Browse Items (2150 total)
Sort by:
-
AI and Machine Learning Applications in Predicting Energy Market Prices and Trends
The worldwide energy market is intricate and unstable, shaped by several aspects including geopolitical occurrences, supply-demand variations, and regulatory modifications. Precisely forecasting energy prices and trends is essential for stakeholders, such as energy producers, dealers, and policymakers. This study investigates the utilization of artificial intelligence (AI) and machine learning (ML) to improve energy price forecasting models. Conventional forecasting methods frequently fail to account for the dynamic and non-linear characteristics of energy markets; however, AI/ML techniques, including neural networks, decision trees, and reinforcement learning, provide enhanced prediction precision. By including external variables such as meteorological conditions and economic metrics, AI models can produce more accurate and useful insights. Case studies illustrate the effective implementation of AI in energy markets, showcasing its capacity to surpass traditional methods. This article addresses difficulties such as data quality and computing expenses while delineating potential developments in AI-driven energy market forecasts. The Authors, published by EDP Sciences. -
Organizational Preparedness for Navigating Disruption Towards Sustainability: Strategies Analysis
The study explores how design thinking principles can be leveraged to enhance an organization's preparedness for disruptive innovation. To address this challenge, the authors sought to empathize with their clients, recognizing the need for a comprehensive evaluation. A framework guided by five fundamental principles - Scrutiny, Bravery, Resilience, Prosperous and Perseverance - was developed that integrates user-centred design methodologies to evaluate an organization's strengths and weaknesses in the face of disruption. We analysed and interpreted the intricacies of emerging market disruptions, providing organizations with the GroKalp Assessment Tool, an automated tool for self-evaluation and strategic adjustment leading towards a sustainable future. These principles were further broken down into fifteen distinct parameters, each thoughtfully designed to offer organizations a detailed and insightful method for evaluating their responses to the relentless waves of transformative innovation. By utilizing the GroKalp Assessment Tool, organizations can position themselves in one of three categories: Innovators, Adapters, or Resistance Fighters. Design thinking tools are vital in this process, as they encourage creative problem-solving, innovation, and adaptation in an era of rapid technological change. The Authors. -
Transference of Love-type Wave Through Cobalt Ferrite Cofe2O4 Layer Structure, Governed by an Imperfect Interface
An analytical discussion of the wave transmission in a piezomagnetic (Cobalt ferrite) thin plate resting on an elastic substrate is presented in the problem. It is presumed that the geometrys interface is not ideal. The flaw of the considered structure is used to describe by following the linear spring model. The calculative method of the upper material is Direct Sturm-Liouville. Dispersion relations are drived for each of the magnetically open and magnetically short cases. Love-type wave velocity profiles have been depicted on graphs for various influencing factors, such as heterogeneity in the substrate, layer thickness, and interface imperfections. It has been demonstrated that raising these parameters raises the Love waves phase velocity. Furthermore, it is found that compared to substrate heterogeneity, layer thickness has less of an impact on the waves velocity profile. Additionally, it has been shown how the aforementioned cases compare when imperfect parameters are varied. It is discovered that the velocity in the open case is greater than that in the short case. The results have potential applications in the design of piezomagnetic semiconductor devices controlled by electric fields and are of great significance for developing surface acoustic wave (SAW) gyroscopes. 2024 American Institute of Physics Inc.. All rights reserved. -
Analyses of the Power Flow through Distributed Generator based on Unsynchronized Measurements
Based on measurements taken from the main substation and the connections between distributed generators and micro-grids that are not in sync, this study suggests a new way to look at the load flow of distributed generation. The conclusions are based on data from a distribution generatora's Load Flow Analysis that was not in sync. Distributed generation is what this approach is based on. Creating a strong communication system and using measurement data from the past are two ways to make this happen. This objective may be achieved with the use of previously gathered measurements. The time-tested backward-forward sweep method is the method of choice for analyzing power flow using unsynchronized data. This is the preferred approach. The angles of synchronization are likely to be unknowns that must be estimated. On a smart grid system with a large number of distributed generation and microgrids, a range of mathematical computations are conducted to verify the correctness of performance predictions produced by the suggested theory. The classic backward-forward sweep was shown to be the most effective method for analyzing power flow based on data that was not synchronized in many instances. This is the strategy that is presently being recommended. Because the angles of synchronization are presumed to be unknown, a mathematical equation must be devised to determine them. The Authors, published by EDP Sciences, 2024. -
Efficiency Analysis of Modified Sepic Converter for Renewable Energy Applications
A boosting module and a traditional SEPIC (single ended primary inductance converter) are combined to create the suggested circuit. As a result, the converter gains from the SEPIC convertera's many benefits. Also, the converter that is being presented is appropriate for renewable energy sources due to its high voltage gain and continuous input current. In comparison to a traditional SEPIC with a single-controlled switch, it offers a higher voltage gain. The voltage gains of the converter that has been suggested is closely related to that of the converter that was recently developed. This converter was constructed on the foundation of the conventional converter, as well as the conventional DC-to-DC converter. One of the most important characteristics of a projected converter is that it is equipped with a single controlled device and has the capability to increase voltage gain without the utilisation of a coupled inductor structure or transformer. The non-idealities of the semiconductor devices and passive components have been taken into consideration in the analysis of voltage gain in continuous current mode (CCM). The conventional SEPIC converter can be modified by incorporating capacitors and diodes. The experimental results indicate that this converter can amplify the output voltage by approximately 10 times and has an efficiency of around 97%. The Authors, published by EDP Sciences, 2024. -
Fuzzy Logic Based Energy Storage Management for Parallel Hybrid Electric Vehicle
For the parallel hybrid electric vehicle, the various control strategies for energy management are illustrated with the implementation of fuzzy logic. The controller is designed and simulated in two modes for the economy and fuel optimisation. In order to manage the energy in HEV with three separate energy sources - batteries, Fuel cell and a supercapacitor system, - this article intends to create a fuzzy logic controller. By considering a complete system, the operating efficiency of the components need to be optimized. the control strategy implementation will be performed by the forward-facing approach. The fuel economy is optimised by maximising the operating efficiency in this strategy while other strategies does not have this extra aspect. The ability controller for parallel hybrid vehicles is mentioned in this research to enhance fuel economy. Although the earlier installed power controllers optimise operation, they do not fully utilise the capabilities. Hybrid vehicles can be equipped with a variety of power and energy sources such as batteries, internal combustion engines, fuel cell systems, supercapacitor systems or flywheel systems. The Authors, published by EDP Sciences, 2024. -
Energy Storage System Modelling for Hybrid Electric Vehicle
The equivalent circuit model (ECM)-based traditional state-of-charge (SoC) estimate approaches combine all state variables into a single enhanced state vector. However, the stability and accuracy of the estimates are compromised by the correlations between RC voltages and SOC. In this article, the four battery chemistries have been discussed for their state variable characterization i.e. state of charge (SOC). The battery types considered are lead acid, nickel metal hydride, lithium ion. The manufacturera's battery discharge curves are used to determine the model parameters, and a method is also described for doing this. An improved battery model is suggested in this study that can be applied to HEV design and analysis. By incorporating the electrical characteristics of the battery, the model generates precise results. The Authors, published by EDP Sciences, 2024. -
A PV-Powered Single Phase Seven-Level Invertera's Photocurrent and Injected Power
The PV inverter in this study is linked to the grid and its performance analysis is evaluated using a PI controller. It is a single phase multi-level PV inverter. The major objective of this research is to increase efficiency and eliminate harmonics caused by DC link voltage fluctuations created by Maximum Power Point Tracking (MPPT) during foggy situations. PV inverters generate and inject actual power into the main grid. This study uses a transformer-less photovoltaic inverter to cut down on losses, cost, and size. A transformer-less multilayer inverter is described in this paper. There is no high-frequency leakage current since that inverter can distribute both actual and reactive electricity. MATLAB/Simulink software was used to analyze and assess the effects of various PV-based seven-level techniques on the devicea's Maximum Power Point Tracking (MPPT) performance. The Authors, published by EDP Sciences, 2024. -
Modernizing Electrical Grids with TCR-Based Flexible AC Transmission Systems
Modernizing electrical grids is imperative to meet the growing demand for reliable, efficient, and sustainable energy. Thyristor-Controlled Reactors (TCRs) are integral components of modern Flexible AC Transmission Systems (FACTS). These systems offer a robust solution for enhancing grid stability, improving power quality, and optimizing transmission efficiency, ensuring that electric grids can support future energy needs. TCR-based FACTS are a collection of technologies designed to enhance the controllability, stability, and power transfer capability of AC electrical grid systems. In this paper, we will discuss the role of TCRs in modernizing AC transmission systems and their role in addressing grid challenges and improving performance, highlighting their critical role in future grid infrastructure. To discuss the future prospects and developments in TCR technology, with ongoing advancements and research efforts paving the way for more efficient, reliable, and flexible grid management solutions. The Authors, published by EDP Sciences, 2024. -
Life Cycle Assessment of Battery Energy Storage Technologies for Vehicular Applications
The necessity of sustainable energy sources and storage technologies is emerging due to growing energy demands. Thus, it encourages the need to perform sustainability analysis in terms of energy efficiency. For battery technologies, energy production and recycling holds a significance. In this study, the direct and indirect requirements of various battery technologies including production to transportation. The five battery technologies taken into account for the analysis are Lithium ion, Nickel Metal Hydride, Lead acid, Valve Regulated lead Acid, and Nickel Cadmium. The characteristics analyzed here are cycle life, energy density and energy efficiency. The study also covers the life cycle assessment in an structured way from raw to evaluation of materials, energy flow, installation, usage to end of life. The Authors, published by EDP Sciences, 2024. -
Multilayer classification based Alzheimer's disease detection
Hippocampus, a small brain region plays a role in the initiation of the neurodegenerative pathways that leadto Alzheimer's. Humans with MCI are probable to develop Alzheimer's disorder. Hippocampal volume has been proven to indicate which patients with MCI will later develop Alzheimer's. Brain degeneration in MCI progresses over time and varies from person - to - person, making early detection difficult. Magnetic resonance imaging is a tool in diagnosing clinically suspected Alzheimer's disease. Information about the historical development of structural changes as the disease progresses from preclinical to overt stages is shaping understanding of the disease, and also guides diagnosis and treatment decisions in the future. In this study, we developed a new multilayer classification method to identify Alzheimer's disease from brain MRI using contour model and multilayer classifier. This method is evaluated on 436 samples of OASIS dataset and achieved accuracy of method is 93.75 %. 2024 Author(s). -
Prediction of heart disease using XGB classifier
Predicting heart disease in advance could be a significant medical breakthrough because it is widespread. A reliable strategy that can be utilized to do this is machine learning. Decision tree classifiers, random forests, and multilayer perceptron have all been used in studies to predict heart disease. However, several of these techniques could be improved, like poor precision. In our research, we have taken the South African heart Disease dataset and implemented a few models, which include Support Vector Machine (SVM), K Neighbors (KNN), Artificial neural network and XG Boost Classifier. We have used different methods for measuring performance. SVM with 69.0 accuracy, KNN with 86.0 accuracy, and ANN with 80.0 accuracy. However, the XGB classifier has shown some promising results in predicting heart disease with an accuracy of 90%. Further, when the hyperparameters were tuned using the random search method, the accuracy increased to 92.8%. The benefit of this work is that it uses machine-learning approaches to enhance the performance of coronary heart disease prediction. 2024 Author(s). -
Classification of fibroid using novel fully connected CNN with back propagation classifier (NFCCNNBP)
In this phase, we utilize features extracted from a prior stage to classify uterine fibroids. We employ a predefined dataset with feature values as our training set for a novel classifier called the "Novel Fully Connected CNN with Back Propagation Classifier."This classifier learns from the training set. We then put this method to the test with new images not included in the training dataset. Its primary objective is to assess the extent of infection across the entire uterine surface. Through the adoption of a Convolutional Neural Network (CNN) combined with Back Propagation (BP), we have achieved an impressive accuracy rate of 98.3% for predictions. When we compare this accuracy to existing classifiers like Fuzzy Logic, Naive Bayes, and SVM, our proposed model, NFCCNNBP, outperforms them significantly. 2024 Author(s). -
Improved diabetes disease prediction IWFO model using machine learning algorithms
Diabetic disease is the mostly affected and massive disease on a global level. Diagnosing the diabetic earlier will help the medicalist to give the improved and latest clinical treatment. The healthcare specialist unit uses many machine learning techniques, methodologies and tools for decision making in diabetic field. The machine learning techniques are utilized for the prediction of the diabetic diseases in the initial level. To eliminate such issues, optimized detection techniques are proposed. First of all, the training samples are increased using the sliding window protocol. Further, class imbalanced training data classes are balanced and resolved using the adaptive and gradient booster technique. Further, the diabetic feature selection process is improved by the Intensity Weighted Firefly Optimization firefly techniques (IWFO), in which irrelevant features are reduced based on the correlation between the features that deducts the unwanted features involved in the diabetic disease process. Then the feature transformation problem is faced by the PCA technique, which manages the several types of features. Finally, the improved and optimal hybrid random forest is applied into the normal and diabetes classes respectively. The proposed system predicts the diabetic disease efficiently and maximizes its precision of the prediction system. The present paper is compared with different classifiers to determine the efficiency of the work. Overall, the initiated system improved the present studies accuracy level. 2024 Author(s). -
Mitigating post-harvest losses through IoT-based machine learning algorithms in smart farming
This research paper explores the transformative potential of Internet of Things (IoT) technology in mitigating the longstanding issue of post-harvest losses within the agriculture sector. These losses, which encompass both quantitative and qualitative deterioration of food commodities from harvest to consumption, have posed persistent challenges, resulting in economic losses and food wastage. By delving into the current landscape of post-harvest losses and the application of IoT technology, the paper offers valuable insights into how IoT can be harnessed to reduce these losses effectively. It not only highlights the benefits and existing IoT solutions but also addresses the inherent challenges, providing recommendations for their resolution. Moreover, the research introduces a machine learning-based model, specifically Random Forest ML, to identify and prevent losses in tandem with IoT devices, empowering farmers with timely alert messages for informed decision-making, thus fostering a more sustainable and efficient agricultural ecosystem. 2024 Author(s). -
Detection of colorectal cancer using dilated convolutional network via Raman spectra
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Early detection plays a crucial role in improving patient outcomes and reducing mortality rates. In recent years, Raman spectroscopy has emerged as a promising tool for non-invasive cancer detection. This research introduces a new method for identifying colorectal cancer (CRC). It combines Raman spectroscopy, a technique that analyzes the molecular fingerprint of tissues, with a powerful deep learning algorithm called a dilated convolutional network (DCN). By combining these two tools, the researchers aim to improve the accuracy and reliability of diagnosing CRC. Intraoperative diagnostics and pathology need to distinguish tumors from normal tissues. This proposal explores Raman spectroscopy as a new surgical tool for identifying colorectal cancer during surgery. Raman spectroscopy offers a way to directly analyze the makeup of tissue, potentially revealing the presence of cancer. However, surrounding tissue can create background interference, making it difficult to detect the key signal. The authors suggest that high-quality data from Raman spectroscopy combined with advanced deep learning algorithms could be a solution to overcome this challenge. We collect a large Raman spectroscopy dataset from 26 colorectal cancer patients with Raman shifts from 385 to 1545 cm-1. Second, dilated convolutional networks classify colorectal cancer tumour tissues. Following the deep learning model's output, we proceed by visualizing and analyzing the identified fingerprint peaks. Our deep learning algorithm exceeds previous colorectal cancer detection methods with 99.1% accuracy. Colorectal cancer detection using Raman spectra is unique. Our ensemble DCN could classify colorectal tumour and normal tissue Raman spectra. 2024 Author(s). -
AI-enabled risk identification and traffic prediction in vehicular Ad hoc Networks
The proposed research presents a two-fold approach for advancing Vehicular Ad-Hoc Networks (VANETs). Firstly, it introduces a Residual Convolutional Neural Network (RCNN) architecture to extract real-time traffic data features, enabling accurate traffic flow prediction and hazard identification. The RCNN model, trained and tested on real- world data, outperforms existing models in both accuracy and efficiency, promising improved road safety and traffic management within VANETs. Secondly, the study introduces a Genetic Algorithm-enhanced Convolutional Neural Network (GACNN) routing algorithm, challenging traditional VANET routing methods with metaheuristic techniques. Experiments in various VANET network scenarios confirm GACNN's superior performance over existing routing protocols, marking a significant step toward more efficient and adaptive VANET traffic management. 2024 Author(s). -
Efficient multipath model based cross layer routing techniques for Gauss Markov movable node management in MANET
This research unveils an innovative cross-layer routing methodology tailored for managing Gauss Markov mobile nodes within MANETs. The primary focus deceits cutting-edge inspiring network performance through the efficient utilization of resources and the steadfast maintenance of mobile node connectivity. Central to this model is the implementation of joint optimization, which takes into account both node mobility patterns and resource allocation dynamics to pinpoint the most favorable data transmission pathway. Incorporating multipath routing, the methodology enables the simultaneous exploration of multiple transmission routes, thereby fortifying the network against potential link failures and disruptions. By embracing a cross-layer approach, it seamlessly integrates functionalities across network, and steering layers, thereby amplifying the complete system efficacy. Comprehensive simulations conducted reveal the superior performance of this approach compared to existing techniques, particularly in terms of network throughput, latency reduction, and augmentation of packet delivery ratios. Such findings underscore the immense potential of this methodology across a spectrum of MANET applications that demand streamlined and dependable data transmission mechanisms. 2024 Author(s). -
Farm field security system using CNN and GSM module
Loss of crops and the destruction of livestock have been a major problem for many people in rural areas due to grass-fed animals whose food is derived from plants. According to research 32% are herbivores [1]. Reduced emissions from deforestation as well as deforestation are the main reason for wildlife moving towards urban areas. It results in wildlife infestation and human and animal conflicts. Therefore, compensating for the rapid loss of crops and the slaughter of livestock requires animal shelter and isolation in order to restrict the entry of animals into farm fields. The paper describes an effective and reliable way to identify and repel wildlife from farmland and to send real-time data to the farmer indicating animal attack on fields. An image of an animal will be obtained by convolution neural networks using intensive reading algorithms that provide a message to the farmer using the GSM module. It uses a user alert system and the animal scaring method. The test results show that the proposed algorithm has high visual accuracy. The detection level of the test set is achievable and the detection result is reliable. 2024 Author(s). -
A study on effect of branding on customer buying behaviour with reference to Vellore
We set out to discover how consumers really feel about different branded items by conducting this study. This research aims to examine what variables impact consumers when they buy a product. There are a lot of aspects that affect a product's brand value these days, but consumers are especially sensitive to the product's reputation when making purchases. Another important factor in how people perceive a brand is advertisements. The study was conducted with a sample size of 50 and was confined to the Chennai area. All of the tests performed here made use of SPSS statistical software, and the data used is primary data. 2024 AIP Publishing LLC.