Browse Items (2150 total)
Sort by:
-
Dictionary-Based BPT Compression with Trimodal Encryption for Efficient Fiber-Optic Data Management and Security
Fiber-optic transmission systems are capable of carrying tens of terabits per second of traffic and thereby form the core infrastructure for all Internet-based services and applications. While fiber-optic communication provides rapid data transfer, it faces the challenge of managing the substantial data volumes generated, stored, or transmitted. In the realm of fiber-optic communication, data interception is straightforward, necessitating robust security measures. One effective solution is compression-based encryption, which combines security with data compression benefits. Encryption safeguards data by transforming it into ciphertext during transmission, rendering it unreadable to attackers without knowledge of the encryption method. Data compression enhances bandwidth efficiency, enabling the efficient transmission of large data volumes using limited bandwidth. In the event of data compromise, attackers must grasp both compression and encryption methods to decipher the information, adding an additional layer of security. In this paper, an encoding technique named the Bounded Probability-Based Textual Data Compression (BPT) algorithm is introduced with trimodal encryption method for securing the short textual data while transferring from source to the destination. The BPT algorithm creates a codeword using a dictionary that assigns binary codes according to character occurrence probabilities in the input data. To decompress, the coding table must be transmitted alongside the compressed data. The trimodal encryption is used as a second tier for securing the data that was compressed using BPT algorithm. The trimodal encryption employs three encryption methods, and data is encrypted using one of these methods during transmission to the destination. The BPT algorithms performance is evaluated using benchmark textual datasets from the Calgary Corpus and the Canterbury Corpus. The experimental results demonstrate the unique characteristics of the BPT algorithm, including compression ratio (CR), compression factor (CF), bits per character (BPC), and space savings. Additionally, the Trimodal encryption algorithm (TME) method is evaluated using end-to-end delay analysis, packet loss analysis, and packet delivery ratio assessment. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
The Effect of Sustainable Development Goals (SDG's) on the Financial Performance of Listed Companies
The corporate sector is emerging as a significant stakeholder in this transformative journey asnations throughout the world work to align their policies and practices with the SDGs. Theincorporation of SDGs into financial planning has made tremendous headway in India, acountry with a rapidly expanding economy and a diverse corporate landscape. The 50companies that made up the Nifty 50 at the end of 2023 are examined in this study. Twosources provided the financial data on these companies: the Bloomberg platform andSecurities and Exchange Commission (SEC) reports. Only thirty of the NIFTY 50 companieswere putting the SDGs into practise on the previously indicated date. There are fourconfigurations in the successful FP model that describe how the SDGs and FP relate to oneanother. The lack of SDGs, when combined with other variables, explains a high ROE in twoof these four configurations. The examination of the data concludes that businesses who havetraditionally attained higher FP (i.e., higher ROE) have not included SDGs into their strategy.Furthermore, the inclusion of SDGs in strategies results in a lower return on equity (ROE).The paper however takes into consideration only size and risk as the main variables tocalculate the ROE. We recommend the future researchers to consider the other financialvariables while doing the analysis to get a more insightful analysis on the effect of SDGs. Grenze Scientific Society, 2024. -
Empowering Kirana Shops through Digital Ecosystem and Physical Infrastructure for Unprecedented Efficiency and Elevated Customer Experience
In today's evolving retail environment, it is important to ensure the sustenance of unorganised small retailers. Efforts should be made to make these retailers innovative and competitive. This study focuses on the need to upgrade the digital and physical infrastructure of Kiranas. Initially, researchers examined store physical layouts. Primary data analysis from Indian consumers via online surveys confirms the significance of store design. The layout directly influences impulse purchases. Unlike in modern retail stores where consumers often shop with family and friends, prompting unplanned purchases due to product visibility and tactile engagement, Kirana shops can capitalise on these behaviours. The study proposes an Artificial Intelligence (AI) model for Kirana shops, illustrating its potential value. AI-driven data analysis offers invaluable insights into operational dynamics, leveraging advanced algorithms to process vast datasets encompassing sales, inventory, and customer interactions. This approach enables uncovering intricate patterns, accurate demand forecasting, and optimising inventory levels, enhancing operational efficiency. Additionally, AI-driven sentiment analysis of customer feedback facilitates personalised marketing strategies, improving customer satisfaction. By enhancing infrastructure and embracing AI-based data analysis, Kirana shops can stay competitive, adapt to market changes, and ensure sustained growth in the evolving retail landscape. 2024 IEEE. -
Exploring the Balance Between Automated Decision-Making and Human Judgment in Managerial Contexts
The study delves into the dynamic and evolving discussion surrounding the balance between automated and human judgment within the realm of managerial decision-making. The primary objective of this research is to gain insight into how AI is evolving to mitigate ethical biases that are inherent in managerial decision-making. To accomplish this goal, the study adopts a theoretical approach, supported by qualitative analysis through an extensive review of existing literature. By systematically investigating AI techniques for managerial decision-making, the research contributes to a broader understanding of how AI is progressing to promote ethically sound managerial decisions in future. The findings from this study are pertinent to business leaders, policymakers, and researchers, offering guidance as they navigate the intricate relationship between automation and human judgment in todays managerial landscape. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Online Education and English Language Learning Among Tribal Students of Kerala
Kerala, a South Indian state has tribal population in all her districts. About 1.5% of the total population of the state constitute tribal population. They depend upon natural environment and resources for their survival. Children from the same community usually depend on government funded schools for their education. Education for this deprived section during COVID 19 Pandemic was a massive exclusion and an uphill task. Digital divide and medium of communication (Standard Malayalam) were some of the critical concerns to knowledge acquisition among tribal children. This paper primarily focuses on the challenges of online education among tribal students with a clear emphasis on the English language acquisition. This study was conducted in four most tribal populated districts of the State, namely, Wayanad, Malappuram, Palakkad, and Idukki. This is a qualitative explorative study that explores the experiences of the tribal students' English language learning challenges from the teachers' perspective in these districts. The Electrochemical Society -
A comparative study of the impact of thermal indices on Indian coral ecosystem
Coral reefs have been the diversified ecosystem in the planet. Advantages are opportunities in tourism, coastal protection and fisheries production. Corals, as key ingredient is sourced got drug manufacturing. Its distribution is evident in locations of where sea water temperature ranges between 16C to 30C. Their presence is >0.2% of ocean area and supports >25% of marine species. India has five reef formations. Globally, last two decades have seen an increase in reporting reef deterioration. The reason significantly attributed to be climate change, apart other challenges such as pollution, sedimentation, oil spillage, etc. Such events lead to widespread mortality of corals. Mortality during bleaching events are inevitable and varied; depends on intensity of such events. The primary reason is due to significant rise in average sea surface temperature (SST). Recovery takes time after such events, and it becomes worse with recurring events. The reefs of Indian seas have reported events of severe bleaching during 1998, 2010 and 2016. IPCC reviews show mass bleaching will be prominent in future due to elevated SST. This work tries to compare the HS values of a few regions. The data collected is from 2001 to 2017. A few significant observations are drawn which could further help us to extend the work to take help from Artificial Intelligence to make predictions for the future. This study uses the indices derived out of SST to look at relative risk faced by Indian reefs. The need for comprehensive and localized actions will be discussed. 2021 Author(s). -
A PV-Powered Single Phase Seven-Level Invertera's Photocurrent and Injected Power
The PV inverter in this study is linked to the grid and its performance analysis is evaluated using a PI controller. It is a single phase multi-level PV inverter. The major objective of this research is to increase efficiency and eliminate harmonics caused by DC link voltage fluctuations created by Maximum Power Point Tracking (MPPT) during foggy situations. PV inverters generate and inject actual power into the main grid. This study uses a transformer-less photovoltaic inverter to cut down on losses, cost, and size. A transformer-less multilayer inverter is described in this paper. There is no high-frequency leakage current since that inverter can distribute both actual and reactive electricity. MATLAB/Simulink software was used to analyze and assess the effects of various PV-based seven-level techniques on the devicea's Maximum Power Point Tracking (MPPT) performance. The Authors, published by EDP Sciences, 2024. -
Optimization-Based Cash Management Model for Microfinance Applications Using GSA and PSO
Banks and businesses use cash as a means for exchange in finance on a regular basis to please customers. Making decisions about cash management can be challenging because banks must keep significant sums of cash in order to sustain high levels of client satisfaction. In this paper, linear PSO and GSA models are given for estimating the daily cash demand of a bank by taking into account the variables Year of Reference (RY), Years Month (My), Months Day (Dm), Days Week (Dw), Payday Effect Salary (Se), and Holiday Effect (He). Using PSO and GSA in MATLAB, the algorithms for estimating both the model coefficients for short term are implemented from the real data of a specific bank branch. The proposed system's overall cost is minimized using a fitness function. It was discovered that the results are in good accord with the observed data and that the PSO-based cash management model outperformed other models with superior accuracy. The models are then used for future cash management for validation. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Customized SEIR Mathematical Model to Predict the trends of Vaccination for Spread of COVID-19
The uncertainty in life plans, restrictions on physical classrooms, loss of jobs, large number of infections and deaths due to COVID-19 are some significant causes of concern for the public as well as Governments all over the globe. Moreover, the exponential increase in the number of infected people in a short time is responsible for the collapse of the health industry during the pandemic caused by COVID-19. The health experts recommended that the quick and early diagnosis followed by treatment of patients in isolation is a way to minimize its spread and save lives. The objective of this research is to propose a customized SEIR model to predict the trends of vaccination in the USA. The experimental results prove that the Moderna vaccine reports the efficacy of 93%, which is higher than the Pfizer and Johnson and Johnson vaccines. 2022 ACM. -
Analyses of the Power Flow through Distributed Generator based on Unsynchronized Measurements
Based on measurements taken from the main substation and the connections between distributed generators and micro-grids that are not in sync, this study suggests a new way to look at the load flow of distributed generation. The conclusions are based on data from a distribution generatora's Load Flow Analysis that was not in sync. Distributed generation is what this approach is based on. Creating a strong communication system and using measurement data from the past are two ways to make this happen. This objective may be achieved with the use of previously gathered measurements. The time-tested backward-forward sweep method is the method of choice for analyzing power flow using unsynchronized data. This is the preferred approach. The angles of synchronization are likely to be unknowns that must be estimated. On a smart grid system with a large number of distributed generation and microgrids, a range of mathematical computations are conducted to verify the correctness of performance predictions produced by the suggested theory. The classic backward-forward sweep was shown to be the most effective method for analyzing power flow based on data that was not synchronized in many instances. This is the strategy that is presently being recommended. Because the angles of synchronization are presumed to be unknown, a mathematical equation must be devised to determine them. The Authors, published by EDP Sciences, 2024. -
A comprehensive survey on features and methods for speech emotion detection
Human computer interaction will be natural and effective when the interfaces are sensitive to human emotion or stress. Previous studies were mainly focused on facial emotion recognition but speech emotion detection is gaining importance due its wide range of applications. Speech emotion recognition still remains a challenging task in the field of affective computing as no defined standards exist for emotion classification. Speech signal carries large information related to the emotions conveyed by a person. Speech recognition system fails miserably if robust techniques are not implemented to address the variations in speech due to emotion. Emotion detection from speech has two main steps. They are feature extraction and classification. The goal of this paper is to give an overview on the types of corpus, features and classification techniques that are associated with speech emotion recognition. 2015 IEEE. -
Towards a Framework for Supply Chain Financing for Order-Level Risk Prediction: An Innovative Stacked A-GRU Based Technique
Order financing is changing the game in the banking and financial supply chain industry. It's great for SMEs and opens up new revenue streams for logistics and finance companies. But in order to find the weak spots offered by banks and other financial institutions, companies need to undertake thorough risk assessments right now. Careful timing is crucial for training the model, extracting features, and preprocessing. Outlier identification and missing value handling are the first steps in preprocessing, which also includes normalization and standardization to improve data integrity and reduce unit discrepancies. Principal component analysis makes use of multivariate statistics to aid in feature extraction, guaranteeing effective data representation. Careful consideration of every detail is required during the training of a Stacked-A-GRU model, which follows attribute selection. Impressively outperforming state-of-the-art algorithms SAFE and GRU, the suggested solution achieves a remarkable correctness rating of 97.34%, indicating notable progress in predicting accuracy. 2024 IEEE. -
Leaf Disease Detection in Crops based on Single-Hidden Layer Feed-Forward Neural Network and Hierarchal Temporary Memory
Insects, mites, and fungi are common causes in plant disease, which can significantly reduce yields if not addressed promptly. Farmers are losing money as a result of crop illnesses. As the average under cultivation increases, it becomes more of a burden for farmers to keep an eye on everything. In this study, the median filter is used as a preprocessing step to transform the input image into a grayscale representation which used YCbCr color space. Otsu's segmentation is used to divide photographs that contain bright items on a dark background. Feature extraction using Grey Level Co-occurrence Matrix (GLCM). The proposed technique, known as ELM-HTM combines a simple yet adaptable extreme learning machine (ELM) with a Hierarchical Temporal Memory (HTM). This approach outperforms the ELM and HTM model with an accuracy of about 98.8%. 2023 IEEE. -
Some New Results on Non-inverse Graph of a Group
The non-inverse graph corresponding to a group G, is a simple graph with vertices being elements of the group G and there is an edge between two vertices if they are not mutual inverses. In the current paper, we study few properties of the non-inverse graphs of groups. We also discuss the parameters related different types of domination no.s of the non-inverse graph. We further obtain the Laplacian spectra and signless Laplacian spectra of the non-inverse graphs. 2022 American Institute of Physics Inc.. All rights reserved. -
Some Variations of Domination in Order Sum Graphs
An order sum graph of a group G, denoted by ? os(G), is a graph with vertex set consisting of elements of G and two vertices say a, b? ? os(G) are adjacent if o(a) + o(b) > o(G). In this paper, we extend the study of order sum graphs of groups to domination. We determine different types of domination such as connected, global, strong, secure, restrained domination and so on for order sum graphs, their complement and line graphs of order sum graphs. 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
ML based sign language recognition system
This paper reviews different steps in an automated sign language recognition (SLR) system. Developing a system that can read and interpret a sign must be trained using a large dataset and the best algorithm. As a basic SLR system, an isolated recognition model is developed. The model is based on vision-based isolated hand gesture detection and recognition. Assessment of ML-based SLR model was conducted with the help of 4 candidates under a controlled environment. The model made use of a convex hull for feature extraction and KNN for classification. The model yielded 65% accuracy. 2021 IEEE. -
A Comparative Study on Indian Sign Language Representation
Communication among people can happen with the help of verbal or nonverbal language. Nonverbal communication is shared only among the hearing and speech impaired and is not common among others. Non-verbal communication is also different for different countries around the world. A solution to remove the gap between verbal and non-verbal communicators is to create an automated language translation model that can effortlessly convert sign language to text or audio. This area has been under research for a long time, but an economical and robust system that can efficiently convert signs into speech still does not exist. This paper focuses on different approaches that were put forward to turn Indian sign language into audio signals. The Sign Language Recognition (SLR) system is classified as isolated and continuous sign language models based on its input. 2021 IEEE. -
Human Body Pose Estimation and Applications
Human Pose Estimation is one of the challenging yet broadly researched areas. Pose estimation is required in applications that include human activity detection, fall detection, motion capture in AR/VR, etc. Nevertheless, images and videos are required for every application that captures images using a standard RGB camera, without any external devices. This paper presents a real-time approach for sign language detection and recognition in videos using the Holistic pose estimation method of MediaPipe. This Holistic framework detects the movements of multiple modalities-facial expression, hand gesture and body pose, which is the best for the sign language recognition model. The experiment conducted includes five different signers, signing ten distinct words in a natural background. Two signs, 'blank' and 'sad, ' were best recognized by the model. 2021 IEEE. -
Enhancing red wine quality prediction through Machine Learning approaches with Hyperparameters optimization technique
In light of the intricacy of the winemaking process and the wide variety of elements that could affect the taste and quality of the finished product, predicting red wine quality is difficult. ML methods have been widely used in forecasting red wine quality from its chemical characteristics in recent years. This Paper evaluated the comparison of classification and regression methods to predict the quality of red wine and performed the initial data analysis and exploratory data analysis on the data. This study implemented different Classifiers and Regressors that were trained and tested. Contrasted and Comparative analysis of the accuracies of eight models with hyperparameter tuning optimization, including Logistic Regression, Gradient Boosting, Extra Tree, Ada Boost, Random Forest, Support Vector Classifier, and Decision Tree, Knn and measured the classification report with F1, Accuracy, and Recall Scores. For Imbalance data, SMOTE Classifier was used. This study performed the Cross-validation technique, such as Grid search and with the best hyperparameters tuning. The study's findings demonstrated that the Gradient Boosting technique accurately predicted red wine quality. This research shows the promising results of Gradient Boosting for predicting red wine quality and adds important context to the usage of machine learning classifiers for this challenge. 2023 IEEE. -
Unraveling Campus Placement Success Integrating Exploratory Insights with Predictive Machine Learning Models
The dynamics of campus placements have garnered considerable attention in recent years, with educational institutions, students, and employers all keenly invested in understanding the factors that drive successful recruitment. This surge in interest stems from the potential implications for academic curricula, student preparation, and hiring strategies. In this study, we aimed to unravel the myriad factors that influence a student's placement success, drawing from a comprehensive dataset detailing a range of academic and demographic attributes. Our methodology combined thorough exploratory data analysis with advanced predictive modeling. The exploratory phase unveiled notable patterns, particularly highlighting the roles of gender, academic performance analysis, Degree and MBA specialization in placement outcomes. In the predictive modeling phase, the spotlight was on state-of-the-art machine learning models, with a particular emphasis on their capacity to forecast placement success. Notably, algorithms like Logistic Regression and Support Vector Machines not only confirmed the insights from our exploratory analysis but also showcased remarkable predictive prowess, with accuracy scores nearing perfection. These findings not only demonstrate the capabilities of machine learning in the academic and recruitment spheres but also emphasize the enduring importance of core academic achievements in influencing placement outcomes. As a prospective direction, future research might benefit from examining how placement trends evolve over time and integrating qualitative insights to provide a holistic view of the campus recruitment process. 2023 IEEE.