Browse Items (2150 total)
Sort by:
-
Design and analysis of single stage Step-up converter for Photovoltaic applications
Main novelty of the proposed work is dual leg single stage DC-AC converter for DC\AC grid and solar based applications. Operating principles, components design and modulation techniques are presented. Initially proposed concept is simulated in MATLAB Simulink platform and after validated in a real time prototype model is the future work. Proposed idea has some advantages like few passive components, less leakage current due to few switching frequency components, wide range voltage with absence of DC link capacitor. High efficiency due to single stage operation so this circuit is highly suitable for high\low voltage photo-voltaic energy conversion. Electromagnetic interference also less with continuous current. 2023 IEEE. -
Design and Analysis of Vertical Pressure Vessel using ASME Code and FEA Technique
In this project we are designing a pressure vessel using ASME section VIII and Division 2, designing a closed container to find the required thickness of the shell, head, nozzle and leg support. Uniform thickness assigned to the entire vessel, Modelling of the pressure vessel is carried out using Pro-e 2.0; meshing is carried out using Hypermesh 6.1. Here we used 2D Quad element for the meshing, Analysis is carried out using ANSYS Software 11 for two different cases, working pressure and Maximum operating pressure, fatigue analysis is carried out, and the result is 106. Finally, theoretical validation is carried out for the entire model, And the results are within the limit. Published under licence by IOP Publishing Ltd. -
Design and Analysis of Vortex Bladeless Wind Turbine
Vortex bladeless turbine antiquates the conventional wind turbine and adopts a radically innovative and novel approach to captivate the moving wind energy. This device effectively captures the energy of vorticity, an aerodynamic instability condition. As the wind passes a structure, the flow steers and cyclical patterns of vortices are generated. Once the strength of wind force is suffice, the structure starts vibrating and reaches resonance. Vortex bladeless is a vortex induced vibration resonant power generator. It harnesses wind energy from a phenomenon of vorticity, called vortex shedding effect. Clearly bladeless technology consists of a cylinder fixed vertically on an elastic rod, instead of tower, nacelle and blades which are the crucial parts of a conventional wind turbine. The cylinder oscillates on a specifically mentioned wind range, which then generate electricity through an alternator and a tuning system. In this paper the vortex turbine is designed with certain existing parameters of dimensions in Solidworks and the same is analyzed for different materials and dimensions of mast, which is an important part in the vortex turbine. Also various performance parameters like displacement, frequency etc. are also compared among different models. 2021 Elsevier Ltd. All rights reserved. -
Design and Development of Mobile Robot Manipulator for Patient Service During Pandemic Situations
Time and manpower are important constraints for completing large-scale tasks in this rapidly growing civilization. In most of the regular and often carried out works, such as welding, painting, assembly, container filling, and so on, automation is playing a vital part in reducing human effort. One of the key and most commonly performed activities is picking and placing projects from source to destination. Constant monitoring of patient bodily indicators such as temperature, pulse rate, and oxygen level and service of the patients becomes challenging in the current pandemic condition to the nurses and medical staffs. In consideration to this, a mobile robot with an integrated robotic arm has been designed and developed which can be available for service of patients continuously alongside monitoring them in general ward as well as in ICU of hospitals. 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Design and Development of Teaching and Learning Tool Using Sign Language Translator to Enhance the Learning Skills for Students With Hearing and Verbal Impairment
This research paper presents a system designed for the students with verbal and hearing impairments by enabling realtime Sign-to-Text and Text-to-Sign Language conversion, with a specific focus on the Indian Sign Language (ISL). The proposed study aligns to the United Nations Sustainable Development Goal (SDG) of Quality Education. The system leverages cutting-edge technologies, MediaPipe for holistic key point extraction encompassing hand and facial movements, and Long Short-Term Memory (LSTM) architecture powered by TensorFlow and Keras for accurate sign language interpretation. This comprehensive approach ensures nuanced aspects of sign language, such as facial expressions and hand movements, are faithfully represented. On the receiving end, the system excels at Text-to-Sign Language conversion, allowing non-sign language users to interact naturally with sign language users through textual input transformed into sign language animations and Sign-to-Text conversion where the information from the sign language users is converted to text which ensures smooth communication. A user-friendly web application, developed using HTML, CSS, and JavaScript, enhances accessibility and intuitive usage for realtime communication. This research represents a significant advancement in assistive technology, promoting inclusivity and communication accessibility. It underlines the transformative potential of innovation infostering a more connected and inclusive world for all, regardless of their hearing abilities 2024 IEEE. -
Design and Development of Terahertz Medical Screening Devices
This paper highlights the prospect of design and development of a terahertz medical screening system, giving an overview of existing devices, systems, for THz spectroscopy and imaging of biological samples (e.g., cell, tissue imaging or screening). Considering the non-ionizing nature of THz waves along with its reasonable soft-tissue sensitivity, terahertz instrumentation has opened up possibilities for medical screening devices. Some THz imaging systems presently use raster scanning for calculation of image region of interest. Here, a particular system is proposed as a medical screening device and factors like signal-to-noise ratio, image resolution, image contrast, etc., have been described and correlated with relevant clinical results for exploring possible prospects in medical applications of terahertz waves. 2021, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Design and implementation of Adaptive PI control based dynamic voltage restorer for solar based grid integration
This paper introduces an innovative approach to address voltage fluctuations in solar-based grid integration by implementing an adaptive PI control-based Dynamic Voltage Restorer (DVR). This DVR is engineered to counteract voltage disruptions resulting from grid disturbances and the intermittent nature of solar energy generation. To achieve optimal performance in diverse operating conditions, the adaptive PI controller dynamically adjusts its parameters, adapting to changes in load and solar generation. The system is realized on a digital signal processor (DSP) and evaluated within a laboratory-scale solar-based grid integration setup. The findings reveal that the proposed system effectively mitigates voltage fluctuations, ensuring a stable integration of solar energy into the grid. The adaptive PI control-based DVR outperforms traditional PI control-based DVRs, particularly when dealing with variable solar energy generation. This approach holds significant potential for practical applications in solar-based grid integration systems. 2024 IEEE. -
Design and Implementation of an Optimized Mask RCNN Model for Liver Tumour Prediction and Segmentation
Segmentation of liver tumour is a tedious job due to their large variation in location and closeness to nearby organs. In this research, a novel Mask RCNN prototype is developed which uses ResNet-50 model. The architecture utilizes the masked location of convolution neural network to precisely detect liver tumours by recognizing liver sites to deal with changes in liver and CT snaps with distinct metrics. The preprocessed CT scans are subjected to ResNet-50 model. The data samples used here comprises 130 instances recorded from several clinical sites that are publicly available on the LiTS weblink. The designed model upon deployment generates a promising outcome thereby obtaining a DSC of 0.97%. Thus, we can conclude that the developed model is capable enough to accurately assess liver tumours and thus help patients in early diagnosis. 2023 IEEE. -
Design and Implementation of Machine Learning-Based Hybrid Model for Face Recognition System
Face recognition technologies must be able to recognize users faces in a chaotic environment. Facial detection is a different issue from facial recognition in that it requires reporting the position and size of every face in an image, whereas facial recognition does not allow for this. Due to their general similarity in look, the photographs of the same face have several alterations, which makes it a challenging challenge to solve. Face recognition is an extremely challenging process to do in an uncontrolled environment because the lighting, perspective, and quality of the image to be identified all have a significant impact on the process's output. The paper proposed a hybrid model for the face recognition using machine learning. Their performance is calculated on the basis of value derived for the FAR, FRR, TSR, ERR. At the same time their performance is compared with some existing machine learning model. It was found that the proposed hybrid model achieved the accuracy of almost 98%. 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Design and optimization of the process parameters for fusion deposition modelling by experimental and finite element approach
Fused Deposition Modelling (FDM) is a rapidly evolving technology since the last couple of years. This method is also used for rapid prototyping, which uses layer on top of layer deposition of the material using hot extruders to build a given 3D model. 3D printing technology basically a tool-less process designed specifically to avoid assembly requirements with intricate geometry and complex features created at no extra cost and at the same time it is an energy-efficient technology that can provide environmental efficiencies in terms of both the manufacturing process and material utilization. This research primarily focuses on analyzing the critical process parameters and its influence on the properties of the components made out of FDM process. The FDM specimens are fabricated by using four factors (parameters) at three levels, and the factors are layer thickness, travel speed of the extruder, infill ratio, and infill density. The experiments are designed based on Taguchi L-9 orthogonal array. Total three responses are considered and they are tensile strength compressive strength and flexural strength. Taguchi analysis has done to optimize the factors and its levels. Finite element analysis has also done and compared with the experimental results. 2022 Author(s). -
Design and Simulation of 6.2m Wide-Field Telescope for Spectroscopic Survey
The upcoming large astronomical telescopes are trending towards the Segmented Primary Mirror due to technological advancements & manufacturing feasibility. We have designed a wide-field optical IR spectroscopic survey telescope that can deliver spectra of several millions of astronomical sources. The baseline design of this telescope is a 6.2 m segmented primary mirror with hexagonal mirror segments of 1.44m size, intersegment Edge sensors, and soft positioning actuators. The telescope is designed to provide a 2.5deg FOV achieved through a system of wide field corrector lenses with a design residual ~0.2". Also, it delivers an f/3.61 beam suitable for directly feeding optical fibres. A mechanical concept of the telescope is designed with a truss-based mirror cell to support the segmented primary mirror and keep the deformation to a minimum. As the primary mirror is segmented, the deformation due to different disturbances like wind, vibration and thermal effects must be corrected to a nanometer accuracy to make it act like a monolithic primary mirror. This is achieved through an active control system using three actuators and six inter-segment edge sensors. A simulation tool, codeSMT, is built based on the state-space model of a soft actuator with Multiple-Input Multiple-Output (MIMO) capability to incorporate dynamic wind disturbance from the IAO Hanle site and vibration effects. A detailed error multiplier analysis is performed numerically using this tool and is in good agreement with analytical calculations. A parameter sensitivity analysis is performed to fine-tune the primary mirror control system variables. This paper presents the Optical, Mechanical and Active Control system design approach of a 6.2m wide-field telescope currently under conceptual design. 2024 SPIE. -
Design and Simulation of a Multi-purpose Adjustable Modular Robot for Precision Agriculture
Global population growth, climate change, and labor shortages all represent substantial obstacles to meeting global food needs, and agricultural robots provide a possible solution. This work uses a survey to evaluate user behavior toward using agricultural wheel robots on small farms. The survey was conducted in various parts of India (Coimbatore, Bhubaneswar, and Silchar), where 250 large and medium commercial farmers participated. After the survey, a new robotic system architecture is a multi-purpose, adjustable, modular, and affordable robotic platform designed for precision agriculture. A unique feature is added to the design, which helps the robot to adjust by itself based on the row distances and crop heights. The software was designed using the Fusion 360, and simulation is carried out in GAZEBO and Robot Operating System (ROS). 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Design and simulation of CPW fed circular spike antenna for wireless applications
The aim of the paper is to design, and simulate circular spike Coplanar Waveguide (CPW) fed antenna for wireless applications. The size of the antenna is very small occupying a space of 36mm 36mm including the substrate board. The antenna is designed using FR-4 substrate of thickness 1.6mm with dielectric permittivity of 4.4. The Coplanar Waveguide (CPW) fed system is used, so we can avoid double side printed board. This proposed antenna covers the bandwidth frequency range from 2.85GHz to 3.31GHZ and 5.09GHz to 5.65GHz for various wireless applications. The antenna design and performance are analyzed by using High Frequency Structure Simulator (HFSS) electromagnetic software for wireless applications according to frequency bands. The results of proposed antenna simulation on return loss, VSWR, gain and directivity are calculated. 2015 IEEE. -
Design and Stress Analysis of the Frame for an Electric Bike
Global emissions have been on the rise since the industrial era because of the increased energy-intensive human activities, which is a direct cause of global warming and climate change. Of the total emissions, around 17% is from the transportation sector, which significantly contributes to the emissions. One of the easiest ways to be more sustainable is to choose electric vehicles instead of Internal combustion engines. Almost 75% of the vehicles registered in India are two-wheelers, but there are no affordable and reliable electric two-wheelers. This research works to optimize and analyze the design of a step-through frame design for an electric bicycle. The frame design is analyzed by providing boundary and loading conditions with two different materials (Steel-AISI4130 and Aluminum AL6061). The numerical analysis is carried out using ANSYS APDL. The result of von Mises stress is 166MPa and 160.4MPa for steel and aluminum, respectively. The result of stress and displacement is within the acceptable limit. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Design and Verification of a Novel Anchor Shaped Double Negative Metamaterial Unit Cell
In this manuscript, a novel anchor-shaped double negative metamaterial is proposed. The structure is designed to resonate at 2.45 GHz. The unit cell is designed on a 1.6 mm thick FR4 substrate having a dielectric constant of 4.4, and simulated using Ansys HFSS. The unit cell exhibits a double negative behavior and negative refractive index behavior. The robust and popularly used Nicolson-Ross-Weir and Transmission-Reflection methods were implemented on MATLAB to extract and validate the metamaterial characteristics. This novel metamaterial unit cell covers 1 GHz to 4.8 GHz which is one of the most extensively researched and employed bands of the electromagnetic spectrum. The bandwidth performance of this new structure for double negative behavior is compared to other unit cells. It shows better performance with comparable size and outperforms the other geometries. This metamaterial is well-suited for a wide range of applications like wireless communication, biomedical applications in ISM (2.4 GHz) band and 5G communication services in the sub-6 GHz range. 2022 IEEE. -
Design Cognition while using digital tools: A Distributed Cognition Approach
The use of digital tools in the conventional architecture design thinking process which derives its basis from sketching is followed in many colleges in India. Various shortcomings due to the integration of digital tools to the manual design process have been enumerated during the past 30 years. Digital tools provide affordances different from the manual sketching design process, the effects of which can be understood by adopting a distributed cognition approach. The paper builds on design cognition research while using externalization tools in the design process. It does so by developing a theoretical framework derived from distributed cognition and an understanding of visual thinking processes from design literature. The paper utilizes the distributed cognition framework by Zhang and Norman, to arrive at resultant affordances of externalization tools in design. The same is then utilized for a protocol study which was coded for its visual thinking components and other relevant codes. The same protocol study was also coded for ideation flow analysis. The findings pointed towards compromised visual thinking and reduced ideation while utilizing digital tools in quick conceptualization. 2021 ACM. -
Design considerations of an inductive sensor for segmented mirror telescopes
The Segmented mirror technology has become natural choice for any optical telescope larger than 8 meter in size, where small mirror segments are aligned and positioned with respect to each other to an accuracy of few tens of nanometer. Primary mirror control system with the help of edge sensor and soft linear actuator maintains that alignment which changes due to gravity and wind loading. For any segmented mirror telescope edge-sensor plays very critical role. It should have very high spatial resolution (few nanometer), large range, multidimensional sensing, high temporal stability as well as immunity towards relative change in temperature and humidity. Though capacitive sensors are widely used for this purpose, however, their inherent sensitivity towards humidity and dust make them unsuitable for telescopes operating at humid low altitude regions. Whereas, inductance based sensors, working on the principal of mutual inductance variation between two planar inductor coils, produce promising results in such a situation. Looking at stringent requirements, design and development of a planar inductive sensor is a challenge. As a first step toward sensor development, we have explored the design aspects of it. The inductive coils are first simulated and analyzed using electromagnetic FEA software for different coil parameters. The design considerations include optimization of coil parameters such as geometry of coils, trace densities, number of turns, etc. and operational requirements such as number of degree of freedoms to be sensed, range of travel, spatial resolution, as well as required sensitivity. The simulation results are also verified through experimentation. In this first paper we report the design and analysis results obtained from FEA simulations. 2018 SPIE. -
Design of a Decision Making Model for Integrating Dark Data from Hybrid Sectors
The research on Dark data, from its definition to identification and utilization is a widely identified and encountered research problem since 2012 when Gartner defined Dark data as every possible information that an organization collects, process, analyze and store throughout regular business activities, but usually fails to make use of the stored information for other suitable purposes. The presence of dark data and its impact has been experienced by every sector, these data occupy large storage and remain unused. In this paper, we analyze Dark Data and proposed a design model to utilize dark data from multiple sectors and providing a solution to any critical situation a person might be in. For eg: Multiple cash transactions from an organizational bank account in a hospital successively over a period of 2-3 days may indicate a health emergency of any particular employee from that organization. Thus we are considering institutional data, medical data, and banking data in which machine learning algorithms can contribute huge changes in the current system and can help the decision-makers to make better decisions. The paper also proposes a few techniques and methods for the conversion of unstructured dark data to structured one and some extraction techniques for data using NLP and Machine Learning. Grenze Scientific Society, 2022. -
Design of body wearable antenna for medical monitoring devices
In this research work, an inset fed microstrip patch antenna, an analysis of its effect on human body and human body influence on antenna performance are presented. Polystyrene substrate (?r= 2.6) with a 1 mm thickness is used to create the proposed antenna. Use of HFSS Ver. 18.2 is made for simulations. The simulated antenna exhibits S11 of -37.4 dB in the absence of human arm and -28.39 dB in the presence. Similar to this, the SAR findings showed that the Specific Absorption Rate (SAR) value obtained is 1.28 W/kg, which is significantly less than the allowed standard of 2 W/kg, when the suggested antenna is set at an offset of 2 mm off the body's surface. Hence the proposed antenna can be suitable for integrating with medicalmonitoring devices. 2024 Author(s). -
Design of Computationally Efficient FRM Based Reconfigurable Filter Structure for Spectrum Sensing in Cognitive Radio for IoT Networks
A low computational complexity FIR bank of filters are essential for spectrum sensing in wireless networks. FRM is a widely used method to generate a sharp transition width sub-bands or channels. The intention of this work is to design multiple non-uniform sharp transition width FIR bank of filter with low computational complexity for spectrum sensing in cognitive radio for IoT networks. The design parameters of the proposed structure are calculated in an efficient way. The proposed structure is designed based on the FRM filter and complex exponential modulation technique (CEMT). The performance of the proposed structure is illustrated with the help of an example. Result indicates that the number of multipliers of the proposed structure is less compared to other existing techniques. 2022 IEEE.