Browse Items (2150 total)
Sort by:
-
Adopting Metaverse as a Pedagogy in Problem-Based Learning
Pedagogical practices vary from time to time based on the requirement of various academic disciplines. Course instructors are constantly searching for inclusive and innovative pedagogies to enhance learning experiences. The introduction of Metaverse can be observed as an opportunity to enable the course instructors to combine virtual reality with augmented reality to enable immersive learning. The scope of immersive learning experience with Metaverse attracted many major universities in the world to try Metaverse as a pedagogy in fields such as management studies, medical education, and architecture. Adopting Metaverse as a pedagogy for problem-based learning enables the course instructors to create an active learning space that tackles the physical barriers of traditional pedagogical practices of case-based learning facilitating collaborative learning. Metaverse, as an established virtual learning platform, is provided by Meta Inc., providing the company a monopoly over the VR-based pedagogy. Entry of other tech firms into similar or collaborative ventures would open up a wide array of virtual reality-based platforms, eliminating the monopoly and subsequent dependency on a singular platform. The findings of the study indicate that, currently, the engagements on Metaverse are limited to tier 1 educational institutions worldwide due to the initial investment requirements. The wide adoption of the Metaverse platform in future depends on the ability of the platform providers to bridge the digital gap and facilitate curricula development. 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG. -
Adoption of Fintech Towards Asset and Wealth Management: Understanding the Recent Scenario in India
The finance sector as a whole has seen a significant transformation as a result of technological advances, which has impacted how financial institutions function and how financial activities are carried out. Fintech is currently a facilitator and a disruptor. Today Fintech companies have the greatest influence on the wealth management industry financial technology, or Fintech, began with nimbler start-ups upending banks with their innovative methods, and later developed into the latter forging partnerships with banks to strengthen the whole financial services ecosystem. At the intersection of both money and technology, the term wealthtech was developed. Any digital solution designed to simplify wealth management procedures is referred to as digital wealth management solutions. The fintech sector, which also encompasses digital payments, regulatory technology, insurance technology, etc., includes wealthtech. Fintech in wealth management has created a paradigm change in the investing sector. Wealthtech's technology is disrupting the wealth management industry. This study analyses the recent development of the wealth management industry and financial investment in the digital Indian age. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd 2023. -
Advanced Approaches for Hate Speech Detection: A Machine and Deep Learning Investigation
The prevalence of online social media platforms has led to an alarming rise in the frequency of cyberbullying and hate speech. This study uses a variety of machine-learning approaches and deep- learning algorithms to identify hate speech. The goal is to create a thorough and successful method for locating and categorizing hate speech on online networks. Our suggested approach intends to deliver a comprehensive solution to address the urgent problem of cyberbullying and hate speech in the digital sphere by leveraging the strength of these cutting-edge techniques. We work to make social media users' online experiences safer and more welcoming by identifying and addressing such harmful online actions. Through rigorous experimentation, we evaluate the efficacy of these methodologies, ultimately revealing that the Bidirectional Gated Recurrent Unit (Bi-GRU) outperforms the other employed techniques. The Bi-GRU model demonstrates superior hate speech detection capabilities, substantiated by robust performance metrics. This research contributes to the field by providing empirical evidence that deep learning models, such as Bi-GRU, can significantly advance hate speech detection accuracy. The findings underscore the potential of leveraging advanced neural architectures in the pursuit of fostering a more inclusive and respectful digital space. 2024 IEEE. -
Advanced Cervical Lesion Detection using Deep Learning Techniques
Cervical cancer has been one of the common causes for mortality by cancer in women across the world. But there are currently not enough skilled colposcopists, and the training process is drawn out. This implicates that there is a significant scope for artificial intelligence based computational models for segmentation of colposcope images. This paper proposes a segmentation network to accurately segment the cervix region and acetowhite lesions in a cervigram. This research can lay a foundation for research aiming to classify the cervix malignancy using AI. The method performed with a precision of 0.73870.1541, accuracy of 0.9291, recall of 0.79120.1439, a dice score of 0.74310.1506 and specificity of 0.95890.0131. The results prove that the model is reliable and robust. 2024 IEEE. -
Advanced Fraud Detection Using Machine Learning Techniques in Accounting and Finance Sector
Monetary fraud, which is a deceptive method for getting cash, has turned into a typical issue in organizations and associations as of late. Customary techniques like manual checks and reviews aren't extremely precise, are costly, and consume most of the day. Attempting to get cash by lying. With the ascent of simulated intelligence, approaches based on machine learning have become more well known. can be utilized shrewdly to track down fraud by dissecting an enormous number of monetary exercises information. Thus, this work attempts to give a systematic literature review (SLR) that ganders at the literature in a systematic manner. reviews and sums up the exploration on machine learning (ML)-based fraud recognizing that has proactively been finished. In particular, the review utilized the Kitchenham strategy, which depends on clear systems. It will then, at that point, concentrate and rundowns the significant pieces of the articles and give the outcomes. Considering the Few investigations have been finished to accumulate search systems from well-known electronic information base libraries. 93 pieces were picked, examined, and integrated in light of measures for what to incorporate and what to forget about. As the monetary world gets more confounded, robbery is turning into a more serious issue in the accounting and finance industry. Fraudulent activities cost cash, yet they likewise make it harder for individuals to trust monetary frameworks. To stop this danger, we want further developed ways of tracking down fraud straightaway. This theoretical gives an outline of how machine learning strategies are utilized to further develop fraud detection in accounting and finance. 2024 IEEE. -
Advanced Materials for Next-Generation Energy Storage Devices: A Focus on Efficiency and Cost Reduction
The increasing demand for efficient and cost-effective energy storage systems has pushed extensive research into improved materials for next-generation energy storage devices. This study discusses the crucial significance of material advances in boosting the performance and reducing the costs of storage technologies such as batteries and supercapacitors. Conventional energy storage systems face limits in energy density, charge or discharge rates, and scalability, which impede their broad implementation. Advanced materials, including nanomaterials, solid-state electrolytes, and innovative electrode compounds, offer solutions to these difficulties by enhancing energy efficiency, power output, and overall longevity. Additionally, the use of plentiful and low-cost materials, such as sodium-ion and aluminium-based compounds, presents prospects for significant cost savings. This research analyzes current trends, issues in material manufacturing, and future perspectives for energy storage systems, concentrating on balancing efficiency improvements with cost-effectiveness to enable the rising integration of renewable energy sources. The development of these materials is important to creating sustainable, scalable, and economical energy storage systems for the future. The Authors, published by EDP Sciences. -
Advanced Sentiment Analysis: From Lexicon-Enhanced BERT to Dimensionality Reduction Using NLP
Social media platforms serve as vital connections for communication, generating massive quantities of data that represent an array of perspectives. Efficient sentiment analysis is necessary for understanding public opinion, particularly in domains such as product reviews and socio-political discussion. This paper develops a novel sentiment analysis model that is customized for social media data by integrating machine learning algorithms, language processing techniques with part-of-speech tagging, and dimensionality reduction methods. The model will improve sentiment analysis performance by tackling challenges like noise and data domain variations. To further improve sentiment representation, it includes convolutional neural networks (CNNs), BERT embeddings, N-grams, and sentiment lexicons. The model's effectiveness is determined on a variety of datasets, which enhances sentiment analysis in social media discussion. This paper goes beyond sentiment analysis in code-mixed, multilingual text and highlights the importance of careful data before treatment and an extensive variety of ML algorithms. This study attempts to explain the nuances of sentiment analysis and its use in social media discussions through methodical research. 2024 IEEE. -
Advanced Technological Improvements in Making of Smart Production Using AI and ML
The necessity for adaptation and creativity in the manufacturing sector demonstrates the importance of sustainable manufacturing by the merging of advanced technologies. To encourage sustainability, a global view on the integration of smart manufacturing procedures is important. Artificial intelligence (or AI) has appeared as a crucial factor in achieving environmentally conscious manufacturing, with methods like the use of machine learning (ML) getting popularity. This study carefully studies the scientific papers related to the usage of AI and ML in business. The emergence of Industry 4.0 as a whole has positioned machine learning (ML) and artificial intelligence (AI) as drivers for the smart industry change. The study categorizes material based on release year, writers, scientific field, country, institution, and terms, applying the Web of Biology and SCOPUS databases. Utilize UCINET alongside NVivo 12 software, thereby the analysis covers empirical studies on machine learning (ML) and artificial intelligence (AI) via 1999 until the present, showing their growth before and after the start of Industry 4.0. Notably, the USA displays a substantial addition to this area, with a noticeable surge in desire following the rise of Industry 4.0. 2024 IEEE. -
Advancements in Cyber Security and Information Systems in Healthcare from 2004 to 2022: A Bibliometric Analysis
The main goals of the multifaceted healthcare system were to prevent, identify, and treat illnesses or conditions that affect human health. As the usage of IT in healthcare increased, the complexities in managing the IT infrastructure also increase, emphasizing the need of robust cyber security systems. The study aims to emphasize the advancements made in cyber security and information systems in healthcare, based on bibliometric analysis. 5,487 document's metadata was obtained from Scopus and data was analyzed using Vos Viewer. Ranking of articles was done with average yearly citations of the publications. Bibliometric analysis was performed based on 'bibliographic coupling of countries', 'co-occurrence of all keywords', 'author-based co-authorship', and 'term co-occurrence based on text data'. It was found that United States had the maximum publications (1337). 'Department of Information Systems and Cyber Security, The University of Texas at San Antonio, United States' is the most influential organization with 159 publications. IEEE Access is the most preferred platform for publication related to cyber security and information systems in healthcare (231 publications). 167 publications have received more than 100 citations. Choo K. K.R. is the most influential author with 185 publications. 2023 IEEE. -
Advancements in e-Governance Initiatives: Digitalizing Healthcare in India
In order to improve the quality of service delivery to the public, to encourage interactive communications between government and citizens or government and business, and to address development challenges in any given society, information and electronic governance is the sophisticated fusion of a wide range of information and communication technologies with non-technological measures and resources. Digital technology advancements over the past ten years have made it possible to quickly advance data gathering, analysis, display, and application for bettering health outcomes. Digital health is the study and practice of all facets of using digital technologies to improve ones health, from conception through implementation. Digital health strategies seek to improve the data that is already accessible and encourage its usage in decision-making. Digital patient records that are updated in real-time are known as electronic health records (EHRs). An electronic health record (EHR) is a detailed account of someones general health. Electronic health records (EHRs) make it easier to make better healthcare decisions, track a patients clinical development, and deliver evidence-based care. This concept paper is based on secondary data that was collected from a variety of national and international periodicals, official records, and public and private websites. This paper presents a review of advancements for scaling digital health within Indias overall preparedness for pandemics and the use of contact tracing applications in measuring response efforts to counter the impact of the pandemic. The paper provides information about the government of Indias EHR implementation and initiatives taken toward the establishment of a system of e-governance. The document also covers the advantages of keeping EHR for improved outreach and health care. Further, this paper discusses in depth the effectiveness of using contact tracing applications in enhancing digital health. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023. -
Advancements in Electronic Healthcare: A Bibliometric Analysis
Electronic healthcare has changed the traditional form of medical treatment. The integrated approach of interconnected devices had enhanced the process of record keeping and dissemination, benefitting Doctors, patients, and other stakeholders. This study aims to highlight the research carried out in the field of electronic healthcare from the year 2011 to 2020. Metadata of 821 publications from Scopus database was extracted and analyzed. VOS viewer was used to generate the network diagrams and link strengths. It was found that Harvard Medical School and European Commission were the top publication affiliation and funder, respectively. United Stated dominated with the maximum number of publications till 2017 but was surpassed by publications from India from 2018 onwards. Publications inclined toward Internet of things, network security, retrospective study, and authentication toward the end of this decade indicating the shift in trend for the future. 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Advancements in Medical Imaging: Detecting Kidney Stones in CT Scans using a ELM-I AdaBoost-RT Model
Kidney stones have been more common in recent years, leading many to believe that the condition is common. The condition's strong relationship with other terrible diseases makes it a major threat to public health. The development of instruments and procedures that facilitate the diagnosis and treatment of this ailment has the potential to enhance the effectiveness and efficiency of health care. Preprocessing, feature extraction, level set segmentation, and model training are the four steps that make up this approach. Part of the preprocessing includes eliminating the skeletal skeleton and soft-organs. Level set segmentation is commonly used for object tracking, motion segmentation, and image segmentation. An extremely effective feature extraction method called Gray level co-occurrence matrix (GLCM) is suggested for extracting the necessary characteristics from the segmented image. That ELM-I-AdaBoost-RT was used all during training. This cutting-edge technique achieves an average accuracy of 95.83%, surpassing both ELM and AdaBoost. 2024 IEEE. -
Advancements in Solar-Powered UAV Design Leveraging Machine Learning: A Comprehensive Review
Unmanned Aerial Vehicles (UAVs), commonly known as drones, have seen significant innovations in recent years. Among these innovations, the integration of solar power and machine learning has opened up new horizons for enhancing UAV capabilities. This review article provides a comprehensive overview of the state-of-the-art in solarpowered UAV design and its synergy with machine learning techniques. We delve into the various aspects of solar-powered UAVs, from their design principles and energy harvesting technologies to their applications across different domains, all while emphasizing the pivotal role that machine learning plays in optimizing their performance and expanding their functionality. By examining recent advancements and challenges, this review aims to shed light on the future prospects of this transformative technology. The Authors, published by EDP Sciences, 2024. -
Advancements in Sybil Attack Detection: A Comprehensive Survey of Machine Learning-Based Approaches in Wireless Sensor Networks
Wireless Sensor Networks (WSNs) are used in various healthcare and military surveillance applications. As more sensitive data is transmitted across the network, achieving security becomes critical. Ensuring security is also challenging because most sensors are deployed in remote areas, making them vulnerable to many security attacks. Sybil attacks are one of the most destructive attacks. Security against Sybil attackers can be attained by implementing effective detection techniques to distinguish attackers from genuine nodes. This paper reviews existing machine learning-based approaches for detecting Sybil attacks, and their performance is compared based on different parameters. The Author(s), under exclusive license to Springer Nature Switzerland AG 2024. -
Advances in Crime Identification: A Machine Learning Perspective
Crime profoundly impacts individuals, communities, and families. Technological advancements have provided perpetrators with new opportunities for criminal activities. The primary objective of the police department is to resolve crimes, ensuring justice for the victims. Additionally, preventing such incidents is crucial for creating a safer world. The landscape of criminal justice has undergone a significant shift with the integration of machine learning techniques, unlocking unparalleled potential for accuracy and efficiency. This study thoroughly examines the concept of various applications of machine learning in crime detection, prediction, and prevention. We examine the evolution of these technologies, from early developments to state- of-the-art methodologies, conducting a thorough analysis of their strengths, limitations, and ethical considerations. Moreover, the paper sheds light on crimes discussed in academic circles, serving as a repository for scholars and researchers. This facilitates informed discussions and guides future research endeavours. 2024 IEEE. -
Advancing Collaborative AI Learning Through the Convergence of Blockchain Technology and Federated Learning
Artificial intelligence (AI) has revolutionized multiple sectors through its growth and diversification, notably with the concept of collaborative learning. Among these advancements, federated learning (FL) emerges as a significant decentralized learning approach; however, it is not without its issues. To address the challenges of trust and security in FL, this paper introduces a novel blockchain-based decentralized collaborative learning system and a decentralized asynchronous collaborative learning algorithm for the AI-based industrial Internet environment. We developed a chaincode middleware to bridge blockchain network and AI training for secure, trustworthy and efficient federated learning and presented a refined directed acyclic graph (DAG) consensus mechanism to reduce stale models impact, ensuring efficient learning. Our solutions effectiveness was demonstrated through application on an energy conversion prediction dataset from hydroelectric power generation, validating the practical applicability of our proposed system. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Advancing Credit Card Fraud Detection Through Explainable Machine Learning Methods
The world of finance has experienced a significant shift in the way money flows, due to the advancements in technologies such as online banking, card payments, and QR-based payment systems. These innovative banking payment facilities are offered by ensuring the safety of the transaction and ensuring that only the authorized customer can access and utilize these banking services. Credit card fraud is innovative way to cheat the user of the card. Government all over the word encouraging to the people for the uses of digital money. This research work focuses on analyzing the machine learning database by using a labelled dataset to classify legitimate and fraudulent business transactions with explainable AI. This study is based on decision tree, logistic regression, support vector machine and random forest machine learning techniques. 2024 IEEE. -
Advancing Gold Market Predictions: Integrating Machine Learning and Economic Indicators in the Gold Nexus Predictor (GNP)
This study employs advanced machine learning algorithms to predict gold prices, using a comprehensive dataset from Bloomberg. The Gold Nexus Predictor (GNP), a key innovation, integrates historical data and economic indicators through advanced feature engineering. Methodologies include exploratory data analysis, model training with various algorithms like Linear regression, Random Forest, Ada Boost, SVM, and ARIMA, and evaluation using metrics like MSC, MAPE, and RMSE. The study's philosophical foundation emphasizes rationalism in economic forecasting and ethical model use. This research offers significant insights for investors and policymakers, enhancing understanding and decision-making in the gold market. 2024 IEEE. -
Advancing Image Security Through Deep Learning and Cryptography in Healthcare and Industry
Securing electronic health records (EHRs) in the Internet of Medical Things (IoMT) ecosystem is a key concern in healthcare due to the sector's differed environment. As the evolution of technology continues, ensuring the confidentiality, integrity, and accessibility of EHRs becomes more and more challenging. To enhance the confidentiality of healthcare picture data, this study explores the combined use of deep learning and cryptography methods. Through the utilization of weight analysis for improving encryption strength and the combination of chaotic systems to generate undetectable encryption patterns, it explores how deep neural networks can be modified for use in encryption. It also provides a survey of the present scenario of deep learning-based image detection of anomalies methods in working environments, such as network typologies, supervision levels, and assessment norms. Techniques in cryptography provide an effective means to protect confidential medical picture data while it's being transmitted and stored. Deep learning, on the other hand, has the ability to entirely change cryptography by providing robust encryption, resolution augmentation, and detection capabilities for medical image security. The paper outlines future research approaches to overcome these problems and tackles the opportunities and obstacles in medical image cryptography and industrial picture anomaly detection. Through this work, picture privacy in the healthcare and industrial sectors is advanced, opening the door to enhanced privacy, integrity, and availability of vital image data by overcoming the gap between deep learning and cryptography. 2024 IEEE. -
Advancing Predictive Analytics in E-Learning Platform: The Dominance of Blended Models in Enrollment Forecasts
The rapid expansion of e-learning platforms has revolutionized the landscape of education, particularly highlighting the significance of online courses in contemporary learning environments. This research focuses on Udemy, a prominent online learning platform, and aims to enhance the predictability of course enrollments within its IT & Software category. The study's central purpose is to leverage advanced machine learning techniques to predict course subscriber numbers, a crucial indicator of a course's popularity and success. Employing an extensive dataset from (Kaggle DB)Udemy, encompassing various course attributes such as ratings, reviews, and pricing, the study explores multiple machine learning models. These include Linear Regression, Decision Tree, Random Forest, Gradient Boosting, and K-Nearest Neighbors Regression. A key innovation of this research is the application of ensemble methods, particularly a blended model approach, to integrate predictions from multiple models, thereby enhancing accuracy and reliability. The findings of this study are significant. The ensemble approach, notably the blended model, outperforms individual predictive models in accuracy. Among the single models, Gradient Boosting Regression shows the highest effectiveness in forecasting enrollments. The research highlights the vital role of course characteristics, including ratings and reviews, in determining course popularity. This study contributes to the field of e-learning by introducing a novel, data-driven approach to predict course enrollments. It offers valuable insights for educators, course creators, and platform developers, emphasizing the potential of machine learning in optimizing content strategy and marketing efforts in the digital education domain. The application of ensemble machine learning methods presents a new horizon in educational analytics, paving the way for more nuanced and effective strategies in online education delivery and promotion. 2024 IEEE.