Boundary layer flow of magneto-nanomicropolar liquid over an exponentially elongated porous plate with Joule heating and viscous heating: a numerical study
- Title
- Boundary layer flow of magneto-nanomicropolar liquid over an exponentially elongated porous plate with Joule heating and viscous heating: a numerical study
- Creator
- Rana P.; Mahanthesh B.; Nisar K.S.; Swain K.; Devi M.
- Description
- Micropolar fluids are used in lubrication theory, thrust bearing technologies, cervical flows, lubricants, paint rheology, and the polymer industry. This study develops the numerical simulation of the magneto-Darcy flow of a polarized nanoliquid with Joule heating and viscous heating mechanisms on an exponentially elongated surface. The effects of linearized Rosseland radiation and temperature-dependent heat generation are considered. The flow is generated by an exponential form of elongation of a flexible sheet. The porous matrix and nanoparticle effects are characterized by the Darcy expression and the two-component Buongiorno model correspondingly. The resulting partial differential systems are solved numerically using the RungeKutta-based shooting technique to interpret the importance of key parameters in physical quantities. A direct comparison is made to validate the results. Our results demonstrated that arbitrary movement of the nanoparticles significantly advances the temperature profile by reducing the concentration of nanoparticles. Both Joule heating and viscous heating mechanisms improve the structure of the thermal boundary layer. The porous matrix reduces the velocity of the nanoliquid and thus the width of the velocity boundary layer is reduced. 2021, King Fahd University of Petroleum & Minerals.
- Source
- Arabian Journal for Science and Engineering, Vol-46, No. 12, pp. 12405-12415.
- Date
- 2021-01-01
- Publisher
- Springer Science and Business Media Deutschland GmbH
- Subject
- Exponentially stretching surface; Joule heating; Micropolar fluid; Nanofluid; Nanoparticles; Nusselt number; Thermal radiation
- Coverage
- Rana P., School of Mathematical Sciences, College of Science and Technology, Wenzhou-Kean University, Wenzhou, 325060, China; Mahanthesh B., Department of Mathematics, CHRIST (Deemed to be University), Bengaluru, 560029, Karnataka, India; Nisar K.S., Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Al- Dawaser, 11991, Saudi Arabia; Swain K., Department of Mathematics, Gandhi Institute for Technology, Bhubaneswar, 752054, Odisha, India; Devi M., Department of Physics, Gandhi Institute for Technology, Bhubaneswar, 752054, Odisha, India
- Rights
- Restricted Access
- Relation
- ISSN: 2193567X
- Format
- Online
- Language
- English
- Type
- Article
Collection
Citation
Rana P.; Mahanthesh B.; Nisar K.S.; Swain K.; Devi M., “Boundary layer flow of magneto-nanomicropolar liquid over an exponentially elongated porous plate with Joule heating and viscous heating: a numerical study,” CHRIST (Deemed To Be University) Institutional Repository, accessed February 27, 2025, https://archives.christuniversity.in/items/show/15513.