Browse Items (11810 total)
Sort by:
-
Biomedical Mammography Image Classification Using Patches-Based Feature Engineering with Deep Learning and Ensemble Classifier
In order to reduce the expense of radiologists, deep learning algorithms have recently been used in the mammograms screening field. Deep learning-based methods, like a Convolutional Neural Network (CNN), are now being used to categorize breast lumps. When it involves classifying mammogram imagery, CNN-based systems clearly outperform machine learning-based systems, but they do have certain disadvantages as well. Additional challenges include a dearth of knowledge on feature engineering and the impossibility of feature analysis for the existing patches of pictures, which are challenging to distinguish in low-contrast mammograms. Inaccurate patch assessments, higher calculation costs, inaccurate patch examinations, and non-recovered patched intensity variation are all results of mammogram image patches. This led to evidence that a CNN-based technique for identifying breast masses had poor classification accuracy. Deep Learning-Based Featured Reconstruction is a novel breast mass classification technique that boosts precision on low-contrast pictures (DFN). This system uses random forest boosting techniques together with CNN architectures like VGG 16 and Resnet 50 to characterize breast masses. Using two publicly accessible datasets of mammographic images, the suggested DFN approach is also contrasted with modern classification methods. The Author(s), under exclusive license to Springer Nature Switzerland AG 2024. -
Finding Real-Time Crime Detections during Video Surveillance by Live CCTV Streaming Using the Deep Learning Models
Nowadays, securing people in public places is an emerging social issue in the research of real-Time crime detection (RCD) by video surveillance, in which initial automatic recognition of suspicious objects is considered a prime problem in RCD. Dynamic live CCTV monitoring and finding real-Time crime activities by detecting suspicious objects is required to prevent unusual activities in public places. Continuous live CCTV video surveillance of objects and classification of suspicious activities are essential for real-Time crime detection. Deep training models have greatly succeeded in image and video classifications. Thus, this paper focuses on the use of trustworthy deep learning models to intelligently classify suspicious objects to detect real-Time crimes during live video surveillance by CCTV. In the experimental study, various convolutional neural network (CNN) models are trained using real-Time crime and non-crime videos. Three performance parameters, accuracy, loss, and computational time, are estimated for three variants of CNN models for the real-Time crime classifications. Three categories of videos, i.e., crime video (CV), non-crime video (NCV), and weapon-crime video (WCV), are used in the training of three deep models, CNN, 3D CNN, and Convolutional Long short-Term memory (ConvLSTM). The ConvLSTM scored higher accuracy, lower loss values, and runtime efficiency than CNN and 3D CNN when detecting real-Time crimes. 2024 ACM. -
Lightning Cards! /
Patent Number: 202141060863, Applicant: Bundela Disha Hitenbhai.
The present system or invention, Lightning Cards, is an online multiplayer card game that utilises computer vision and machine learning techniques in order to deliver a fast-paced reactions card game unheard of not only online, but also as a physical card game. The present system is enabled by way of ML tools to recognise the hand keypoint landmarks and other algorithms for recognising the actual hand gesture. -
Atendo: The portable attendence recorder /
Patent Number: 202241019881, Applicant: Kevin Benny.
Attendance is the fact of being present or absent at a place or an event. One of the most basic things to understand and analyse the response of an event is by recording the attendance of the event. By tracking the sessions attended by the attendees and how long the attendees stay in the event, it is possible to derive a clear picture of how engaged the event was. Attendance monitoring is very important for examining the success or failure of an event. Tracking session attendance is an easy and accurate way to gather attendee feedback and translate this information into useful data. -
Vimana /
Patent Number: 202241030155, Applicant: Ramesh Chandra Poonia.
Drone navigation works by building a map of its surroundings while tracking its position within the map. This allows the drone to demonstrate positional accuracy (the global average URE (User error rate) across all satellites) of < 0.643 m (2.1 ft.) 95% of the lime using the Global Positioning System (GPS). The problem with this technology is twofold. It deploys only L band communication in practice. -
3D painting for fracture treatment /
Patent Number: 202241048127, Applicant: Ramesh Chandra Poonia.
The effect of technological advancements has made an impact on the way medical applications are used in the treatment of fracture. The possibility of medical application and technology has immensely grown, and 3D printing and its applications in medical sciences are much explored and found to be acceptable and applicable financially and technically during recent years. While 3D technology is used in diagnosis, 3D printing technology is useful for making treatment and rehabilitation tools. -
Performance Evaluation of Predicting IoT Malicious Nodes Using Machine Learning Classification Algorithms
The prediction of malicious nodes in Internet of Things (IoT) networks is crucial for enhancing network security. Malicious nodes can significantly impact network performance across various scenarios. Machine learning (ML) classification algorithms provide binary outcomes ("yes" or "no") to accurately identify these nodes. This study implements various classifier algorithms to address the problem of malicious node classification, using the SensorNetGuard dataset. The dataset, comprising 10,000 records with 21 features, was preprocessed and used to train multiple ML models, including Logistic Regression, Decision Tree, Naive Bayes, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). Performance evaluation of these models followed the ML workflow, utilizing Python libraries such as scikit-learn, Seaborn, Matplotlib, and Pandas. The results indicated that the Naive Bayes classifier outperformed others with an accuracy of 98.1%. This paper demonstrates the effectiveness of ML classifiers in detecting malicious nodes in IoT networks, providing a robust predictive model for real-time application. The SensorNetGuard dataset is available on the IEEE data port and Kaggle platform. 2024, Prof.Dr. ?skender AKKURT. All rights reserved. -
Additively Composite Model Objective Function for Routing Protocol for Low-Power and Lossy Network Protocol
The Internet of Things (IoT) networks always operate within the context of diverse and constrained characteristics of the devices. Low-Power and Lossy Networks (LLNs) constitute a network architecture commonly utilized in IoT application deployments, facilitating networking and the establishment of paths for data transmission. The Routing Protocol for Low-Power and Lossy Networks (RPL) demonstrates promising capabilities for LLN network operations, supporting IPv4 and IPv6-enabled services. The RPL protocol constructs a Destination Oriented Directed Acyclic Graph (DODAG) logical routing topology based on defined Objective Function (OF) metrics. Routing operations within the DODAG utilize these metrics and constraints to select parent nodes and calculate optimal routes between two nodes. Standardized OFs have traditionally focused on either parent node selection or routing objectives within the DODAG, often treating load balancing and bottleneck optimization separately. However, their combined impact on RPL's effectiveness has been overlooked. This paper introduces an Adaptively Composite Objective Function (AC-OF) approach that considers the combined objectives of DODAG load balancing and optimized routing operations. Through simulation evidence, the paper presents improved network parameters. The AC-OF implementation brings out significant results in the form of a balanced DODAG topology and it has good impacts on data transmission, control overhead messages, parent switching, delay, energy consumption, and node lifetime. 2024 Totem Publisher, Inc. All rights reserved. -
A comprehensive investigation of the effect of mineral additives to bituminous concrete
Research efforts to employ sustainable materials for road construction have been on the rise in recent years. In particular, the use of polymers as additives in asphalt mix has been actively explored by several researchers. Bituminous pavementsnormally constructed in India, have increasing number of premature failures, due to increase in traffic density and noteworthy variations in road temperatures. The modified binders have proven to improve numerous properties of bituminous surfaces such as temperature susceptibility, fatigue life, creep, resistance to permanent deformation and rutting. The present study has focussed on the experimental investigations conducted to evaluate the influence of mineral additives, such as wollostonite and Rice Husk Ash (RHA) on Indirect Tensile Strength (ITS) and Tensile Strength Ratio (TSR) of bituminous concrete (BC)maintaining uniformity of aggregate properties.The results establish that the bituminous concrete blends modified using rice husk ash at 20% and wollostonite at 8%, with hydrated lime are most suitable for practical applications. 2021 Elsevier Ltd. All rights reserved. -
Solid-state fermentation of pigment producing endophytic fungus Fusarium solani from Madiwala lake and its toxicity studies
Several consumer products look enticing due to colors and there has been a demand for colors for various applications ever since human civilization started. Although in the primitive days, humans had used natural colors, the wake of the industrial revolution saw the excessive use of diverse types of synthetic colors. Although it looked very fancy initially, slowly scientists discovered the dangers of large-scale use of these colorants. The current demand is for natural colors, and hence, there is a scope for sources of natural colors from biosources. The present study involved the isolation of an endophytic fungus, Fusarium solani producing a red pigment from the polluted waters of Madiwala lake in Bangalore. The fungal extract showed good antimicrobial and moderate antioxidant properties. Cytotoxicity assays using brine shrimps proved negligible toxicity which is a positive trait for natural colorants for safer applications in industries. Media optimization and solid state fermentation were carried out to improve the yield of the fungal pigment and also to formulate a cheaper media for fungal multiplication and pigment production. Green synthesis of silver nanoparticles was also carried out with the fungal extract and the nanoparticles were characterized. Thus, the present study provides an option for the extraction of environment friendly natural colorant from the fungus F. solani for potential industrial applications. 2024 Bhoomika Prakash Poornamath, et al. -
Template based speech enhancement of disordered speech
In this paper, we have taken Electro-Larynx (EL) speech and have improved the speech quality, electro-larynx speech was improved in terms of naturalness and intelligibility by introducing variations in the F0-contour and template matching with correlation coefficient. Initially, we introduced two different speech signals, the first speech signal introduced was healthy speech signal and the second speech signal introduced was disordered speech signal. Here, the second speech signal, the disordered speech is taken as the EL speech. The fundamental frequency or pitch was extracted first from the two inputed speech signals, then the contour of each fundamental frequency was extracted from the two input speech signals. Using these extracted features of fundamental frequency the gender classification by K-means algorithm was instigated. The same process was implemented with F0 contour features which was extracted using K-NN algorithm. EL speech contains directly radiated electrolarynx noise (DREL). The noise was filtered out using spectral subtraction algorithm. Once DREL noise is removed from EL speech, the quality of the speech was greatly improved. Then EL enhanced speech signal is compared and mapped with healthy speech signal using template matching algorithm with the help of correlation coefficient, this improves the overall quality, that is the naturalness and intelligibity of the introduced disordered speech signal. This technique helps solve the major problem of speech faced by differently abled persons with larynx disorder. 2016 IEEE. -
Modelling Networks withAttached Storage Using Perfect Italian Domination
Network-attached storage (NAS) is how data is stored and shared among hosts through a configured network. This is cheaper yet the best solution for sharing and using any huge unstructured data in an organization. Optimal distribution of NAS in a network of servers can be done using the concept of Perfect Italian Domination (PID). PID is a vertex labelling where the vertices of a graph G are labelled by 0, 1, 2 such that a vertex with label 0 should have a neighbourhood where the summation of the labels is exactly 2. The minimum possible sum of the labels obtained for graph G is its PID number. A network in an organization can have any structure. It can be highly interconnected, like a graph obtained from the Join of two graphs or the Corona product of two graphs. Hence, this paper discusses the PID of different graphs generated by the Join and the Corona products. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
On Some Graphs Whose Domination Number Is thePerfect Italian Domination Number
Perfect Italian Domination (PID) is a vertex labelling of a graph G by numbers from the set such that a vertex in G labelled 0 has a neighbourhood where the summation of the labels of the vertices in it is precisely 2. The summation of labels on the vertices of the graph which satisfy the PID labelling is known as its PID number, and is the minimum possible PID number of a graph G. We find some characterization of graphs for which . We also find a lower bound for |V(G)|, which satisfies the same. Further, we discuss the graphs that satisfies or . A realisation problem is used to prove that PID cannot be bounded by a scalar multiple of the Domination number. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Some characterizations of Gallai graphs
Gallai graph of a graph G is a graph whose vertices are the edges of G and the adjacency of the vertices depends on whether they are part of a triangle or not in G. We find some forbidden subgraph characterization of graphs for which Gallai graph is either a trivially perfect graph or a 3-sun-free graph or an interval graph. 2020 Author(s). -
A survey of the studies on Gallai and anti-Gallai graphs
The Gallai graph and the anti-Gallai graph of a graph G are edge disjoint spanning subgraphs of the line graph L(G). The vertices in the Gallai graph are adjacent if two of the end vertices of the corresponding edges in G coincide and the other two end vertices are nonadjacent in G. The anti-Gallai graph of G is the complement of its Gallai graph in L(G). Attributed to Gallai (1967), the study of these graphs got prominence with the work of Sun (1991) and Le (1996). This is a survey of the studies conducted so far on Gallai and anti-Gallai of graphs and their associated properties. 2021 Azarbaijan Shahid Madani University. -
Morphological and Elemental Investigations on CoFeBO Thin Films Deposited by Pulsed Laser Deposition for Alkaline Water Oxidation: Charge Exchange Efficiency as the Prevailing Factor in Comparison with the Adsorption Process
Abstract: Mixed transition-metals oxide electrocatalysts have shown huge potential for electrochemical water oxidation due to their earth abundance, low cost and excellent electrocatalytic activity. Here we present CoFeBO coatings as oxygen evolution catalyst synthesized by Pulsed Laser Deposition (PLD) which provided flexibility to investigate the effect of morphology and structural transformation on the catalytic activity. As an unusual behaviour, nanomorphology of 3D-urchin-like particles assembled with crystallized CoFe2O4 nanowires, acquiring high surface area, displayed inferior performance as compared to coreshell particles with partially crystalline shell containing boron. The best electrochemical activity towards water oxidation in alkaline medium with an overpotential of 315 mV at 10 mA/cm2 along with a Tafel slope of 31.5 mV/dec was recorded with coreshell particle morphology. Systematic comparison with control samples highlighted the role of all the elements, with Co being the active element, boron prevents the complete oxidation of Co to form Co3+ active species (CoOOH), while Fe assists in reducing Co3+ to Co2+ so that these species are regenerated in the successive cycles. Thorough observation of results also indicates that the activity of the active sites play a dominating role in determining the performance of the electrocatalyst over the number of adsorption sites. The synthesized CoFeBO coatings displayed good stability and recyclability thereby showcasing potential for industrial applications. Graphic Abstract: [Figure not available: see fulltext.] 2021, The Author(s). -
A new algorithm with its randomness and effectiveness against statistical tests in data encryption
In the world where security is one of the main concern, we are still not able to make our data secure. Privacy is one of the major concerns in todays world, where all the organization are dealing with data leak problem, data theft, data intrusion. We came up with a mathematical model to encrypt and decrypt data securely. In this paper we have came up with a technique to encrypt and decrypt data using non-deterministic random numbers and generating two cipher text for each data unit (character) and verified the randomness of our cipher text using chi-square test, Gaps test. IJSTR 2020. -
Counseling and Psychotherapy in India: Radha's Story
This chapter discusses the case of Radha, who presented with depression and infertility. The focus of counseling was to alleviate Radha's psychological distress, help her redefine her identity, and explore alternatives to infertility in the individual and marital context. The counselor's suggestion to use traditional healing practices, especially Pranayama, greatly helped the client, as she used these practices as for preventive coping. Handling the sensitive issue of infertility was challenging for the counselor, especially dealing with the ingrained cultural resistance to infertility and the client's value system that contributed to her own psychological state. Classical approaches to counseling and psychotherapy are indeed useful but require contextualization and an understanding of eclectic practice. Along with eclectic practice, integration of alternative systems of care, such as traditional healing practices, is seen as essential in the practice of counseling and psychotherapy in India. 2015 by the American Counseling Association. All rights reserved. -
Legal and Bioethical View of Educational Sectors and Industrial Areas of 3D Bioprinting
Recent advancements in three-dimensional printing (3D printing) within the medical field, particularly in the realm of 3D bioprinting, have shown tremendous potential in transforming various medical therapies, offering new approaches to treat organ failure and injury. However, amidst this optimism, several significant ethical and legal challenges remain unresolved before the application and transplantation of 3D bioprinted technology and organs in human subjects can become a reality. This chapter focuses on exploring the ethical and legal constraints associated with 3D bioprinting technology from both educational and industrial perspectives, recognizing their crucial roles as cornerstones for future applications. Furthermore, the analysis of 3D bioprinting technology will be conducted through the lens of the fundamental medical ethics principle, Primum non nocere; First, do no harm. Moreover, the pressing need for effective and timely standalone laws to regulate the subject of 3D printing is emphasized. This urgency arises from the grave concerns posed by the future implications of this technology on Indias scientific research and medical practice. The aim of this paper is to provide a comprehensive examination of the ethical and legal challenges posed by 3D bioprinting technology. By considering both educational and industrial perspectives, this research seeks to shed light on the complexities surrounding the application and transplantation of 3D bioprinted organs. Additionally, the analysis through the principle of Primum non nocere will contribute to the understanding of the ethical implications inherent in this innovative technology. Ultimately, this study advocates for the formulation of appropriate regulations and guidelines through the implementation of effective standalone laws, ensuring the responsible development and utilization of 3D printing technology in the realm of scientific research and medical practice in India. 2024 Scrivener Publishing LLC. -
ELCCFD: An Efficient and Enhanced Credit Card Fraud Detection using Enhanced Deep Learning Principle
Credit card fraud poses a serious threat to financial institutions and their customers; hence, stringent detection protocols are necessary. This study introduces an approach known as Enhanced Learning for Credit Card Fraud Detection (ELCCFD) to enhance the accuracy of credit card fraud detection. To improve the fraud detection process, the proposed method combines the strengths of Convolutional Neural Networks (CNNs), AlexNet architecture, and Gradient Boosting Machines (GBM). The proposed approach begins with cleaning up the credit card data to get useful features, then trains a Convolutional Neural Network (CNN) using AlexNet to figure out complex patterns and representations on its own. This study generates a complete set of features by merging the CNN's output with features generated using GBM. The final model is trained by using a combination of deep learning and other conventional machine learning techniques to achieve the best results. Experimental findings on benchmark datasets demonstrate the effectiveness of the ELCCFD methodology, achieving an accuracy rate of 98%. This study combines AlexNet with GBM to get a model to capture the complex patterns and is easier to understand with the feature importance analysis. With its strong accuracy and reliability, the proposed methodology offers a strong option to fight credit card fraud, and it shows the potential for actual use in financial systems. 2024 IEEE.