In this paper, we investigate a fractional p()-Kirchhoff type problem involving variable exponent logarithmic nonlinearity. With the help of the Nehari manifold approach, the existence and multiplicity of nontrivial weak solutions for the above problem are obtained. The main aspect and challenges of this paper are the presence of double non-local terms and logarithmic nonlinearity. 2022 by the authors. Licensee MDPI, Basel, Switzerland.
The study explores the state of workplace HIV and AIDS interventions in Zimbabwe with specific reference to programming interventions in Zimbabwe Stock Exchange newlinelisted Companies in the Harare Metropolitan Province. The scientific knowledge domain-location of the study involves Strategic Human Resource management, Human Resource Management, Business (Corporate) planning and Labour administration (integrated occupation health and safety, employee welfare and newlinewellness) and Policy development and implementation. The key consideration is that newlinethe company has an enlightened self-interest to facilitate workplace HIV and AIDS because it leads to employee welfare, wellness and longevity which translate to increased productivity in the context of in Zimbabwe Stock Exchange-listed Companies. In this background, Zimbabwe Workplace HIV and AIDS programmes are generally considered to be fragile, fragmented, under-developed, weak and unsustainable in both design and management by a wide range of stakeholders despite close to two decades of implementation since promulgation and establishment. The study tries to identify key determinants of workplace HIV and AIDS program development in Harare, assesses the current state of workplace HIV and AIDS newlineprogramme development in Harare, tries to establish the significance of senior newlinemanagement commitment on workplace HIV programme development, ascertains the newlinerelationship between having a Comprehensive Staff Welfare Program (CSWP) and workplace HIV and AIDS program development and evaluates the extent to which companies comply with workplace HIV program development standards. The study was conducted using mixed methods and data was collected using a survey questionnaire and focus group discussions. Based on the study it was found that the general state of the Workplace HIV and AIDS Programme Development is in a state newlineof serious underdevelopment.
Cooperative interaction in educational games, designed to stimulate teamwork, joint creativity and knowledge sharing, also carries potential security threats. One of the key dangers is data leakage. Player interaction involves the exchange of information, and in case of insufficient protection of the system, confidential data, such as personal information, game progress results or individual strategies, may become available to unauthorized persons. This may result in misuse of information, damage to reputation and violation of player privacy. The impact on the game space is also a threat. By interacting, players can change the game world, for example, by entering incorrect data, moving objects to an inappropriate location, or modifying the rules of the game. This can lead to a violation of the balance of the game, incorrect results and a deterioration in the learning effect. Substitution or falsification of game elements is no less dangerous. Attackers can introduce fake elements into the game space, for example, incorrect reviews, changed rules or incorrect data. This can lead to incorrect conclusions, distort learning outcomes, and undermine confidence in the game. In addition, the use of interaction tools can become an object of attack. Attackers can hack and modify tools, such as communication platforms or data storage systems. This can lead to data theft, incorrect operation of tools and malfunction during the game. It is shown that formal descriptions of the choice of a game strategy can exist in a game. Indicators that are essential for cooperative interaction are determined, and examples of their calculation for the case with remote interaction through a social network are given. The article contains information about collaborations, which can be used to assess and choose the direction of development in projects that use game cooperative strategies to implement tasks other than training. The project highlights aspects of cooperative interaction that affect the formation of game strategies in an educational project. Of particular interest are projects in which a social network is the tool and medium of interaction. The objectives of the project are to identify easy-to-use indicators that show the features of cooperative interaction within an educational game. The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
The optimization of parameters has a crucial influence on the solution efficacy and the accuracy of the support vector machine (SVM) in the machine learning domain. Some of the typical approaches for determining the parameters of the SVM consider the grid search approach (GS) and some of the representative swarm intelligence metaheuristics. On the other side, most of those SVM implementations take into the consideration only the margin, while ignoring the radius. In this paper, a novel radiusmargin SVM approach is implemented that incorporates the enhanced sine cosine algorithm (eSCA). The proposed eSCA-SVM method takes into the account both maximizing the margin and minimizing the radius. The eSCA has been used to optimize the penalty and RBF parameter in SVM. The proposed eSCA-SVM method has been evaluated against four binary UCI datasets and compared to seven other algorithms. The experimental results suggest that the proposed eSCA-SVM approach has superior performances in terms of the average classification accuracy than other methods included in the comparative analysis. 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
Binary version of the ant lion optimizer (ALO) are suggested and utilized in wrapper-mode to pick the best feature subset for classification. ALO is a recently developed bio-inspired optimization approach that mimics ant lion hunting behavior. Furthermore, ALO balances exploration and exploitation utilizing a unique operator to explore the space of solutions adaptively for the best solution. The difficulties of a plethora of noisy, irrelevant, and misleading features, as well as the capacity to deal with incorrect and inconsistent data in real-world subjects, provide rationale for feature selection to become one of the most important requirements. A difficult machine learning problem is to choose a subset of important characteristics from a vast number of features that characterize a dataset. Choosing the most informative markers and conducting a high-accuracy classification across the data may be a difficult process, especially if the data is complex. The feature selection task is usually expressed as a bio-objective optimization challenge, with the goal of enhancing the performance of the prediction model (data training fitting quality) while decreasing the number of features used. Various evaluation criteria are employed to determine the success of the suggested approach. The findings show that the suggested chaotic binary algorithm can explore the feature space for optimum feature set efficiently. 2022 IEEE.
Metaheuristic optimization has grown in popularity as a way for solving complex issues that are difficult to solve using traditional methods. With fast growth of the available storage space and processing capabilities of the modern computers, the machine learning domain, that can be succinctly formulated as the process of enabling the computers to make successful forecasts based on the previous experiences, has recently been under spectacular growth. This paper presents intrusion detection approach by utilizing hybrid method between firefly algorithm and deep neural network. The basic firefly algorithm, as a frequently employed swarm intelligence method, has several known deficiencies, and to overcome them, an enhanced firefly algorithm was proposed and used in this manuscript. For experimental purposes, KDD Cup 99 and NSL-KDD datasets from Kaggle and UCL repositories were taken and comparison with other frameworks that have been validated for the same datasets was executed. Based on simulation data, proposed method was able to establish better values for accuracy, precision, recall, F-score, sensitivity and specificity metrics than other approaches. 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.