g (65.1mAh/g) demonstrating the material as potential candidate in energy storage and dielectrics. 2022 Elsevier Ltd -
Enhanced Edge Computing Model by using Data Combs for Big Data in Metaverse
The Metaverse is a huge project undertaken by Facebook in order to bring the world closer together and help people live out their dreams. Even handicapped can travel across the world. People can visit any place and would be safe in the comfort of their homes. Meta (Previously Facebook) plans to execute this by using a combination of AR and VR (Augmented Reality and Virtual Reality). Facebook aims to bring this technology to the people soon. However, a big factor in this idea that needs to be accounted for is the amount of data generation that will take place. Many Computer Science professors and scientists believe that the amount of data Meta is going to generate in one day would almost be equal to the amount of data Instagram/Facebook would have generated in their entire lifetime. This will push the entire data generation by at least 30%, if not more. Using traditional methods such as cloud computing might seem to become a shortcoming in the near future. This is because the servers might not be able to handle such large amounts of data. The solution to this problem should be a system that is designed specifically for handling data that is extremely large. A system that is not only secure, resilient and robust but also must be able to handle multiple requests and connections at once and yet not slow down when the number of requests increases gradually over time. In this model, a solution called the DHA (Data Hive Architecture) is provided. These DHAs are made up of multiple subunits called Data Combs and those are further broken down into data cells. These are small units of memory which can process big data extremely fast. When information is requested from a client (Example: A Data Warehouse) that is stored in multiple edges across the world, then these Data Combs rearrange the data cells within them on the basis of the requested criteria. This article aims to explain this concept of data combs and its usage in the Metaverse. 2023 IEEE. -
Enhanced electrical properties of CuO:CoO decorated with Sm2O3 nanostructure for high-performance supercapacitor
In the present investigation, we have synthesized samarium (Sm) nanoparticles (NPs) and anchored them onto the surface of CuO:CoO nanostructure (NS) by utilizing a simple chemical precipitation method. Nanostructures (NS) were characterized utilizing powdered X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron spectroscopy (SEM), transmission electron spectroscopy (TEM), UVvisible spectroscopy (UVVis), and BrunauerEmmettTeller (BET) studies. Resulting Smx CuO: CoO (x = 1%, 5%, 10%, and 12%) NS were investigated for their anomalous electrical and supercapacitive behavior. NS energy storage performance was experimentally determined using cyclic voltammetry (CV), galvanostatic chargedischarge (GCD), and electrochemical impedance spectroscopy (EIS). Sm10%CuO:CoO exhibited better electrochemical response than other samples and showed a maximum specific capacitance of 283.6F/g at 0.25A/g in KOH electrolyte. However, contrary to our expectation, NS displayed rectifying nature in I-V, intercalative nature in C-V, and polaronic permittivity in all concentrations of Sm2O3 doping as compared with undoped CuO:CoO NS. The outstanding properties of Smx CuO:CoO NS are attributed to the synergy of high charge mobility of Sm NPs, leading to significant variation in dielectric permittivity, currentvoltage (I-V) response, capacitancevoltage (C-V) behavior, with the formation of Sm3+ ionic cluster. The clusters lead to a change in dipole moment creating a strong local electric field. Additionally, a CR2032 type symmetric supercapacitor cell was fabricated using Sm10%CuO:CoO, which exhibited a maximum specific capacitance of 67.4F/g at 0.1A/g. The cell was also subjected to 5000 GCD cycles where it retained 96.3% Coulombic efficiency. Graphical Abstract: [Figure not available: see fulltext.] 2022, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. -
Enhanced encryption technique for secure iot data transmission
Internet of things is the latest booming innovation in the current period, which lets the physical entity to process and intervene with the virtual entities. As all the entities relate to each other, it generates load of data, which lacks proper security and privacy standards. Cryptography is one of the domains of Network Security, which is one such mechanism that helps the data transmission process to be secure enough over the wireless or wired channel and along with that, it provides authenticity, confidentiality, integrity of data and prevents repudiation. In this paper, we have proposed an alternate enhanced cryptographic solution combing the characteristic of symmetric, asymmetric encryption algorithms and Public Key Server. Here, the key pairs of end points (Users Device and IoT device) are generated using Elliptic Curve Cryptography and the respective public keys are registered in Public Key Server along with their unique MAC address. Thereafter, both the ends will agree on one common private secret key, which will be the base for further cryptographic process using AES algorithm. This model can be called as multi-phase protection mechanism. It will make the process of data transmission secure enough that no intermediate can tamper the data. Copyright 2019 Institute of Advanced Engineering and Science. All rights reserved. -
Enhanced Energy Efficient Routing for Wireless Sensor Network Using Extended Power Efficient Gathering in Sensor Information Systems (E-PEGASIS) Protocol
Recent technological advancement in wireless communication and sensors made Wireless Sensor Networks (WSNs) as one of the demanding platforms in the current scenario. In WSN, tiny sensor nodes are collecting and monitoring the biological data or physical data or environmental data and transmitted to the base station (BS) through gateway routers. These data can be accessed anywhere and anytime. Usually sensor nodes have restrained battery power which creates the rigorous lifetime duration issues in WSN. Sensor nodes can communicate with each other using various routing protocols. Data transmission devours more amounts of energy and power. So, energy preservation is an important factor in WSN. There are plenty of researches going on in designing less energy consuming protocols for data transmission which helps to increase the lifetime of WSN. In this paper we have proposed Extended Power Efficient Gathering in Sensor Information Systems (E-PEGASIS) protocol for enhanced energy efficient data transmission based on PEGASIS protocol. In this proposed method average distance between the sensor nodes are considered as the criterion for chaining and fix the outermost node's radio range value the base station. Later it chains the related nodes available in the radio range. Consequently, the chained node checks their distance with the next nearest end node to go on with the chaining procedure which will enhance the performance of data transmission between the sensor node and the base station. The simulation of the proposed work shows that lifetime of the network is increased when comparing to the LEACH and PEGASIS protocol. 2021 The Authors. Published by Elsevier B.V. -
Enhanced Energy-Efficient Routing for Wireless Sensor Network Using Extended Power-Efficient Gathering in Sensor Information Systems (E-PEGASIS) Protocol
Recent technological advancements in wireless communication and sensors made Wireless Sensor Networks (WSNs) as one of the demanding platforms in the current scenario. In WSN, tiny sensor nodes are collecting and monitoring the biological data or physical data or environmental data and transmits to the Base Station (BS) through gateway routers. These data can be accessed anywhere and anytime. Usually, sensor nodes have restrained battery power which creates the rigorous lifetime duration issues in WSN. Sensor nodes can transmit the data with each other using various routing protocols. Data transmission devours more amounts of energy and power. So, energy preservation is an important factor in WSN. There are plenty of researches going on in designing less energy consuming protocols for data transmission which helps to increase the lifetime of WSN. In this manuscript, we have proposed Extended Power-Efficient Gathering in Sensor Information Systems (E-PEGASIS) protocol for enhanced energy-efficient data transmission based on PEGASIS protocol. In this proposed method, the average distance between the sensor nodes is considered as the criterion for chaining and fixing the outermost nodes radio range value to the base station. Later it chains the related nodes available in the radio range. Consequently, the chained node checks their distance with the next nearest end node to go on with the chaining procedure which will enhance the performance of data transmission amid the base station and sensor node. The simulation of the proposed work shows that lifetime of the network is increased when compared to the LEACH and PEGASIS protocol. 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Enhanced Geographical Information System Architecture for Geospatial Data
[No abstract available] -
Enhanced Horse Optimization Algorithm Based Intelligent Query Optimization in Crowdsourcing Systems
Crowdsourcing is a strategy of collecting information and knowledge from an abundant range of individuals over the Internet in order to solve cognitive or intelligence intensive challenges. Query optimization is the process of yielding an optimized query based upon the cost and latency for a given location based query. In this view, this article introduces an Enhanced Horse Optimization Algorithm based Intelligent Query Optimization in Crowdsourcing Systems (EHOA-IQOCSS) model. The presented EHOA-IQOCSS model mainly based on the enhanced version of HOA using chaotic concepts. The proposed model plans to accomplish a better trade-off between latency and cost in the query optimization process along with answer quality. The EHOA-IQOCSS is used to compute the Location-Based Services (LBS) namely K-Nearest Neighbor (KNN) and range queries, where the Space and Point of Interest (POI) can be obtained by the conviction level computation. The comparative study stated the betterment of the EHOA-IQOCSS model over recent methods. 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG. -
Enhanced Jaya Optimization Algorithm with Deep Learning Assisted Oral Cancer Diagnosis on IoT Healthcare Systems
Recently, healthcare systems integrate the power of deep learning (DL) models with the connectivity and data processing capabilities of the Internet of Things (IoT) to enhance the early recognition and diagnosis of disease. Oral cancer diagnosis comprises the detection of cancerous or pre-cancerous abrasions in the oral cavity. Timely identification is essential for successful treatment and enhanced prognosis. Here is an overview of the key aspects of oral cancer diagnosis. One potential benefit of utilizing DL for oral cancer detection is that it analyses huge counts of data fast and accurately, and it could not need clear programming of the rules for recognizing abnormalities. This can create the procedure of detecting oral cancer more effective and efficient. Thus, the study presents an Enhanced Jaya Optimization Algorithm with Deep Learning Based Oral Cancer Classification (EJOADL-OCC) method. The presented EJOADL-OCC method aims to classify and detect the existence of oral cancer accurately and effectively. To accomplish this, the presented EJOADL-OCC method initially exploits median filtering for the noise elimination. Next, the feature vector generation process is performed by the residual network (ResNetv2) model with EJOA as a hyperparameter optimizer. For accurate classification of oral cancer, a continuously restricted Boltzmann machine with a deep belief network (CRBM-DBN) model. The simulated validation of the EJOADL-OCC algorithm is tested by the series of simulations and the outcome demonstrates its supremacy over present DL approaches. 2024, American Scientific Publishing Group (ASPG). All rights reserved. -
Enhanced Learning in IoT-Based Intelligent Plant Irrigation System for Optimal Growth and Water Management
This research looked at the transformative potential of cutting-edge machine learning algorithms in various areas of precision agriculture, with an emphasis on enhancing smart irrigation systems for onion farming. Using a vast sensor network and real-time monitoring, we investigated the performance of CNN, ANN, and SVM, three well-known machine learning algorithms. After extensive testing and investigation, our results reveal that CNN beats ANN and SVM in terms of outstanding accuracy in predicting plant water requirements. Because of CNN's superior predictive powers, our intelligent irrigation system maintains perfect soil conditions, resulting in increased agricultural yields and resource savings. The study's findings have important implications for modern agriculture, paving the way for data-driven, sustainable agricultural methods that address global concerns such as food security and environmental sustainability. As we approach the era of smart agriculture, our research demonstrates how technology has the potential to alter crop farming and aid in the development of a more resilient and successful agricultural industry. The Author(s), under exclusive license to Springer Nature Switzerland AG 2024. -
Enhanced Level Brain Tumor Identification Using CNN, VGG16 and ResNet Models
The comprehension of brain growths is significantly improved through the identification and categorization of these disorders. Still, their discovery is relatively grueling due to their variability in terms of position, shape, and size. Fortunately, deep literacy has revolutionized the field and significantly improved recognition, prediction, and opinion in various healthcare areas, including brain excrescences. The main goal of this study is to thoroughly review exploration that utilizes CNN, VGG16, and RESNET infrastructures to classify brain excrescences using MRI images. The performance of these models varied significantly, with CNN, VGG16, and RESNET achieving an emotional delicacy of 99.6. Additionally, ResNet and VGG16 achieved rigor of 92.4 and 89.7 independently. Likewise, the visualization of the decision-making processes of these models has provided valuable insight into the features they prioritize. By incorporating these models into their practice, healthcare professionals have the opportunity to enhance their individual capabilities, eventually leading to improved patient outcomes. 2024 IEEE.