Machine Learning Classifiers for Credit Risk Analysis
- Title
- Machine Learning Classifiers for Credit Risk Analysis
- Creator
- Sudiksha; Nanjundan P.; George J.P.
- Description
- The modern world is a place of global commerce. Since globalization became popular, entrepreneurs of small and medium enterprises to large ones have looked up to banks, which have existed in various forms since antiquity, as their pillars of support. The risk of granting loans in various forms has significantly increased as a consequence of this, the businesses face financing difficulties. Credit Risk Analysis is a major aspect of approving the loan application that is done by analyzing different types of data. The goal is to minimize the risk of approving the loan for the Individuals or businesses who might not pay back on time. This research paper addresses this challenge by applying various machine learning classifiers to the German credit risk dataset. By evaluating and comparing the accuracy of these models to identify the most effective classifier for credit risk analysis. Furthermore, it proposes a contributory approach that combines the strengths of multiple classifiers to enhance the decision-making process for loan approvals. By leveraging ensemble learning techniques, such as the Voting Ensemble model, the aim is to improve the accuracy and reliability of credit risk analysis. Additionally, it explores tailored feature engineering techniques that focus on selecting and engineering informative features specific to credit risk analysis. 2024 Sudiksha et al., licensed to EAI.
- Source
- EAI Endorsed Transactions on Internet of Things, Vol-10
- Date
- 2024-01-01
- Publisher
- European Alliance for Innovation
- Subject
- Credit risk; Decision tree; K-Nearest Neighbour; Machine learning; Naive Bayes classifier
- Coverage
- Sudiksha, Department of Data Science, Christ University, Pune Lavasa Campus, India; Nanjundan P., Department of Data Science, Christ University, Pune Lavasa Campus, India; George J.P., Department of Data Science, Christ University, Pune Lavasa Campus, India
- Rights
- All Open Access; Gold Open Access
- Relation
- ISSN: 24141399
- Format
- Online
- Language
- English
- Type
- Article
Collection
Citation
Sudiksha; Nanjundan P.; George J.P., “Machine Learning Classifiers for Credit Risk Analysis,” CHRIST (Deemed To Be University) Institutional Repository, accessed February 24, 2025, https://archives.christuniversity.in/items/show/13684.