Browse Items (11808 total)
Sort by:
-
Enhancing Customer Experience and Sales Performance in a Retail Store Using Association Rule Mining and Market Basket Analysis
The retail business grows steadily year after year andemploys an abounding amounts of people globally, especially with the soaring popularity of online shopping. The competitive character of this fast-paced sector has been increasingly evident in recent years. Customers desire to blend the advantages of old purchasing habits with the ease of use of new technology. Retailers must thus guarantee that product quality is maintained when it comes to satisfying customer demands and requirements. This research paper demonstrates the potential value of advanced data analytics techniques in improving customer experience and sales performance in a retail store. Apriori, FP-Growth, and Eclat algorithms are applied in the real time transactional data to discover sociations and patterns in transactional data. Support, confidence and lift ratio parameters are used and apriori algorithm puts out several candidate item sets of increasing lengths and prunes those that fail to offer the assistance that is required threshold. We identified lift values are more when considering frozen meat, milk, and yogurt. if the customer decides to buy any of these items together, there is a chance that the customer will buy 3rd item from that group. Research arrived High confidence score is for Items like Semi Finished Bread and Milk so these products should be sold together, Followed by Packaged food and rolls. As retailers continue to face increasing competition and pressure to improve their operations, The aforementioned techniques may provide you a useful tool to comprehend consumer buying habits and tastes and for utilising that knowledge to come up with data-driven decisions that optimise product placement, enhance customer satisfaction, and attract sales. 2023 IEEE. -
A Dynamic Anomaly Detection Approach for Fault Detection on Fire Alarm System Based on Fuzzy-PSO-CNN Approach
Early detection is crucial due to the catastrophic threats to life and property that are involved with fires. Sensory systems used in fire alarms are prone to false alerts and breakdowns, endangering lives and property. Therefore, it is essential to check the functionality of smoke detectors often. Traditional plans for such systems have included periodic maintenance; however, because they don't account for the condition of the fire alarm sensors, they are sometimes carried out not when necessary but rather on a predefined conservative timeframe. They describe a data-driven online anomaly detection of smoke detectors, which analyzes the behavior of these devices over time and looks for aberrant patterns that may imply a failure, to aid in the development of a predictive maintenance approach. The suggested procedure begins with three steps: preprocessing, segmentation, and model training. A pre-processing unit can enhance data quality by compensating for sensor drifts, sample-to-sample volatility, and disturbances (noise). The proposed approach normalizes the data in preparation. The smoke source can be detected by using segmentation to differentiate it from the background. Following segmentation, Fuzzy-PSO-CNN is used to train the models. CNN and PSO, two of the most used alternatives, are both outperformed by the proposed method. 2023 IEEE. -
Utilizing Machine Learning for Sport Data Analytics in Cricket: Score Prediction and Player Categorization
Cricket is a popular sport with complex gameplay and numerous variables that contribute to team performance. In recent years, sports analytics has gained significant attention, aiming to extract valuable insights from large volumes of cricket data. Cricket has many fans in India. With a strong fan following, many try to use their cricket intuition to predict the outcome of a match. A set of rules and a points system govern the game. The venue and the performance of each player greatly affect the outcome of the match. The game is difficult to predict accurately as the various components are closely related. The CRR (Current Run Rate) approach is used to predict the final score of the first innings of a cricket match. Total points are calculated by multiplying the average number of runs scored in each over by the total number of overs. For ODI cricket, these methods are useless as the game can change very quickly regardless of the current run rate. The game may be decided by 1 or 2 overs. For more accurate score predictions, a system is needed that can more accurately predict the outcome of an inning. This research paper explores the application of machine learning techniques to predict scores and classify players based on their roles in the squad. The study utilizes a comprehensive dataset comprising various attributes of cricket matches, including player statistics, match conditions, and historical performance. Linear Regression, Logistic Regression, Naive Bayes, Support Vector Machines (SVM), Decision Tree, and Random Forest regression models are employed to predict scores. Additionally, player categorization is performed using a classification approach. The results demonstrate the effectiveness of machine learning techniques in enhancing performance analysis and decision-making in the game of cricket. 2023 IEEE. -
The Troubling Emergence of Hallucination in Large Language Models - An Extensive Definition, Quantification, and Prescriptive Remediations
The recent advancements in Large Language Models (LLMs) have garnered widespread acclaim for their remarkable emerging capabilities. However, the issue of hallucination has parallelly emerged as a by-product, posing significant concerns. While some recent endeavors have been made to identify and mitigate different types of hallucination, there has been a limited emphasis on the nuanced categorization of hallucination and associated mitigation methods. To address this gap, we offer a fine-grained discourse on profiling hallucination based on its degree, orientation, and category, along with offering strategies for alleviation. As such, we define two overarching orientations of hallucination: (i) factual mirage (FM) and (ii) silver lining (SL). To provide a more comprehensive understanding, both orientations are further sub-categorized into intrinsic and extrinsic, with three degrees of severity - (i) mild, (ii) moderate, and (iii) alarming. We also meticulously categorize hallucination into six types: (i) acronym ambiguity, (ii) numeric nuisance, (iii) generated golem, (iv) virtual voice, (v) geographic erratum, and (vi) time wrap. Furthermore, we curate HallucInation eLiciTation (), a publicly available dataset comprising of 75,000 samples generated using 15 contemporary LLMs along with human annotations for the aforementioned categories. Finally, to establish a method for quantifying and to offer a comparative spectrum that allows us to evaluate and rank LLMs based on their vulnerability to producing hallucinations, we propose Hallucination Vulnerability Index (HVI). Amidst the extensive deliberations on policy-making for regulating AI development, it is of utmost importance to assess and measure which LLM is more vulnerable towards hallucination. We firmly believe that HVI holds significant value as a tool for the wider NLP community, with the potential to serve as a rubric in AI-related policy-making. In conclusion, we propose two solution strategies for mitigating hallucinations. 2023 Association for Computational Linguistics. -
Lane Detection using Kalman Filtering
Autonomous vehicles are the future of transportation. Modern high-tech vehicles use a sequence of cameras and sensors and in order to assess their atmosphere and aid to the driver by generating various alerts. While driving, it is always a challenging task for drivers to notice lane lines on the road, especially at night time, it becomes more difficult. This research proposes a novel way to recognize lanes in a variety of environments, including day and night. First various pre-processing techniques are used to improve and filter out the noise present in the video frames. Then, a sequence of procedure with respect to lane detection is performed. This stable lane detection is achieved by Kalman filter, by removing offset errors and predict future lane lines. 2023 Elsevier B.V.. All rights reserved. -
An Enhanced Data-Driven Weather Forecasting using Deep Learning Model
Predicting present climate and the evolution of the ecosystem is more crucial than ever because of the huge climatic shift that has occurred in nature. Weather forecasts normally are made through compiling numerical data on from the atmospheric state at the moment and also applying scientific knowledge in the atmospheric processes to forecast on how the weather atmosphere would evolve. The most popular study subject nowadays is rainfall forecasting because of complexity in handling the data processing in addition to applications in weather monitoring. Four different state temperature data were collected and applied deep learning methods to predict the temperature level in the forthcoming months. The results brought out with the accuracy from 92.5% to 97.2% for different state temperature data. 2023 IEEE. -
A Study on the Factors Affecting Infants' Health-Related Issues and Child Mortality using Machine Learning
Child mortality and infant health-related issues remain significant challenges worldwide. Understanding the factors that influence these outcomes is crucial for implementing effective interventions and improving child health outcomes. In this study, we employ machine learning techniques to identify and analyze the key factors affecting infants' health-related issues and child mortality. Further, we identify several significant factors that influence infants' health-related issues and child mortality. These factors include maternal health indicators, access to healthcare services, socioeconomic status, environmental factors, and demographic characteristics. The machine learning models provide insights into the relative importance of these factors, enabling policymakers and healthcare professionals to prioritize interventions and allocate resources effectively. Additionally, we investigate the potential interaction effects among these factors and their impact on child health outcomes. This analysis helps in understanding the complex relationships and causal pathways involved in infants' health-related issues and child mortality. The findings of this study contribute to the existing knowledge by leveraging machine learning techniques to identify and analyze the factors affecting infants' health-related issues and child mortality. The insights gained from this research can inform evidence-based policies and interventions aimed at reducing child mortality rates and improving infant health outcomes globally. By addressing the underlying factors identified through this study, we can work towards achieving better health outcomes for infants and reducing the burden of child mortality worldwide. 2023 IEEE. -
An Integrated and Optimized Fog Computing enabled Framework to minimize Time Complexity in Smart Grids
A distributed computing paradigm known as 'cloud computing'works as a connection between IoT devices and cloud data centres. The environment system model in this work is on basis of clouds and fog and includes smart grids, which we explore. Prior to understanding the use of fog computing in smart grids we discuss about various features of cloud computing and talk about how to manage the connection between fog and cloud computing. Along with the usual performance of low latency, low cost, and high intelligence, the distinctive characteristics and service scenarios are also explored. Based on the outcome of the simulation, it appears that our suggested PSO-SA algorithm outperforms other optimization algorithms. It recorded a least mean response time of 3.86 seconds only. While the model build up delay was 4.6 seconds, the model execution delay was also found to be only 4.9 seconds with PSO-SA method. The improved efficiency of the technique can be credited to the best aspects of particle swarm optimisation (PSO) and a modified inertia weight obtained by simulated annealing. 2023 IEEE. -
AUTONOMOUS IOT MOVEMENT IN HOSTILE AREAS USING ROBOTICS AND DEEP FEDERATED ALGORITHMS
Innovative solutions are required when Internet of Things (IoT) devices are deployed in hostile or difficult locations to ensure dependable and effective operation. In order to enable autonomous IoT mobility in such challenging circumstances, this study suggests a novel approach integrating robotics and deep federated algorithms. Robotics and IoT can work together to create a system that can adapt to dangerous environments, extreme weather conditions, and unexpected terrain. Deep federated algorithms further improve system performance by facilitating dispersed device collaboration for learning while protecting data privacy. The suggested framework covers the issues of communication stability, energy optimization, and real-time decision-making. We illustrate the practicality of this strategy in strengthening the dependability and efficiency of IoT deployments in hostile situations through simulations and tests. 2023 IEEE. -
Mapping the Landscape of Business Intelligence Research: A Bibliometric Approach
The integration of Business Intelligence (BI) is an essential element in contemporary enterprises, facilitating the conversion of voluminous data into valuable insights to support informed decision-making. Consequently, a considerable body of literature has been devoted to investigating the utilization of Business Intelligence (BI) in enhancing company efficiency and competitiveness. The present investigation employs bibliometric methods as a means to examine the research pertaining to Business Intelligence (BI). This includes an examination of the main writers and universities, publication patterns, and the intellectual framework of the domain. This investigation centers on the timeframe spanning from 2000 to 2022 and scrutinizes a corpus of 3729 Scopus articles pertaining to business intelligence. The findings suggest that the domain of Business Intelligence (BI) has experienced a substantial expansion recently. The study's results reveal significant contributors, establishments, nations, and references in the discipline, along with developing research patterns and prospects for further investigation. In general, this research emphasizes the significance of bibliometric evaluation as a means of comprehending the present status of BI research and discovering approaches to enhance the utilization of BI in contemporary organizational decision-making procedures. This study has the potential to provide valuable insights into the present state of research within the field, pinpoint significant trends and themes, and highlight potential avenues for future research. 2023 IEEE. -
Optimizing Kidney Ultrasound images through Pre-Processing Filters
Medical image processing and analysis have greatly advanced in the past decade, significantly contributing to the diagnosis of various diseases.However, It is crucial to address the need for effective data management in the medical field due to the significant rise in data generation and storage. It necessitates the exploration of compression methods as a means of achieving efficient data handling. Consideration should be given to image processing approaches to minimize redundancy. Ultrasound imaging has gained importance in recent years, but the presence of artifacts in ultrasound images has complicated diagnoses. An evaluation has been performed to identify appropriate Pre-processing techniques for kidney images before extracting kidney features. Observing the sensitivity and calculating the PSNR and MSE of the filtered image are used to assess the applied methods. The results indicate that the median filter is ideal for image quality enhancement, while the Sobel filter is highly effective in detecting kidney edges. 2023 IEEE. -
Image Analysis of MRI-based Brain Tumor Classification and Segmentation using BSA and RELM Networks
Brain tumor segmentation plays a crucial role in medical image analysis. Brain tumor patients considerably benefit from early discovery due to the increased likelihood of a successful outcome from therapy. Due to the sheer volume of MRI images generated in everyday clinical practice, manually isolating brain tumors for cancer diagnosis is a challenging task. Automatic segmentation of images of brain tumors is essential. This system aimed to synthesize previous methods for BSA-RELM-based brain tumor segmentation. The proposed methodology rests on four fundamental pillars: preprocessing, segmentation, feature extraction, and model training. Filtering, scaling, boosting contrast, and sharpening are all examples of preprocessing techniques. When doing segmentation, a clustering technique based on Fuzzy Clustering Means (FCM) is used to breakdown the overall dataset into numerous subsets. The proposed approach used the region of filling for feature extraction. After that, a BSA-RELM is used to train the models with the input features. The proposed technique outperforms BSA and RELM, two of the most common alternatives. There was a 98.61 percent success rate with the recommended method. 2023 IEEE. -
Wearable Leaf-Shaped Slotted Antenna Including Human Phantom for WBAN Applications
A 5.8 GHz leaf-shaped slotted antenna for Wireless Body Area Network (WBAN) applications is presented in this piece of content. The leaf structure includes tri leaves, having a complete ground plane at the lowest floor and a central circle slot. The suggested antenna is 60 mm by 60 mm by 1.16 mm in total dimensions. The ISM (Industrial Science and Medical) band frequency of 5.8 GHz is covered by this antenna's radiation range of 5.5 to 6.4 GHz. The radiated pattern, efficiency, S11 magnitude and gain were the different attributes of the leaf-patterned slot antenna. The creation of a stylish leaf-shaped antenna that can be incorporated into clothing designs is the main goal of this project. This antenna may be used in difficult situations because of its flexible base and conductive fabric. The method considers the needs of wearable antennas, such as the impact of human interactions on this antenna, as well as the opposite. 2023 IEEE. -
Performance Evaluation of OTFS Under Different Channel Conditions for LEO Satellite Downlink
Orthogonal Time Frequency Space (OTFS) modulation scheme is being actively pursued as a viable alternative to Orthogonal Frequency Division Multiplexing (OFDM) modulation scheme in future wireless standards due to the inherent ability of OTFS to mitigate the Doppler effects in high mobility scenarios. The inclusion of Non Terrestrial Network (NTN) in Release 17 of 3GPP (3rd generation partnership project) New Radio (NR) standard signifies the vital role of Satellite Communications to achieve coverage extension, capability augmentation and seamless global connectivity. In this context, it becomes important to study the suitability of OTFS modulation scheme with respect to satellite channel scenarios. In this paper, we consider the downlink channel scenarios defined by 3GPP NR NTN for Low Earth Orbit (LEO) satellites at sub-6 GHz and millimetre wave frequencies for evaluating the performance of OTFS modulation schemes. Simulation results using LMMSE (Linear Minimum Mean Square Error) and MRC (Maximum Ratio Combining) detection algorithms confirm that OTFS modulation is highly robust against Doppler effects and performs consistently across all channel conditions. From simulation results, it is observed that the performance of iterative MRC detection is better than LMMSE for 16QAM and 64QAM modulation schemes by achieving respective gains of around 5 dB and 10 dB for corresponding Bit Error Rate (BER) values of 0.01 and 0.1. 2023 IEEE. -
Lung Cancer Detecting using Radiomics Features and Machine Learning Algorithm
Lung Cancer Incidence across the globe is the second leading cancer type tallying to about 2,206,771 during 2020 and is estimated to rise to about 3,503,378 by 2040 for both male and female sexes and for all ages accounting to 11.4% as per Globocan 2020 [1]. It is the leading death-causing cancer. Lung Cancer [2] in broad terms encompasses Trachea, bronchus as well as lungs. Purpose: The study is aimed to understand Radiomics based approach in the identification as well as classification of CT Images with Lung Cancer when Machine Learning (ML) algorithms are applied. Method: CT Image from LIDC-IDRI [4] Dataset has been chosen. CT Image Dataset was balanced and image features by PyRadiomics library were collected. Various ML features classification algorithms are utilized to create models and matrices adopted in judging their accuracies. The models, distinctive capacity is assessed by receiver operating characteristics (ROC) analysis. Result: The Accuracy scores and ROC-AUC values obtained for various Classification Model are as follows, for Ada Boosting, the accuracy score was 0.9993 ROC-AUC was 0.9993 and followed by GBM, the accuracy score was 0.9993, was 0.9992. Conclusion: Extracting texture parameters on CT images as well as linking the Radiomics method with ML would categorize Lung Cancer commendably. 2023 IEEE. -
Predicting the Cerebral Blood Flow Change Condition during Brain Strokes using Feature Fusion of FMRI Images and Clinical Features
By fusing clinical information with functional magnetic resonance imaging (fFMRI) pictures, this study describes a novel method for predicting changes in cerebral blood flow during brain strokes. The FMRI data and patient-specific variables, such as age, gender, and medical history, are combined via feature fusion in the proposed technique. As a result, the model developed can accurately forecast changes in cerebral blood flow that occur during brain strokes. The efficiency of the suggested strategy is shown by experimental findings. The performance of the model is greatly enhanced when FMRI data and clinical characteristics are combined as opposed to just one data source. The findings of this study have important ramifications for increasing the accuracy of stroke diagnosis and treatment and, eventually, for bettering patient outcomes. The experimental results showed that the proposed method a high level of accuracy in predicting changes in cerebral blood flow after brain strokes. The performance of the model was much enhanced by combining clinical characteristics with FMRI data as opposed to using only one of these data sources. This emphasizes the value of including pertinent clinical information in the diagnosis and management of stroke. 2023 IEEE. -
Implementing Ensemble Machine Learning Techniques for Fraud Detection in Blockchain Ecosystem
A new era of digital innovation, notably in the area of financial transactions, has been conducted in by the rise pertaining to block-chain technology. Although the decentralized nature of blockchain technology renders it prone to fraud, it has been praised for its capacity to offer a safe and transparent platform for financial transactions. The integrity of the entire blockchain network may be compromised by fraudulent transactions, which may also damage user and stakeholder trust. This study aims to assess machine learning's efficacy in detecting fraudulent transactions within blockchain networks and identifying the most effective model. To achieve its objectives, this study used a combination of data collection, data preprocessing, and machine learning techniques. The data used in this study was dataset of blockchain transactions and pre-processed using techniques such as feature engineering and normalization. Then trained and evaluated using several machine learning models, including Logistic Regression (LR), Naive Bayes (NB), SVM, XGboost, LightGBM, Random Forest(RF), and Stacking, in order to determine their effectiveness in detecting fraudulent transactions. XGBoost demonstrated the highest accuracy of 0.944 in the stacking model, establishing it as the top-performing model, closely followed by Light GBM. The study's discoveries offer significant practical implications for advancing fraud detection methods in blockchain networks. By pinpointing the most efficient machine learning model and crucial predictive fraud features, this research provides vital insights for refining precise detection algorithms, enhancing blockchain network security, and broadening their reliability across various applications. 2023 IEEE. -
Evaluating Energy Consumption Patterns in a Smart Grid with Data Analytics Models
With the rapid pace of technological advancement, it is a well established fact that in todays era, economical and industrial development go hand in hand with the growth in technology. Today, massive amounts of data are generated everyday and are only growing exponentially. The collected data, whether structured or unstructured, could prove to be very beneficial in terms of improving operational efficiency by analyzing and extracting valuable information to find patterns to optimize asset utilization and improve asset intelligence. Big data analytics can very well contribute to the evolution of the digital electrical power industry. The objective of this paper is to explore how smart grid technology can be enhanced by leveraging big data analytics. Different predictive models are used for the purpose. Among them, decision tree model outperformed others recording a training and tetsing accuracy of 94.4% and 92.7% respectively while noting a least execution latency of only 4.3 seconds. 2023 IEEE. -
Brain Tumor Detection and Classification Using a Hyperparameter Tuned Convolutional Neural Network
Brain tumor detection using MRI scans when integrated with a deep learning approach can be immensely applied in identifying the tumor at early stages, with minimum medical professional aid. This research paper aims to develop an advanced predictive model that accurately classify brain tumors as benign or malignant using MRI scans. Here, a novel convolutional neural network (CNN) model is proposed to automate tumor detection and improve diagnosis accuracy. The model used a dataset of around 7000 brain cancer data classified into 4 labels which include glioma, meningioma, pituitary, and no tumor. Data wrangling and pre-processing are then applied to unify the images into a single format and remove any inconsistencies. Further the records are segregated into train and test samples with a 70-30 split. The proposed model recorded an optimum accuracy of 94.82%, precision of 94.2%, recall value of 93.7% and f-score metric of 93.9% respectively. In conclusion, the paper concluded that the proposed model can be applied to enhance the precision of both brain tumor diagnosis and prognosis. 2023 IEEE. -
Comparative Performance Analysis of Machine Learning and Deep Learning Techniques in Pneumonia Detection: A Study
Pneumonia is a bacterial or viral infection that inflames the air sacs in one or both lungs. It is a severe life-threatening disease, making it increasingly necessary to develop accurate and reliable artificial intelligence diagnosis models and take early action. This paper evaluates and compares various Machine Learning and Deep Learning models for pneumonia detection using chest X-rays. Six machine learning models -Logistic Regression, KNN, Decision Tree, Random Forest, Naive Bayes, and Support Vector Machines - and three deep learning models - CNN, VGG16, and ResNet - were created and compared with each other. The results exhibit how just the model choice can significantly affect the quality and inerrancy of the final diagnostic tool. 2023 IEEE.