Browse Items (2150 total)
Sort by:
-
Probing the Role of Information and Communication Technology (ICT) in Enhancing Research: An Epilogue of Accessible Research Tools
Information and Communication Technology (ICT) has revolutionized the way researchers conduct their work. It has enabled them to access a wealth of information through online databases, collaborate with colleagues across the globe, and analyze vast amounts of data quickly and accurately. This paper explores the role of ICT in enhancing research tools, highlighting the benefits it provides to researchers in terms of increased efficiency, improved accuracy, and greater access to resources. It also discusses some of the challenges associated with using ICT in research, such as data security and privacy concerns, and offers potential solutions. Overall, the paper concludes that ICT is an essential tool for researchers and will continue to play an increasingly important role in advancing scientific knowledge and innovation. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd 2023. -
Evolution, Trends, and Future Developments of Business Intelligence
A decision-making process backed by the integration and evaluation of an organization's data resources is referred to as business intelligence. Since information has been recognized as a business's most valuable asset, it is a crucial resource for its growth and plays an increasingly important role in a variety of organization kinds. This research article examines the history of business intelligence technologies, their relevance in current times, and all the future developments that seem possible. Organizations are transforming into various approaches based on the information and networking in the twenty-first century in response to a chaotic and ambiguous environment marked by hazy organizational boundaries and rapid change. Knowledge-based assets become apparent to be the core of long-term strategic edge and the cornerstone of success in the twenty-first century in such situations. The primary characteristics of business intelligence are determined by data analysis, processing, and visualization. Relational tables are used by business intelligence technologies to store and display a lot of organized and unstructured data. They utilize specialized tools and mathematics to produce intricate visual reports. This research has been aggravated to focus on the upcoming strategic revolution in the market with numerous cutting-edge business intelligence technologies. 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Systematic Review on Decentralised Artificial Intelligence and Its Applications
Initially, Artificial Intelligence (AI) models were centralized. This resulted in various challenges. To overcome this challenge, the decentralized or distributed frameworks were developed. Recent advancements in blockchain technology and cryptography have accelerated the decentralization process. Decentralized Artificial Intelligence (DAI) is gaining a significant research attention in recent times. This study reviews various DAI techniques such as Decentralized machine learning frameworks, Federated Learning and Distributed AI marketplaces. In particular, this study focuses on reviewing the recent developments in DAI by analyzing its potential advantages and challenges. 2023 IEEE. -
Enhancing Industrial Equipment Reliability: Advanced Predictive Maintenance Strategies Using Data Analytics and Machine Learning
In today's dynamic industrial landscape, optimizing machinery performance and minimizing downtime are paramount for sustained operational excellence. This paper presents advanced predictive maintenance strategies, with a focus on leveraging machine learning and data analytics to enhance the reliability and efficiency of industrial equipment. The study explores the key components of predictive maintenance, including data collection, condition monitoring, predictive models, failure prediction, optimized maintenance scheduling and the extension of equipment longevity. The paper discusses how predictive maintenance aligns with modern industrial paradigms. The study evaluated the performance of five popular forecasting models like Random Forest, Linear Regression, Exponential Smoothing, ARIMA, and LSTM, to estimate maintenance for industrial equipment. The effectiveness of each model was evaluated using a number of performance metrics. The percentage of the variation in the real data that the model can explain is shown by the R-squared number. The lowest MSE, RMSE, and greatest R-squared values indicate a model's accuracy. The study highlights practical implications across diverse industries, showcasing the transformative impact of predictive maintenance on minimizing unplanned downtime, reducing maintenance costs, and maximizing the lifespan of critical machinery. When it comes to predictive maintenance for industrial machinery, the LSTM model has been shown to be the most accurate and efficient model with the highest R-squared value, indicating a better fit and higher predictive ability. As technology continues to evolve, the paper discusses future directions, including the integration of artificial intelligence and advanced analytics, and emphasizes the importance of continuous improvement in refining predictive maintenance strategies for the evolving needs of industries worldwide. 2024 IEEE. -
Natural Disaster Prediction by Using Image Based Deep Learning and Machine Learning
In recent years, diseases and disaster have become more unpredictable. The advent of technology has not only making our lives easier but also technology-dependent. Nevertheless, the natural disasters cause great adversity by disrupting considerable human lives. Also, the disasters obstruct and affect many industries and services either directly or indirectly. Hence, it is necessary to study and observe data patterns and warning signs that lead to a natural disaster, its potential risk and its ability to resolve management strategies, which can be implemented immediately to minimize the socio-economic loss. This article reviews the state-of-the-art research works and findings through a technological perspective on data analysis, natural disaster prediction, and the utilization of technology for deploying management strategy. Also, this paper focuses on investigating the today's Industry 4.0 that utilizes cognitive computing. The primary aim of this article is to review the research ideas that leverage big data and data mining to observe and track patterns, which can impelment predictive analysis to anticipate the forthcoming disasters. Furthermore, this research work analyzed the posed predictive models by specifically using ANN (Artificial Neural Networks), sentiment model, and smart disaster prediction application (SDPA) to predict the flash flood. 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG. -
Theoretical Framework for Blockchain Secured Predictive Maintenance Learning Model Using Digital Twin
The automotive sector benefits from Digital Twins (DTs), software replicas of physical assets or processes. DTs enable engineers and data scientists to obtain deeper insights into the system and solve the most difficult problems faster and more affordably. Blockchain technology is a developing and exciting technology that has the potential to offer DTs monitoring capabilities, strengthening security and enhancing DTs transparency, dependability, and immutability. Intelligent behavior can be integrated into blockchain-based DTs to foresee important maintenance tasks and successfully manage machine functions. Our research involves creating a theoretical framework that leverages emerging technologies such as blockchain, artificial intelligence and DTs to facilitate resolution in the predictive maintenance of industry machines with minimised governing cost. The Author(s), under exclusive license to Springer Nature Switzerland AG 2024. -
Applying Ensemble Techniques for the Prediction of Alcoholic Liver Cirrhosis
More than fifty percent of all liver cognate deaths are caused by alcoholic liver disease (ALD). Excessive drinking over the time leads to alcohol-related steatohepatitis and fatty liver, this in turn can lead to alcoholic liver fibrosis (ALF) and in due course alcohol-related liver cirrhosis (ALC). Detecting ALD at an early stage will reduce the treatment cost to the patient and reduce mortality. In this research, a two-step model is developed for predicting the liver cirrhosis using different ensemble classifiers. Among 41 features recorded during data collection, only 15 features arefound to be effective determinants of the class variable. The proposed stacked ensemble technique for ALD prediction is compared with other ensemble models such as random forest, AdaBoost, and bagging. Through experimentation, it is observed that the proposed model with XGBoost and decision tree as base models and logistic regression as Meta model exhibits prediction accuracy of 93.86%. The prediction accuracy of theproposed stacked ensemble technique is 0.2% better in prediction accuracy and 0.3% reduced error rate in comparison with random forest classifier. 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Qualitative and quantitative test of digital micromirror device for next generation UV multi-object spectroscopy
The coming decade in astronomy focuses on large wide field imaging and spectroscopic surveys. No wide field imaging facility extends to the UV region, which represents an important window into a wide variety of astrophysical problems. Also, spectroscopy would be essential to understand the physical and chemical properties of several stars, star forming regions and galaxies. Multi object spectroscopy (MOS) would be an efficient way to obtain these parameters for a large number of objects at a much shorter timescale. Digital Micromirror Device (DMD) acts as a programmable slit mask and can be used to achieve this goal in an MOS. This paper discusses different ground tests conducted on DMD to be used for the above said application. Numerical simulations for the diffraction effects on DMD is also carried out and the results are shared in this paper. 2020 SPIE -
EV Service Stations for Future Smart Cities
The market for electric vehicles (EVs) has been growing at a fast pace in recent years. It is expected to continue growing at a much faster pace in the coming decades. The emerging EV technology is increasingly gaining a high demand for continued good transport connections in smart cities. Most of the Smart Cities' charging infrastructure and future growth revolve around its public transport network, especially an EV service station. New technologies, therefore, need to be complemented with new and versatile charging options to cater to different types of charging options available for charging Li-ion Batteries with newer materials and charging capacity. Building an EV service station in the ongoing scenario anticipates smart engineering knowledge to complement innovative charging methods. An EV service station needs hardware, software, and test equipment before charging, during charge, and post-charge states. It is expected to inform the user of available options to choose and select from. This paper investigates the challenges and suggests solutions to meet the EV service station support for EV vehicles in present and future smart cities. It also highlights the demand for a skilled workforce to maintain these service stations, including updating their skills. Examples of a few smart cities in developed as well as developing countries have been quoted. These developments will contribute to the transport infrastructure needed for future smart cities. The paper paves the way for future research in this area. The Institution of Engineering & Technology 2023. -
Enhanced Automated Online Examination Portal Using Convolutional Neural Network
In recent years, the digital evolution of education has significantly shaped the landscape of learning, steering it away from traditional classroom settings towards more agile e-learning platforms. This shift has underscored the urgency for comprehensive online examination systems, tailored to meet the unique challenges and demands of virtual education. Online learning platforms have seen a rapid rise in popularity, given their flexibility, cost-effectiveness, and capability to cater to learners worldwide. Such a widespread audience brings along the challenge of conducting exams without the constraints of geography and scale. Traditional examinations, with their manual paper based formats, fail to fit within this digital mold due to their logistical challenges and inefficiencies. Consequently, an online examination system not only introduces convenience but also operational efficiency, eliminating many of the logistical nightmares associated with manual exams. While existing tools might provide online testing capabilities, the integration of Artificial Intelligent driven proctoring in this portal elevates the standards of academic integrity to unprecedented levels. The main aim of this article is to create online test platform with the support of Artificial Intelligence technology. The result detect the malpractice activity and electronic device usage detection while online examination. 2023 IEEE. -
Crime Analysis and Forecasting using Twitter Data in the Indian Context
Since the late 1990s, social media has added more features and users. Due to the rise of social media, blogs and posts by common people are now a part of mainstream journalism. Twitter is a place where people can share their ideas about culture, society, the economy, and politics. India's large population and rising crime rate make it hard for law enforcement to find and stop illegal activities. This article shows the use of Twitter data to analyse, forecast, and visualise criminal activity using statistical and machine learning models and geospatial visualisation techniques. This helps law enforcement agencies make the best use of their limited resources and put them in the right places. The research aims to present a spatial and temporal picture of crime in India and is split into three parts: Classification, Visualisation, and Forecasting. Crime tweets are identified using a hashtag query argument in the tweepy python package's search_tweets function, followed by substring-keyword classification. The visualisation uses gmaps and bokeh python packages for geospatial and matplotlib for analytical applications. The forecasting portion compares AR, ARIMA, and LSTM to determine the best model for time series forecasting of crime tweet count. 2023 IEEE. -
Identification of Phishing URLs Using Machine Learning Models
In this study, we provide a machine learning-based method for identifying phishing URLs. Sixteen features, including Have IP, Have At, URL Length, URL Depth, Non-standard double slash, HTTPS domain, Shortened URL, Hyphen Count, DNS Record, Domain age, Domain active, iFrame, Mouse Over, Right click, Web Forwards, and Label, were extracted from the 600,000 URLs we gathered as a dataset of legitimate and phishing URLs. We then used this dataset to train a variety of machine learning models. These included standalone models such Naive Bayes, Logistic Regression, Decision Trees, and K-Nearest Neighbors (KNN). We also used ensemble models likeHard Voting, XGBoost, Random Forests, and AdaBoost. Finally, we used deep learning models such as Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN).On evaluation of performance metrics like accuracy, precision, recall, train time and prediction time it was found that XGBoost provides the best performance across all categories. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Crown shaped broadband monopole fractal antenna for 4G wireless applications
This paper proposes a novel crown shaped fractal antenna design suitable for 4G wireless applications. One of the promising approaches in miniaturizing the antenna size is to use the fractal geometries. Several efforts have been made by various investigators around the globe to amalgamate benefits of fractal structures with electromagnetic concepts and applications. This paper outlines a new approach in designing broadband monopole 2.1 GHz fractal antenna. The design starts with square patch antenna and goes up to third iteration for obtaining better performance and impedance matching. The proposed antenna was designed and simulated using the HFSS EM simulator. Performance analysis of the antenna was done with characteristics such as return loss, VSWR, efficiency and radiation pattern found to be good at 2.1 GHz. Wireless application demands miniaturization in system as well as antenna size with better performance, hence attempts have been made to reduce the size and improve the gain, efficiency and bandwidth of the proposed antenna. 2017 IEEE. -
Exploring the Influence of Ethnicity and Environmental Values on Eco-Entrepreneurship: A Structural Equation Modeling Approach
In today's world, sustainability is of immense importance due to population growth, pollution and resource depletion. Consequently, there is an urgent need to devise future-oriented strategies for sustaining life on Earth. The rise of green business and the Sustainable Development Goals (SDGs) reflect society's growing awareness and commitment to environmentally friendly living. Our research examines the link between eco-entrepreneurship and the SDGs among young adults who are the next generation of entrepreneurs. We aim to understand how these individuals plan to incorporate the SDGs into their future business. Conducted primarily through surveys of 17- to 26-year-olds, our research uses the Statistical Equation Model (SEM) to analyze the relationship between eco-entrepreneurship, the SDGs and today's youth. In addition, we examine how current educational practices influence young adults' attitudes toward sustainability. By delving into these aspects, our paper seeks to improve the understanding of how young adults, our future leaders, perceive and pursue green business and sustainable development goals, ultimately determining the importance of these concepts for our future. 2024 IEEE. -
Design Cognition while using digital tools: A Distributed Cognition Approach
The use of digital tools in the conventional architecture design thinking process which derives its basis from sketching is followed in many colleges in India. Various shortcomings due to the integration of digital tools to the manual design process have been enumerated during the past 30 years. Digital tools provide affordances different from the manual sketching design process, the effects of which can be understood by adopting a distributed cognition approach. The paper builds on design cognition research while using externalization tools in the design process. It does so by developing a theoretical framework derived from distributed cognition and an understanding of visual thinking processes from design literature. The paper utilizes the distributed cognition framework by Zhang and Norman, to arrive at resultant affordances of externalization tools in design. The same is then utilized for a protocol study which was coded for its visual thinking components and other relevant codes. The same protocol study was also coded for ideation flow analysis. The findings pointed towards compromised visual thinking and reduced ideation while utilizing digital tools in quick conceptualization. 2021 ACM. -
An Alternative Deep Learning Approach for Early Diagnosis of Malaria
Considering the malaria disease-related moralities prevailing mainly in underdeveloped countries, early detection and treatment of malaria must be an essential strategy for lowering morbidity and fatality rates. Detection of Malaria using traditional investigation methods through blood samples and expert judgments was found to be time-consuming. In this paper, the authors introduced a Machine Learning automated system to eliminate the need for human intervention, which in turn enables early detection of malaria. The study has used various Deep Learning techniques such as traditional Convolutional Neural Network (CNN), VGG19, ConvNeXtXLarge, ConvNeXtBase, ConvNeXtSmall, ConvNeXtTiny, InceptionResnetv2, Xception, DenseNet169, EfficientNetB7, MobileNet, ResNet50, and NasNetLarge as base models. These models have been trained and tested with microscopic blood smear images dataset and observed that ConvNeXtXLarge detects malarial parasites with an accuracy of 96%. The proposed method outperforms the existing approaches in terms of both accuracy and speed. The findings of this work can contribute to the development of more accurate and efficient automated systems for early detection of Malaria. 2024 IEEE. -
An ettective dynamic scheduler tor reconfigurable high speed computing system
High Speed Computing is a promising technology that meets ever increasing real-time computational demands through leveraging of flexibility and parallelism. This paper introduces a reconfigurable fabric named Reconfigurable High Speed Computing System (RHSCS) and offers high degree of flexibility and parallelism. RHSCS contains Field Programmable Gate Array (FPGA) as a Processing Element (PE). Thus, RHSCS made to share the FPGA resources among the tasks within single application. In this paper an efficient dynamic scheduler is proposed to get full advantage of hardware utilization and also to speed up the application execution. The addressed scheduler distributes the tasks of an application to the resources of RHSCS platform based on the cost function called Minimum Laxity First (MLF). Finally, comparative study has been made for designed scheduling technique with the existing techniques. The proposed platform RHSCS and scheduler with Minimum Laxity First (MLF) as cost function, enhances the speed of an application up to 80.30%. 2014 IEEE. -
Network Security Tools and Applications in Research Perspective
The modern world technology is civilized, globalized and modernized. The technological development of social networks and e-commerce applications produce larger data. This data communication is major task, because device to device communication need network terminal. This data transmission is not safe because of different types of tools and software available to destroy the existing network. In the field of network security during data transfer from one particular node to other node some security vulnerability is happened this is the one of the critical issue in this sector. The reason for this network security is different types of data attacks are happen in day to day life. It is easy to establish a new network but protecting the entire network is a big issue. This network security is generally two parameter first one is communication and second one is data automation. The network security field is directly or indirectly linked with the concept of data encryption. The development in this network security has taken us to a level that from signature again we came back to thumb print. For example maintain the data secure we use the lock system which is a finger print type. This technology helps us to protect the physical data theft, but logical data theft is still problem for data transmission. This article will brief about the network security it also presents the various network security types. Those types are wired and wireless network security. Apart from the network security the following topics is also discussed in this article. Those are network security protocols and simulation tools in network security. The research problems in network security are privacy and vulnerability of data. 2019 IEEE. -
A Dual Step Strategy for Retinal Thin Vessel Enhancement/Extraction
Blood vessel extraction from retinal images is a challenging and fundamental step in pathological analysis. Most of the vessel extraction algorithms face difficulty in the extraction of thin vessels. In this paper, a dual step strategy for retinal thin vessel enhancement/extraction is proposed. Since thin vessel pixels have intensities closer to the background non-vessel pixels, the first level enhancement algorithms usually suffers in its accurate extraction. This led to explore a novel idea of eliminating the effects of thick vessel pixels in a reference image, via replacing it with neighboring non-vessel pixels. By applying second level enhancement on the vessel subtracted image, thin vessels are projected and improvement in extraction is attained subjectively as well as objectively. 2019 IEEE. -
An Efficient Preprocessing Step for Retinal Vessel Segmentation via Optic Nerve Head Exclusion
Retinal vessel segmentation plays a significant role for accurate diagnostics of ophthalmic diseases. In this paper, a novel preprocessing step for retinal vessel segmentation via optic nerve head exclusion is proposed. The idea relies in the fact that the exclusion of brighter optic nerve head prior to contrast enhancement process can better enhance the blood vessels for accurate segmentation. A histogram based intensity thresholding scheme is introduced in order to extract the optic nerve head which is then replaced by its surrounding background pixels. The efficacy of the proposed preprocessing step is established by segmenting the retinal vessels from the optic nerve head excluded image enhanced using CLAHE algorithm. Experimental works are carried out with fundus images from DRIVE database. It shows that 1%3% of improvement in terms of TPR measure is achieved. 2019, Springer Nature Singapore Pte Ltd.