Energy-based features for Kannada handwritten digit recognition
- Title
- Energy-based features for Kannada handwritten digit recognition
- Creator
- Mukarambi G.; Dhandra B.V.
- Description
- In this paper, Kannada handwritten digit recognition system is proposed based on energy features. Ground truth datasets are not available to test the performance of proposed features. Hence, own dataset of Kannada handwritten digits are collected from schools, colleges, business persons and professionals. The digital images are pre-processed using morphological opening operation for removing the noise and bilinear operation is used for normalisation. The normalised image is divided into 16 blocks, and then wavelet filters were applied for each of the 16 blocks and computed the standard deviation for each of them. In this process, a total of 64 standard deviation of the wavelet coefficients are generated of which 48 coefficients are selected as potential features. The average recognition accuracy of 94.80% is achieved using nearest neighbour classifier. The proposed algorithm is free from skew and thinning and it is novelty of the paper. Copyright 2020 Inderscience Enterprises Ltd.
- Source
- International Journal of Computational Vision and Robotics, Vol-10, No. 2, pp. 156-166.
- Date
- 2020-01-01
- Publisher
- Inderscience Publishers
- Subject
- DWT; Nearest neighbour; OCR; SVM
- Coverage
- Mukarambi G., Department of Computer Science, School of Computer Science, Central University of Karnataka, Kadaganchi, Aland Road, Kalaburagi, India; Dhandra B.V., Department of Statistics, Christ (Deemed University), Bangalore, Karnataka, India
- Rights
- Restricted Access
- Relation
- ISSN: 17529131
- Format
- Online
- Language
- English
- Type
- Article
Collection
Citation
Mukarambi G.; Dhandra B.V., “Energy-based features for Kannada handwritten digit recognition,” CHRIST (Deemed To Be University) Institutional Repository, accessed February 24, 2025, https://archives.christuniversity.in/items/show/16498.