Research progress of MXenes and MXenes-based catalysts for photocatalytic water splitting: A systematic review
- Title
- Research progress of MXenes and MXenes-based catalysts for photocatalytic water splitting: A systematic review
- Creator
- Kali S.R.; V M.; R M.; Sunaja Devi K.R.; Pinheiro D.
- Description
- The field of two-dimensional (2D) materials has witnessed remarkable growth over the years, especially on a class of materials known as MXenes. MXenes have garnered significant attention for their exceptional physicochemical properties, which include high electrical and thermal conductivity, large surface area, adjustable bandgap, and hydrophilicity. These characteristics have paved the way for a diverse range of applications, including photocatalysis, electrocatalysis, supercapacitors, sensing, and biomedicine. MXenes have been recognized to be particularly effective in applications such as photocatalytic hydrogen production through water splitting reactions. This involves using MXenes as cocatalysts to enhance the efficiency of the photocatalytic process. In this review, the various synthetic methods for producing MXenes and MXenes-based catalysts are summarized, shedding light on the versatility of their fabrication techniques. The underlying mechanisms of photocatalytic H2 evolution are explored, providing insights into how MXenes function as cocatalysts in these reactions. These mechanisms are crucial for understanding the enhancement of H2 production and improving the overall efficiency of the water splitting process. Furthermore, the review delves into the challenges that researchers face when utilizing MXenes and MXene-based materials for electrocatalytic water splitting. These challenges serve as motivation for further exploration and innovation in the field, driving the development of more efficient and sustainable electrocatalytic systems. In this discussion, the potential future applications of MXenes and their composites in electrocatalytic water splitting and other fields are explored. This suggests that ongoing research and advancements in MXene-based materials have the potential to revolutionize various technological areas, contributing to the development of cleaner energy sources and more efficient catalytic processes. 2024 Elsevier Ltd
- Source
- Journal of Environmental Chemical Engineering, Vol-12, No. 3
- Date
- 2024-01-01
- Publisher
- Elsevier Ltd
- Subject
- 2D materials; Co-catalyst; MXenes; Photocatalysis; Water splitting
- Coverage
- Kali S.R., Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Karnataka, Bangalore, 560029, India; V M., Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Karnataka, Bangalore, 560029, India; R M., Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Karnataka, Bangalore, 560029, India; Sunaja Devi K.R., Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Karnataka, Bangalore, 560029, India; Pinheiro D., Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Karnataka, Bangalore, 560029, India
- Rights
- Restricted Access
- Relation
- ISSN: 22133437
- Format
- Online
- Language
- English
- Type
- Review
Collection
Citation
Kali S.R.; V M.; R M.; Sunaja Devi K.R.; Pinheiro D., “Research progress of MXenes and MXenes-based catalysts for photocatalytic water splitting: A systematic review,” CHRIST (Deemed To Be University) Institutional Repository, accessed February 25, 2025, https://archives.christuniversity.in/items/show/21303.