Browse Items (2150 total)
Sort by:
-
Federated Learning and Blockchain: A Cross-Domain Convergence
Gaining significant attention within decentralized contexts, Federated Learning (FL) has been positioned as a highly desirable method for machine learning. By enabling multiple entities to train a shared model cooperatively, data privacy and security are preserved by Federated Learning. Harnessing inherent transparency and accountability of blockchain technology to trace and authenticate updates effectively in federated learning has transpired as an up-and-coming avenue to tackle data challenges related to confidentiality, protection, and reliability. This study examines the viability of federated learning and blockchain integration across multiple dimensions. The technological components of this integration., including incentive systems, consensus mechanisms, data validation, and smart contracts, are delved into. In the study, a novel proposed model for federated learning integrated with blockchain is designed and implemented. It is observed that the mean cypher size is 100 bytes for varying values of gradients. The average throughput recorded is 1.7 bytes per second, while the mean accuracy is 87.1% for 50 epochs. 2023 IEEE. -
An Innovative Method for Election Prediction using Hybrid A-BiCNN-RNN Approach
Sentiment, volumetric, and social network analyses, as well as other methods, are examined for their ability to predict key outcomes using data collected from social media. Different points of view are essential for making significant discoveries. Social media have been used by individuals all over the world to communicate and share ideas for decades. Sentiment analysis, often known as opinion mining, is a technique used to glean insights about how the public feels and thinks. By gauging how people feel about a candidate on social media, they can utilize sentiment analysis to predict who will win an upcoming election. There are three main steps in the proposed approach, and they are preprocessing, feature extraction, and model training. Negation handling often requires preprocessing. Natural Language Processing makes use of feature extraction. Following the feature selection process, the models are trained using BiCNN-RNN. The proposed method is superiorto the widely usedBiCNN and RNN methods. 2023 IEEE. -
Automated Leukaemia Prediction and Classification Using Deep Learning Techniques
Leukemia is typically diagnosed based on an abnormal blood count, frequently an elevated White Blood Cell (WBC) count. The diagnosis is established through bone marrow, replaced by neoplastic cells. Acute Lymphoblastic Leukemia (ALL) is a type of leukaemia that affects the blood and bone marrow. Leukaemia primarily affects children and adults around the world. Early leukaemia detection is critical for appropriately treating patients, especially children. This research aims to present a diagnostic method that uses computational intelligence and image processing algorithms to identify blast cells from ALL images. The medical image is prepared initially using the preprocessing and segmentation technique for efficient classification. In this research, the type is accomplished using Bidirectional Associative Memory Neural Networks (BAMNN), where the accuracy is 96.87%, the highest classification rate and outperforms the existing technique. 2023 IEEE. -
An Empirical Examination of the Factors of Big Data Analytics Implementation in Supply Chain Management and Logistics
Numerous companies have effectively exploited Big Data Analytics (BDA) potential to enhance their effectiveness in the Big Data period. Given that big data application in logistics and supply chain management (SCM) is nevertheless in its early stages, assessments of BDA could differ from various viewpoints, producing certain difficulties in comprehending the significance and potential of big data. Based on past research on BDA and SCM, this work examines the factors that influence organizations' willingness to implement BDA in their everyday activities. This research divides potential elements into 4 groups: technical, firm, ecological, and supply chain issues. A framework consisting of direct factors like technical, firm, and mediators was presented based on the technology diffusion hypothesis. The experimental findings demonstrated that anticipated advantages and high-level management assistance might have a considerable impact on intended adoption. Furthermore, ecological variables like competitive adoption, administration legislation, and supply chain connection can greatly alter the direct connections between influencing causes and intended adoption. 2023 IEEE. -
Election Forecasting with Machine Learning and Sentiment Analysis: Karnataka 2023
Data science is rapidly transforming the political sphere, enabling more informed and data- driven electoral processes. The ensemble machine model which is made up of Random Forest Classifier, Gradient Boosting Classifier, and Voting Classifier, introduced in this paper makes use of machine learning methods and sentiment analysis to correctly forecast the results of the Karnataka state elections in 2023. Election features such as winning party, runner- up party, district name, winning margin, and voting turnout are used to evaluate the effectiveness of different machine learning paradigms. Similarly, it also makes use of sentiment analysis through party tweet and public reactions for further breaking down reliance upon past elections data alone. This study demonstrates that using both past historical records and current public opinion yields precise predictions about how electable leaders are. This reduces reliance on a historical dataset. The experimented results shows that, how machine learning and sentiment analysis can predict election results and provide useful data for election decision making. We compared various machine learning models in this study, including logistic regression, Grid SearchCV, XGBoost, Gradient Boosting Classifier, and ensemble model. With an accuracy of 85%, we demonstrated that our ensemble model outperformed machine models such as XGBoost and Gradient Boosting Classifier. It also offers a novel method for predictive analysis. 2023 IEEE. -
Leveraging the Synergy of Edge Computing and IoT in Supply Chain Management
This article investigates the possibilities of integrating edge computing and IoT in supply chain management, as well as the adoption of disruptive technologies such as blockchain integration, digital twins, robotics, and autonomous systems. Operational efficiency can be considerably enhanced by establishing a linked and intelligent supply chain ecosystem. The benefits of this technology include increased openness, efficiency, and resilience in supply chain processes. Among the benefits include real-time product tracking, environmental sustainability, enhanced production, and cost savings. The use of blockchain technology in a three-tiered Supply Chain Network (SCN) shows promise in terms of boosting supply chain transparency and security. The SCOR model is also discussed as a comprehensive framework for optimising supply chain processes. However, concerns such as data privacy, security, and employment displacement must be solved before firms can fully reap the benefits of new technologies. Overall, embracing these innovations has the potential to revolutionise supply chain management and create trust among stakeholders. 2023 IEEE. -
A Gated Recurrent Unit Based Continual Normalization Model for Arrythmia Classification Using ECG Signals
In this world, around 31% of the deaths are commonly caused because of cardiovascular diseases. Around 80% of sudden deaths occur due to cardiac arrhythmias and heart diseases. The mortality rate has increased for cardiac disease and therefore early heart disease detection is significant to preclude patients from dying. At the initial phase, the heart disease is detected by analyzing abnormal heartbeats. The existing models failed to select the features before performing the extraction of features. The developed model examined MIT-BIB database to surpass the overfitting issue. Therefore, in the present research work, the Gated Recurrent Unit (GRU) based Continual Normalization (CN) classifier is used to speed up the training to a higher learning rate to enable simpler learning for the standard deviation of the neurons' output. The extracted features were used to classify Electrocardiogram (ECG) signals into 5 important classes named as N, S, V, F & Q which denote the kinds of arrhythmia. The findings revealed that the proposed GRU based Continual Normalization technique obtained an accuracy of 99.41% which is better when compared with the existing researches. 2023 IEEE. -
Loan Default Prediction Using Machine Learning Techniques and Deep Learning ANN Model
Loan default prediction is a critical task in the financial sector, aimed at assessing the creditworthiness of borrowers and minimizing potential losses for lending institutions. Online loans continue to reach the public spotlight as Internet technology develops, and this trend is expected to continue in the foreseeable future. In this paper, the authors proposed loan default loan prediction system based on ML and DL models. This work makes use of the information on loan defaults provided by Lending Club. The dataset is preprocessed by applying various data preprocessing techniques and preprocessed dataset is generated. Later, we proposed four ML algorithms decision tree, random forest, logistic regression, K-NN and Feed forward neural network. The experimental results shown that proposed feed forward neural network achieved good accuracy for loan default prediction with an accuracy of 99%. 2023 IEEE. -
Enhancing Retailer Auctions and Analyzing the Impact of Coupon Offers on Customer Engagement and Sales Through Machine Learning
Systems that use coupons have been used extensively to boost customer interaction on platforms having a digital component. We use causal machine learning techniques to determine the effect of an advertising intervention, especially a discount offer, on the bids of a shop. Discount shopping coupons are a popular tactic for increasing sales. The largest challenge for dealers is accurately anticipating the wants of their customers, and here is where they always struggle. Machine learning algorithms have been utilized by researchers to address a variety of problems. Selecting the right coupon is a challenging undertaking because every customer's behavior differs depending on the deal. Due to categorical data adjustments being necessary due to the majority of characteristics having missing values, the situation is made more difficult. The dataset is used to classify the dataset, and machine learning algorithms like logistic regression, random forest and SVM model, decision tree and naive bayes models are used to determine the correctness of the classification. 2023 IEEE. -
An Efficient Quantum Transfer Learning for Cancer Prediction Using Tumour Markers: New Era of Computer in Medical
Ovarian cancer prediction models or algorithms estimate a person's risk of getting the disease based on different variables, such as their medical history, genetics, and biomarkers. Early identification and intervention will enhance patient successive diagnosis outcomes. Tumour markers are chemicals frequently detected in higher concentrations than usual in cancer patient's blood, urine, or tissues. They could be certain chemicals or proteins linked to the presence of tumours or cancer kinds. Tumour markers are employed for diagnosis, prognosis, and treatment response monitoring. Applying information or models from one quantum job to enhance the performance of another requires quantum transfer learning. Transferring knowledge from one domain to another seeks to increase learning effectiveness in novel quantum contexts. The main goal of efficient Quantum Transfer Learning (QTL) is to minimize the resources (computer power, data, or time) necessary to transfer between tasks successfully. In this research work, QTL is used to predict Ovarian Cancer (OC) with the assistance of biomarkers. The Quantum Transfer Learning- Ovarian Cancer (QTL-OC) achieves 93.78% accuracy and outperforms the existing techniques. 2023 IEEE. -
An Efficient Wireless Sensor Network based Intrusion Detection System
Wireless Sensor Networks (WSNs) are widely used in diverse applications due to their cost-effectiveness and versatility. However, they face substantial difficulties because of their innate resource constraints and susceptibility to security attacks. A possible method to improve the security of WSNs is clustering-based intrusion detection and responding mechanisms. An in-depth analysis of the clustering-based intrusion detection and response method for WSNs is presented in this study. The suggested method efficiently uses data mining and machine learning techniques to identify unusual behaviour and probable intrusions. The system effectively analyses data inside clusters by grouping Sensor Nodes (SN) into clusters, allowing it to differentiate between legitimate patterns and insecure activity. The network may respond promptly to identified breaches and react to the responsive mechanism, which reduces their impact and protects network integrity. The proposed Mathematically Modified Gene Populated Spectral Clustering Based Intrusion Detection System and Responsive Mechanism (MMMMGPSC-IDS-RM) is compared with existing state-of-art techniques, and MMMMGPSC-IDS-RM outperforms with the highest detection rate of 96%. 2023 IEEE. -
Sustainable Climatic Metrics Determination with Ensemble Predictive Analytics
Sustainable features are dependent on vital climatic elements that has a prominent impact on the retention of sustainability provided its metrics are in desired domain. Regression analysis and ensemble learning models are some of the predictive analytics methods which were used to detect the association of every feature on sustainable criteria. Weather samples from Delhi during 1970-2020 is used in the research which considers features like humidity, pollutant level, temperature etc which are gathered from several authenticated sites like pollution management unit of India. After analyzing several elements affecting weather endurability, it is noticed that pollutant level and temperature exhibit the highest significance recording 30% and 44% respectively. Also the R-square metric of 86% and 82% was observed with implementation of analytics models. The major conclusion recorded that random forest outperformed regression model and it established the importance of predictive analytics in predicting sustainability results. The research validated the relevance of climatic tracking for regulating sustainability. 2023 IEEE. -
Machine Learning for Smart School Selection and Admissions
Choosing the best school for their kid is an important choice that parents must make, and it is sometimes stressful and unsure. Machine learning is a potential way to improve and streamline the admissions and school selection process in the current digital era. This study investigates the use of machine learning methods in the context of selective admissions and smart school selection. We propose a user-friendly, web-based tool in the early phases of our study that helps parents and guardians locate the ideal school for their kid by using machine learning algorithms. To provide individualized school recommendations, the platform gathers and analyses a range of data, such as extracurricular activity participation, academic achievement, regional preferences, and school reputation. This makes choosing a school easier and supports parents in making wise choices. This paper's second section explores the technical details of the machine learning techniques used, going into the nuances of feature selection, data preparation, and model assessment. We also draw attention to the difficulties and moral issues - such as maintaining impartiality and avoiding bias - that come with using machine learning to school selection. 2023 IEEE. -
TSM: A Cloud Computing Task Scheduling Model
Cloud offers online-based runtime computing services through virtualized resources, ensuring scalability and efficient resource utilization on demand. Resource allocation in the dynamic cloud environment poses challenges for providers due to fluctuating user demand and resource availability. Cloud service providers must dynamically and economically allocate substantial resources among dispersed users worldwide. Users, in turn, expect reliable and cost-effective computing services, requiring the establishment of Service Level Agreements (SLAs). Resource distribution uncertainty arises in view of the dynamicity of the cloud, where VMs, memory capacity requirement, processing power, and networking are allocated to user applications using virtualization technology. Resource allocation strategies must address issues such as insufficient provisioning, scarcity, competition, resources fragmentation. CPU scheduler plays a crucial role in task completion, by selecting job from queue considering specific requirements. The Task Scheduling Model (TSM) algorithm improves scheduling by considering expected execution time, standard deviation, and resource completion time, aiming to address resource imbalances and task waiting times. The research discusses previous work, presents experimental findings, describes the experimental setup and results, and concludes with future research directions. 2023 IEEE. -
A Novel Energy-Efficient Hybrid Optimization Algorithm for Load Balancing in Cloud Computing
In the field of Cloud Computing (CC), load balancing is a method applied to distribute workloads and computing resources appropriately. It enables organizations to effectively manage the needs of their applications or workloads by spreading resources across numerous PCs, networks, or servers. This research paper offers a unique load balancing method named FFBSO, which combines Firefly algorithm (FF) which reduces the search space and Bird Swarm Optimization (BSO). BSO takes inspiration from the collective behavior of birds, exhibiting tasks as birds and VMs as destination food patches. In the cloud environment, tasks are regarded as autonomous and non-preemptive. On the other hand, the BSO algorithm maps tasks onto suitable VMs by identifying the possible best positions. Simulation findings reveal that the FFBSO algorithm beat other approaches, obtaining the lowest average reaction time of 13ms, maximum resource usage of 99%, all while attaining a makespan of 35s. 2023 IEEE. -
An Efficient Approach for Obstacle Avoidance and Navigation in Robots
Reinforcement learning has emerged as a prominent technique for enhancing robot obstacle avoidance capabilities in recent years. This research provides a comprehensive overview of reinforcement learning methods, focusing on Bayesian, static, dynamic policy, Deep Q-Learning (DQN) and extended dynamic policy algorithms. In the context of robot obstacle avoidance, these algorithms enable an agent to interact with its physical environment, learns effective operating strategies, and optimize actions to maximize a reward signal. The environment typically consists of a physical space that the robot must navigate without encountering obstacles. The reward signal serves as an objective measure of the robot's performance towards accomplishing specific goals, such as reaching designated positions or completing tasks. Furthermore, successful obstacle avoidance strategies acquired in simulation environments can be seamlessly transferred to real-world scenarios. The promising results achieved thus far indicate the potential of reinforcement learning as a powerful tool for enhancing robot obstacle avoidance. This research concludes with insights into the future prospects of reward learning, high-lighting its ongoing importance in the development of intelligent robotics systems. The proposed algorithm DQN outperforms well among all the other algorithms with an accuracy of 81%, Through this research, we aim to provide valuable insights and directions for further advancements in the field of robot obstacle avoidance using reinforcement learning techniques. 2023 IEEE. -
5G Technology Empowering Wireless Technology
Wireless Communication is the means of transferring data from one point to another without the use of any wired means. With reference to wireless communication, wireless sensor Networks (WSN) have also developed in recent times. It can be referred as an infrastructure-less system of wireless devices which can gather and exchange information with the help of a wireless link. The information which is gathered is sent respectively to the base stations and sinks for further developments. Recently, the 5G generation network, the latest Wireless Communication Network operates at a higher frequency range than its predecessor. In this paper, a detailed analysis on the 5G generation cellular network, which is expected to be a key instrument of wireless technologies in the near future is outlined. Also a comparative analysis of different kinds of networks in context to wireless scenario is discussed. It was found that 5G provides the best outcome in terms of high speed and network spectrum bandwidth. 2023 IEEE. -
Augmented Reality Based Medical Education
The education in medical field requires both theoretical knowledge and practical knowledge. It is important for medical student to acquire effective practical skills. Since the students apply the theoretical knowledge in practical manner in human body. Human body is very volatile, gentle, and difficult system. If a student apply trial in the humans for practical knowledge, there may cause the human error which leads to death of the person. To avoid this, the proposed system 'Augmented Reality Based Medical Education' is useful. Augmented reality makes the learning process more interactive and interesting. It can reproduce specific circumstances that assist students to rehearse with virtual objects that look like the human body and organ. Like traditional learning, it does not require real patients. By this way, augmented reality prevents risk of human life. Medical education with augmented reality extensively provides real time experiences. It has low risks and also affordable. When any human error occurs, there is no human loss. So the human life can be prevented by the system. The proposed system is developed using tools like Unity which is the complete platform for the developing our application, Vuforia-developer portal, a tool to create image target and Blender which is used to create 3D objects. 2023 IEEE. -
Prediction of Rainfall Using Seasonal Auto Regressive Integrated Moving Average and Transductive Long Short-Term Model
One of the most crucial parts of the practical application in recent years has been the analysis of time series data for forecasting. Because of the extreme climate variations, it is now harder than ever to estimate rainfall accurately. It is possible to forecast rainfall using a number of time series models that uncover hidden patterns in past meteorological data. Choosing the right Time Series Analysis Models for predicting is a challenging task. This study suggests using a Seasonal Auto Regressive Integrated Moving Average (SARIMA) to forecast values that are similar to historical values that exhibit seasonal patterns. Twelve years of historical weather data for the city of Lahore (from 2005 to 2017) and Blora Regency are taken into account for the prediction. The dataset underwent pre-processing operations like cleaning and normalisation before to the classification procedure. For classification, Transductive Long Short-Term Model (TLSTM) is employed which has learned the dependency values where the memory blocks are recurring and capable of learning long-term dependencies on this model. Further, TLSTM's goal is to increase accuracy close to the test point, where test points are selected as a validation group. The performance of the models has been assessed based on accuracy (99%), precision (98%), recall (96%) and fl-score (98%). Proposed SARIMA model showed optimistic results when compared to existing models. 2023 IEEE. -
AI Sovereignty in Autonomous Driving: Exploring Needs and Possibilities for Overcoming Challenges
With the development of artificial intelligence, advancements in navigation systems for self-driving cars have become a new direction over the last decade. The inclusion of AI-driven actuators in autonomous vehicles has broken the barriers in terms of real-time high-quality data processing resources, accuracy of decisive actions and generalization of environment-action pairs. Upgradation from a car with no automation to a car with minimal to no human intervention has become a boon of AI, as it resolves most of the transportation problems on roads, including human error, lack of visibility in adverse weather conditions, tiredness of drivers in long journeys, etc. This study focuses on AI-enabled tasks, including object detection and identification, lane detection, notification for lane departure and reinforcement learning from the operational environment. However, there exist serious issues in deploying AI-empowered modules in autonomous cars, as the consumer rights to explain, trustworthiness, and reliability of the machine have not yet met the requirements. Our work explores the needs and prospects of AI sovereignty in autonomous driving by overcoming the aforementioned issues so that the healthy progress of technological society can take care of the future world. 2023 IEEE.