Browse Items (432 total)
Sort by:
-
Omics based approach for biodiscovery of microbial natural products in antibiotic resistance era
The need for a new antibiotic pipeline to confront threat imposed by resistant pathogens has become a major global concern for human health. To confront the challenge there is a need for discovery and development of new class of antibiotics. Nature which is considered treasure trove, there is re-emerged interest in exploring untapped microbial to yield novel molecules, due to their wide array of negative effects associated with synthetic drugs. Natural product researchers have developed many new techniques over the past few years for developing diverse compounds of biopotential. Taking edge in the advancement of genomics, genetic engineering, in silico drug design, surface modification, scaffolds, pharmacophores and target-based approach is necessary. These techniques have been economically sustainable and also proven efficient in natural product discovery. This review will focus on recent advances in diverse discipline approach from integrated Bioinformatics predictions, genetic engineering and medicinal chemistry for the synthesis of natural products vital for the discovery of novel antibiotics having potential application. 2018 -
Opportunistic mycoses in COVID-19 patients/survivors: Epidemic inside a pandemic
Being considered minor vexations, fungal infections hinder the life of about 15% of the world population superficially, with rare threats to life in case of invasive sepsis. A significant rise in the intrusive mycoses due to machiavellian fungal species is observed over the years due to increased pathology and fatality in people battling life-threatening diseases. Individuals undergoing therapy with immune suppressive drugs plus recovering from viral infections have shown to develop fungal sepsis as secondary infections while recovering or after. Currently, the whole world is fighting against the fright of Coronavirus disease (COVID-19), and corticosteroids being the primitive therapeutic to combat the COVID-19 inflammation, leads to an immune-compromised state, thereby allowing the not so harmful fungi to violate the immune barrier and flourish in the host. A wide range of fungal co-infection is observed in the survivors and patients of COVID-19. Fungal species of Candida, Aspergillus and Mucorales, are burdening the lives of COVID-19 patients/survivors in the form of Yellow/Green, White and Black fungus. This is the first article of its kind to assemble note on fungal infections seen in the current human health scenario till date and provides a strong message to the clinicians, researchers and physicians around the world non-pathological fungus should not be dismissed as contaminants, they can quell immunocompromised hosts. 2021 -
Origin, ecotoxicity, and analytical methods for microplastic detection in aquatic systems
Over the decades, interaction of microplastics with other pollutants in a dynamic environmental set up was observed to increase their toxic effects. This scenario is worse in aquatic environments due to the entry of huge loads of microplastic components into the waterbodies through direct plastic dumping and those delivered from effluents originating from various treatment plants. Although extensive research was done to understand the issue associated with microplastic contamination of various aquatic environments, a huge research gap still exists in areas like their ecotoxicology, fate, distribution, and detection methods in aquatic environments. Moreover, the combined deleterious effect of microplastics in association with other environmental pollutants is not widely studied and requires more research focus. The major scope of this review is to present a comprehensive outlook on the recent studies carried out to understand the types, origin, distribution, transport, fate, and toxicity of microplastics in aquatic environments, both fresh water and marine. The review summarizes the ecotoxicological effects of microplastic contaminants in aquatic environment like the oxidative damage, neurotoxicity and decreased reproductive potential. An in-depth discussion regarding the ability of the microplastics in combination with other pollutants to serve as potentially hazardous agents in aquatic environment is also elaborated in the review. Further a summary on various microplastic detection methods, challenges associated with microplastic detection and management is carefully reviewed and compiled in this work. The need for proper awareness programs to general public highlighting the toxicity of microplastics and strict regulations regarding their continuous assessment and management in waterbodies are essential factors in controlling their adverse effect on aquatic environment. 2023 Elsevier B.V. -
Out of Box Thinking to Tangible Science: A Benchmark History of 3D Bio-Printing in Regenerative Medicine and Tissues Engineering
Advancements and developments in the 3D bioprinting have been promising and have met the needs of organ transplantation. Current improvements in tissue engineering constructs have enhanced their applications in regenerative medicines and other medical fields. The synergistic effects of 3D bioprinting have brought technologies such as tissue engineering, microfluidics, integrated tissue organ printing, in vivo bioprinted tissue implants, artificial intelligence and machine learning approaches together. These have greatly impacted interventions in medical fields, such as medical implants, multi-organ-on-chip models, prosthetics, drug testing tissue constructs and much more. This technological leap has offered promising personalized solutions for patients with chronic diseases, and neurodegenerative disorders, and who have been in severe accidents. This review discussed the various standing printing methods, such as inkjet, extrusion, laser-assisted, digital light processing, and stereolithographic 3D bioprinter models, adopted for tissue constructs. Additionally, the properties of natural, synthetic, cell-laden, dECM-based, short peptides, nanocomposite and bioactive bioinks are briefly discussed. Sequels of several tissue-laden constructs such as skin, bone and cartilage, liver, kidney, smooth muscles, cardiac and neural tissues are briefly analyzed. Challenges, future perspectives and the impact of microfluidics in resolving the limitations in the field, along with 3D bioprinting, are discussed. Certainly, a technology gap still exists in the scaling up, industrialization and commercialization of this technology for the benefit of stakeholders. 2023 by the authors. -
Parental Perspectives on Stress and Challenges in Raising Autistic Children: A Meta-Synthesis
Raising autistic children can be challenging, and the current meta-synthesis explores the stress and challenges the parents encounter across life domains. Database searches (JSTOR, ProQuest, EBSCO, PsycINFO, and Google Scholar) were done using the SPIDER method, and 463 articles published between 2011 and 2021 were reviewed. The meta-synthesis adhered to the PRISMA guidelines and included 28 eligible studies centered on stress in parents of children up to the age of 12 years diagnosed with autism. This comprehensive analysis encompassed a collective participant pool of n-505 individuals. Eight stressors were derived using the line of argument synthesis method, which include parental stress due to emotional impact, diagnosis process, social stigma, financial aspects, work-life balance, lack of resources and social support, marital life, and academic setting. Multiple stressors exert a combined effect of individual and systemic factors across domains of life, leading to parental stress. Interventions must be designed considering the complex nature of the parental stress and its interaction with the environment. Psycho-education for awareness and empowerment contribute to parental well-being. The Author(s), under exclusive licence to Springer Nature India Private Limited 2024. -
Partition Refugees in Jammu Cry for Protection of Land and Job Rights
Article 370 was presented as an obstacle in the complete integration of Kashmir and it had denied citizenship and land rights to around 1.5 lakh West Pakistan Refugees (all Hindus) since their migration in 1947. However, after the lapse of merely five years of the abrogation, these WPRs, the new citizens of Jammu and Kashmir, have started feeling disillusioned and demanding protection of lands and jobs under Article 371 of the Indian Constitution. 2024 Economic and Political Weekly. All rights reserved. -
Past decade of supercapacitor research Lessons learned for future innovations
Due to their high power density, long cycle stability, and quick charge/discharge rates, supercapacitors are gaining popularity in the field of energy storage devices. These distinct features have enabled supercapacitors to create their own space in the energy storage device realm. This review addresses contemporary ways to increase not just the power density, rate capability, cycle stability, and other properties of supercapacitors, but also their energy density utilising hybrid topologies. Because electrodes are the most significant component of a supercapacitor cell and the last decade mainly focused on the material realm, this paper focuses on the design of hybrid supercapacitor electrodes with high specific capacitance, as well as the explication of the mechanisms involved. We have also given an insight about the merits and demerits of various electrode materials that have been employed till date. The new trends and improvement in supercapacitor development are also summarized. 2023 Elsevier Ltd -
Perovskite photosupercapacitors: Next generation powerpacks integrating solar cells and supercapacitors
As solar energy is intermittent, it must be stored in addition to being harvested, opening one of the most potential areas for powering future technology. The devices that have the ability to collect and store energy are called Photosupercapacitors. Owing to their dual purpose, photosupercapacitors are gaining increasing attention as potential components for emerging wearable and portable electronics. These devices have advanced significantly; among them, Perovskite-based Photosupercapacitors have reported greater efficiency so far. When required, this integrated device, which consists of a perovskite solar cell unit and a supercapacitor, can supply reliable off-grid power to external loads and charge itself in an illuminated space. This review primarily focuses on various types of Perovskite-based Photosupercapacitors that have emerged so far, significantly discussing the choice of material for each layer, the technique of connecting the solar cell and supercapacitor, the performance of each part, and the overall powerpack performance. The present review gives a broad outlook on challenges and future perspectives involved in the development of these devices. We believe that this review would provide a valid account of the current developments and future scopes for developing portable, highly efficient Perovskite-based Photosupercapacitors with less toxicity and admissible stability. 2024 Elsevier Ltd -
Perovskites: Emergence of highly efficient third-generation solar cells
For decades, human beings have been trying to plug into the sun to satisfy our energy requirements. Solar energy harvesting technology is, at present, in its third generation. Among the emerging photovoltaics, perovskite solar cells, which are fast advancing, have great future scope as solar energy harvesters. Rapid technological growth within the decade makes it the most potent among third-generation photovoltaics. Since its introduction in 2009, photoconversion efficiencies (PCE) of perovskite solar cells has hiked from 3.9% to 25.8% by 2021. Despite the swift increase in PCE, perovskite photovoltaics have to cross many hurdles to reach the stage of commercialization. Issues like low stability and lead toxicity are matters of great concern. The choice of material in each layer and the interfacial engineering to create matching between surfaces play a significant role in enhancing device performance. This review focuses on the materials and functions of four different layers of perovskite solar cells: light-absorbing, electron transport, hole transport, and counter electrodes. A brief discussion of perovskite-silicon tandem and 2D/3D multidimensional solar cells is also included in the review. The emergence of environment-friendly, economically feasible, and efficient solar cell materials turns out to be milestones in the path toward the commercialization of perovskite solar energy harvesters. Highlights: This review discusses the emergence of perovskite solar cells, which are of great importance in the rapidly growing photovoltaic technology. An overview of materials, structure, and working of different perovskite solar cell layers- active layer, hole transport layer, electron transport layer, and counter electrode, is given in the review. The evolution of different solar cell materials is discussed, and their performance is compared qualitatively and quantitatively. 2022 John Wiley & Sons Ltd. -
Photoaligned Liquid Crystalline Structures for Photonic Applications
With the advancement of information display technologies, research on liquid crystals is undergoing a tremendous shift to photonic devices. For example, devices and configurations based on liquid crystal materials are being developed for various applications, such as spectroscopy, imaging, and fiber optics. One of the problems behind the development of photonic devices lies in the preparation of patterned surfaces that can provide high resolution. Among all liquid crystal alignment techniques, photoalignment represents a promising non-contact method for the fabrication of patterned surfaces. In this review, we discuss the original research findings on electro-optic effects, which were mainly achieved at the Department of Electronic and Computer Engineering of the Hong Kong University of Science and Technology and the collaborating research laboratories. 2023 by the authors. -
Photocatalytic seawater splitting for hydrogen fuel production: impact of seawater components and accelerating reagents on the overall performance
The future fuel, hydrogen, is a clean, sustainable energy source with a substantial density of energy per unit volume/weight. Breakthroughs in hydrogen production, storage, and transportation are essential to meet the sustainable global energy demands. Solar-to-hydrogen conversion through water-splitting reactions (via photo/electro/photoelectro-processes) is a promising strategy for producing green hydrogen fuel. Specifically, the photocatalytic hydrogen generation reaction, mimicking artificial photosynthesis, is a simple and cost-effective method adopted for solar-hydrogen production. Various semiconductor photocatalysts and hybrid photocatalytic systems have been developed to address the sluggish kinetics and selectivity of pristine water/seawater splitting reactions. Recently, seawater has been used as feedstock for large-scale hydrogen production to advance the field and alleviate the scarcity of freshwater sources. This review article, therefore, aims to highlight the importance of seawater splitting reactions using different photocatalytic systems. A brief introduction to the fundamentals, historical progress, and mechanism of the seawater splitting reaction is presented. The impact of seawater components and accelerating reagents on the intrinsic performance of water splitting catalysts is discussed in detail, followed by an elaborate discussion of natural water and artificial seawater splitting with emphasis on onerous photocatalyst designs. Finally, the current challenges and opportunities of saltwater electrolysis for sustainable hydrogen fuel generation and applications are discussed. 2023 The Royal Society of Chemistry. -
Photoresponsive Carbon-Azobenzene Hybrids: A Promising Material for Energy Devices
Advancements in renewable energy technology have been a hot topic in the field of photoresponsive materials for a sustainable community. Organic compounds that function as photoswitches is being researched and developed for use in a variety of energy storage systems. Azobenzene photoswitches can be used to store and release solar energy in solar thermal fuels. This review draws out the significance of azobenzene as photoswitches and its recent advances in solar thermal fuels. The recent developments of nano carbon templated azobenzene, their interactions and the effect of substituents are highlighted. The review also introduces their applications in solar thermal fuels and concludes with the challenges and future scope of the material. The advancements of solar thermal fuels with cost effective and desired optimal properties can be explored by scientists and engineers from different technological backgrounds. 2022 Wiley-VCH GmbH. -
Photosensitizer Anchored Nanoparticles: A Potential Material for Photodynamic Therapy
Detection and treatment of cancer have been demanding areas with the increase in cancer and malignant diseases across the globe. Photodynamic therapy is a multi-step treatment procedure using photosensitizers as a drug in the presence of light. Photosensitizers anchored on different nanomaterials through covalent and non-covalent interactions contribute significantly to photodynamic therapy. Nanoparticles have been employed as promising carriers to transport photosensitizers to the target cells. Photosensitizer functionalized nanoparticles are more effective in terms of stability and water solubility than bare ones. This review is a brief account of different types of nanoparticles functionalized on photosensitizers currently used for photodynamic therapy. We have focused on photosensitizer anchored organic, inorganic, and carbon-based nanomaterials, which can be effectively used in photodynamic therapy. 2022 Wiley-VCH GmbH. -
Phyto- and zoomass-derived nanostructured carbon as efficient catalysts for oxygen reduction reaction in fuel cells: a review
Abstract: The oxygen reduction reaction (ORR) plays a pivotal role in several energy storage and conversion technologies, including metal-air batteries, microbial fuel cells, and low-temperature hydrogen and alcohol fuel cells. Fuel cells, in particular, have gained significant traction as a feasible alternative energy source due to their efficiency, cleanliness, adaptability, and ability to reuse exhaust heat. However, the complex nature of ORR requires highly efficient electrocatalysts for optimal fuel cell performance. While Pt-based electrocatalysts are widely regarded as the most suitable for both the cathode and anode in fuel cells, their high cost, scarcity, and susceptibility to fuel crossover have driven the search for alternative ORR catalysts. In this context, carbon materials have emerged as promising candidates due to their low cost, long-term stability, and strong electrocatalytic activity. Recent advancements in biomass-derived carbon nanostructures align with the global push for sustainable energy and a pollution-free environment. This review examines carbon structures derived from the carbonization of plant and animal biomass and evaluates their performance as noble metal supports, non-noble metal electrocatalysts, and metal-free electrocatalysts for ORR. Graphical abstract: (Figure presented.) The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. -
Phytochemical, pharmacological and tissue culture studies of some important species of the genus Barleria L. (Acanthaceae) - a review
Ayurvedic sciences helped the early humans to overcome chronic dangerous diseases. There are thousands of varieties of herbs and medicinal plants used to overcome such dreadful diseases. The genus Barleria L. belongs to family Acanthaceae, a medicinally significant group of plants having diversified phytochemicals used for different pharmacological properties. It has been utilized since ancient times for medicinal purposes. It has many plant secondary metabolites such as terpenes, flavonoids, lignins, alkaloids, particularly the iridoid glycosides. The secondary metabolites extracted from Barleria spp. show potential pharmacological activities viz., anti-microbial, anti-inflammatory, anti-oxidant, anti-fertility, anti-arthritic and anti-ulcer activity. In view of these, present review is focused on the phytochemistry, pharmacology and tissue culture studies of some of the important species of the genus Barleria L. Sudheer & Praveen (2021). -
Phytochemicals as weapons against drug resistance
Phytochemicals are plant-based products with high medicinal value. These metabolites effectively target disease-causing microbes. Drug-resistant pathogens have developed mechanisms to sustain themselves even with inhibitors. Drug resistance has emerged as a global giant, causing all available treatment options to fail. The solution to this problem is in the phytochemicals of plants with antibacterial and drug resistance modulation properties. Phytochemicals might be able to get rid of efflux pumps, drug-modulating enzymes, resistance genes, quorum sensing, and biofilm, all of which cause pathogens to be resistant to drugs. Moreover, anti-obesogenic and cardioprotective properties are also observed in phytochemicals. Additionally, studies show the success of phytochemical-based nanoparticles in drug resistance regulation. This review emphasizes phytochemicals' different mechanisms of action and their derivatives in curbing drug-resistant pathogens and cancer cells. 2023 The Author(s) -
Plant Secondary Metabolites: The Weapons for Biotic Stress Management
The rise in global temperature also favors the multiplication of pests and pathogens, which calls into question global food security. Plants have developed special coping mechanisms since they are sessile and lack an immune system. These mechanisms use a variety of secondary metabolites as weapons to avoid obstacles, adapt to their changing environment, and survive in less-than-ideal circumstances. Plant secondary metabolites include phenolic compounds, alkaloids, glycosides, and terpenoids, which are stored in specialized structures such as latex, trichomes, resin ducts, etc. Secondary metabolites help the plants to be safe from biotic stressors, either by repelling them or attracting their enemies, or exerting toxic effects on them. Modern omics technologies enable the elucidation of the structural and functional properties of these metabolites along with their biosynthesis. A better understanding of the enzymatic regulations and molecular mechanisms aids in the exploitation of secondary metabolites in modern pest management approaches such as biopesticides and integrated pest management. The current review provides an overview of the major plant secondary metabolites that play significant roles in enhancing biotic stress tolerance. It examines their involvement in both indirect and direct defense mechanisms, as well as their storage within plant tissues. Additionally, this review explores the importance of metabolomics approaches in elucidating the significance of secondary metabolites in biotic stress tolerance. The application of metabolic engineering in breeding for biotic stress resistance is discussed, along with the exploitation of secondary metabolites for sustainable pest management. 2023 by the authors. -
Polymer photosupercapacitors: combined nanoarchitectonics with polymer solar cell and supercapacitor for emerging powerpacks in next-generation energy applications
Efficient energy harvesting and storage are inevitable for the sustenance and growth of mankind, wherein the utilization of advanced technologies in this field has brought a significant impact on the energy sector. Integration of energy harvesting and storage devices is a need for powering next-generation energy needs like the Internet of Things (IoT), opening a wide range of application areas like wearable devices or integration with fabrics. Among third-generation solar cells, organic or polymer solar cells are extremely environment-friendly, lightweight, and flexible, making themselves potential candidates for integrated powerpacks along with supercapacitors. This article is a comprehensive review of polymer solar cell-based photosupercapacitors and their developments over the recent years. Through this review, we intend to give a valid account of polymer photosupercapacitors, to the scientific community regarding recent updates, which would help develop future approaches and strategies. As these integrated devices are considered to have a profound impact on energy industries and related applications, we believe that a detailed review of the present status and future prospects would aid further developments in the research field. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. -
Polymer-nanocarbon composites: a promising strategy for enhanced performance of organic solar cells
The exigency for sustainable and clean energy resources has led to profound research in development of various generations of solar cells, aiming to control the over-exploitation of fossil fuels and subsequently limit environmental degradation. Among the fast-emerging third-generation solar cells, polymer solar cell technology has gained much consideration due to its potential for achieving economically feasible, lightweight, flexible solar energy harvesting devices. As a predominant research area, at present, the major concerns regarding polymer solar cells include improving conversion efficiency, enhancing absorption bandgap in polymers, limiting photochemical degradation, and remediating low dielectric constant. Nanocarbon materials can be effectively blended with polymers and have been widely reported to enhance the performance of polymer solar cells owing to their desirable characteristics like high electrical conductivity, mechanical strength, thermal stability, non-toxicity, large specific surface area, flexibility, and optical transparency. In this review, we briefly discuss various conjugated polymer-nanocarbon composites, including polymer/graphene derivatives, polymer/graphene quantum dots (GQD), and polymer/carbon nanotubes (CNTs), elucidating their roles in the performance enhancement of polymer solar cells (PSCs). Graphical abstract: (Figure presented.). The Author(s) 2023. -
Pore size matters!a critical review on the supercapacitive charge storage enhancement of biocarbonaceous materials
A circular economy targets zero waste converting both natural and synthetic wastes to valuable products, thereby promoting sustainable development. The porous nanocarbon synthesized from bio-waste is one such product used in applications such as energy storage, catalysis, and sensors. Different techniques are employed for synthesizing carbon from the biowastes and each route results in different properties toward end-user applications. Among them, surface area and porosity are the two critical factors that influence the energy storage capabilities of these synthesized carbon nanostructures. Besides the high surface area of the bio-derived carbons, the hindrance in supercapacitive performance is owing to its low porosity. Fewer review/research papers report the porosity tuning of these carbons for their influence on enhancing the performance of energy storage devices (supercapacitors). This critical review analyses the importance of porosity in these bio-derived carbons and reviews the recent development in its synthesis techniques along with its improvement in the energy storage capability. Special attention is also delivered to identify the ambient source of biowaste for carbon electrodes (fabrication) in supercapacitors. The recent research progress in tuning the porosity of these bio-derived carbons and the influence of electrolyte with porosity in affecting its supercapacitive energy storage is elucidated here. The research challenges, future research recommendations, and opportunities in the synthesis of bio-derived porous carbon for supercapacitor applications are briefed. 2022 Taylor & Francis Group, LLC.