Browse Items (11809 total)
Sort by:
-
Advancing Credit Card Fraud Detection Through Explainable Machine Learning Methods
The world of finance has experienced a significant shift in the way money flows, due to the advancements in technologies such as online banking, card payments, and QR-based payment systems. These innovative banking payment facilities are offered by ensuring the safety of the transaction and ensuring that only the authorized customer can access and utilize these banking services. Credit card fraud is innovative way to cheat the user of the card. Government all over the word encouraging to the people for the uses of digital money. This research work focuses on analyzing the machine learning database by using a labelled dataset to classify legitimate and fraudulent business transactions with explainable AI. This study is based on decision tree, logistic regression, support vector machine and random forest machine learning techniques. 2024 IEEE. -
A Deep Learning Method for Autism Spectrum Disorder
The present study uses deep learning methods to detect autism spectrum disorder (ASD) in patients from global multi-site database Autism Brain Imaging Data Exchange (ABIDE) based on brain activity patterns. ASD is a neurological condition marked by repetitive behaviours and social difficulties. A deep learning-based approach using transfer learning for automatic detection of ASD is proposed in this study, which uses characteristics retrieved from the intracranial brain volume and corpus callosum from the ABIDE data set. T1-weighted MRI scans provide information on the intracranial brain volume and corpus callosum. ASD is detected using VGG-16 based on transfer learning. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Digital Watermarking Techniques for Secure Image Distribution
In the contemporary era of digital advancements, it is of utmost importance to prioritize the establishment of robust security measures and traceability protocols for photos. This necessity arises from the inherent risk associated with the effortless diffusion of unlicensed information. Digital watermarking, which implants hidden data into digital photographs to verify their validity, is frequently used. This level emphasizes the need of safe photo distribution, digital platform problems, and unauthorized reproductions. The purpose of this research is to explain digital watermarking fundamentals. It emphasizes verification, IP protection, and digital watermarking monitoring. This research compares spatial and frequency domain watermarking approaches. Direct pixel manipulation in spatial domain techniques is vulnerable to attacks. Integrating watermarks with transform domains like Discrete Cosine Transform improves robustness in frequency domain techniques. The study also studies adaptive watermarking, which adjusts the watermark to the image's content to balance visibility and durability. The purpose of this research is to explore watermark identification methods. These methods use blind and non-blind watermarking. We discuss the security risks that might compromise watermarked photographs and the ways to reduce their likelihood. 2024 IEEE. -
A Secure Data Encryption Mechanism in Cloud Using Elliptic Curve Cryptography
Cloud computing is undergoing continuous evolution and is widely regarded as the next generation architecture for computing. Cloud computing technology allows users to store their data and applications on a remote server infrastructure known as the cloud. Cloud service providers, such Amazon, Rackspace, VMware, iCloud, Dropbox, Google's Application, and Microsoft Azure, provide customers the opportunity to create and deploy their own applications inside a cloud-based environment. These providers also grant users the ability to access and use these applications from any location worldwide. The subject of security poses significant challenges in contemporary times. The primary objective of cloud security is to establish a sense of confidence between cloud service providers and data owners inside the cloud environment. The cloud service provider is responsible for ensuring user data's security and integrity. Therefore, the use of several encryption techniques may effectively ensure cloud security. Data encryption is a commonly used procedure utilised to ensure the security of data. This study analyses the Elliptic Curve Cryptography method, focusing on its implementation in the context of encryption and digital signature processes. The objective is to enhance the security of cloud applications. Elliptic curve cryptography is a very effective and robust encryption system due to its ability to provide reduced key sizes, decreased CPU time requirements, and lower memory utilisation. 2024 IEEE. -
War Strategy Optimization for Optimal Integration of Public Fast Charging Stations in Radial Feeders
In light of rising pollution and global warming, there is need for raising the acceptance rate of electric vehicles (EVs) across the globe for sustainable and clean transportation. However, low-voltage electrical distribution networks (EDN) are necessary to provide the electrical power needed to charge the EV batteries. Due to their radial construction and high r/x ration branches; these networks typically suffer from significant energy losses, inadequate voltage profiles, and low stability margins. Therefore, the performance of EDNs shouldnt be further compromised by the incorporation of EV charging stations. In light of this, this work presents a unique heuristic war strategy optimization (WSO) for integrating fast charging stations (FCS) as efficiently as possible utilizing the voltage stability index (VSI). The effect of equivalent EV load penetration in EDS is initially evaluated in terms of loss, voltage profile, and voltage stability for a certain number of EVs. Simulations are executed for IEEE 15-bus system for three different scenarios. The technological advantages seen in the simulations illustrate the efficiency of the suggested technique for real-time adaptation. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
New Paradigm of Marketing-Financial Integration Modelling for Business Performance: An IMC Model
When it comes to the provision of financial services, the integrated marketing communication (IMC) process is crucial in the creation and maintenance of client-provider bonds. This research presents a literature assessment on the theoretical basis for using marketing communication tools in the provision of financial services. This research is an attempt to bolster the little theoretical literature on the effectiveness of marketing communication techniques in the provision of financial services. Financial service providers use marketing communication as a channel for two-way exchanges with their clientele, with the ultimate goal of maximising the benefits their customers bring to the company. When it comes to providing financial services, an organisations success hinges on its ability to effectively manage its relationships with both current and potential consumers. As a result, it is important for practical reasons to be guided by well-defined marketing communications goals to identify the extent of usage and within the constraints of available resources. In this regard, businesses are free to establish specific communications objectives in accordance with their unique situations to direct the implementation of their IMC plan. This study aims to find out an impact of financial integration with IMC on business performance. This study is descriptive in nature. Primary data is collected with the help of questionnaire. The study finds that the financial integration in the IMC model has a statistically significant impact on business success. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
UAV Security Analysis Framework
This study presents a framework that allows for various types of checks to detect weaknesses in UAV subsystems. The UAV testing process is automated and allows the operator only to select the types of checks or types of structural and functional characteristics that the operator wants to test. To ensure the possibility of automated verification, implemented databases are used, which include a catalog of structural characteristics, threats, vulnerabilities, and attacks. These catalogs are many-to-many related, and thanks to these links, it is possible to identify threats or vulnerabilities specific to a particular structural characteristic. In essence, such an architecture is a knowledge base based on an ontological model. Thanks to this architecture of the system, it is enough for the operator to determine what types of structural characteristics need to be checked and the system will give him information about the vulnerabilities of the UAV. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Augmented Reality based Navigation for Indoor Environment using Unity Platform
This paper proposes an augmented reality (AR) navigation system developed for indoor environment. The proposed navigation system is developed using Unity platform which is usually used for developing gaming applications. The proposed navigation system without the aid of Global Positioning System (GPS) tracks users position and orientation accurately by making use of computer vision and image processing techniques. The user can navigate to the desired location using its user friendly and intuitive interface. The proposed system can be extended further to provide indoor navigational guidance within lager buildings such as malls, airports, universities and medical facilities. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Deep CNN Based Interpolation Filter for High Efficiency Video Coding
Video coding is a current focus in research area as the world focus more on multimedia transfer. High Efficiency Video Coding (HECV) is prominent among existing one. The interpolation in HEVC with fixed half-pel interpolation filter uses fixed interpolation filter derived from traditional signal processing methods. Some research came up with CNN based interpolation filter too, here we are proposing a deep learning-based interpolation filter to perform interpolation in inter prediction in HEVC. The network extracts the low-resolution image and extract the patch and feature in that to predict a high-resolution image. The network is trained to predict the HR image for the given patch, it can be repeated to generate the full frame in the HEVC. The system uses cleave approach to reduce the computational complexity. The trained network is validated and tested for different inputs. The results show an improvement of 2.38% in BD-bitrate saving for low delay configuration. 2024 IEEE. -
Prediction of Hazardous Asteroids Using Machine Learning
As the need for early detection and mitigation of potential threats from near-Earth objects continues to grow, this study presents a comprehensive approach to predicting hazardous asteroids through the application of machine learning techniques. With the increasing interest in safeguarding our planet from potential impact events, the accurate classification and prediction of hazardous asteroids is of paramount importance. This research leverages a diverse dataset comprising a wide array of asteroid characteristics, including orbital parameters, physical properties, and historical impact data, to train and validate machine learning models. The study employs a combination of feature engineering, data preprocessing, and state-of-the-art machine learning algorithms to assess the risk posed by asteroids in near-Earth space. 2024 IEEE. -
Smart Air Pollution Monitoring System Using Arduino Based on Wireless Sensor Networks
Impurity levels in air have risen throughout time as a result of several reasons, such as population expansion, increased automobile use, industry, and urbanization. All of these elements harm the health of individuals who are exposed to them, which has a detrimental effect on human well-being. We will create an air pollution monitoring system based on an IoT that uses a Internet server to track the air quality online in order to keep track of everything. An alert will sound when the level of harmful gases such CO2, smoking, alcohol, benzene, and NH3 is high enough or when the air quality drops below a specified threshold. The air quality will be displayed on the LCD in PPM. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Effects of Peer Monitoring on Student Stress Level of College Students Based on Multi-Layer Perceptron Approach
The classroom is just one of many places where the proposed approach encounter stress. Previous studies have shown that college students experience high rates of stress. It is not known if the Student Stress Inventory-Stress Manifestations (SSI-SM) is useful in identifying stressors and evaluating stress manifestations among college students. To this end, it was created a college-specific version of the Student Stress Inventory-Stress Manifestations (SSI-SM) and administered it to students to determine its validity and reliability. These procedures comprise the proposed technique and include preprocessing, feature selection, and model training. It uses Normalization as a preprocessing approach. The term' normalization' refers to the procedure of rescaling or modifying data so that all categories have the same variance. The proposed approach employed linear discriminant analysis as a means of selecting features. The models are then trained using MLP after information gain has been used to choose relevant features. The proposed approach achieves better results than the two leading alternatives, CNN and RNN. 2024 IEEE. -
Sentiment Analysis of Online Hotel Reviews Employing Bidirectional GRU with Attention Mechanism
Online hotel reviews are a more reliable resource for potential hotel guests. Sentiment analysis is a branch of text mining, Natural Processing Language that seeks to identify personality traits, emotions, and other factors. Deep Learning algorithms such as LSTM and GRU have successfully generated context information in sequence learning. However, deep learning cannot focus on the words that contribute the most and cannot capture important content information. This research aims to overcome the inability of LSTM and GRU to capture information. The results are satisfactory, with 93.12% accuracy, 95% ROCAUC, and 95.28% precision recall. This research paper helps managers identify areas to improve their products and services, target marketing campaigns, and identify customer churn. 2024 IEEE. -
Predicting of Credit Risk Using Machine Learning Algorithms
Credit risk management is one of the key processes for banks and is crucial to ensuring the banks stability and success. However, due to the need for more rigid forecasting models with strong mapping abilities, credit risk prediction has become challenging for the banking industry. Therefore, this paper attempts to predict commercial banks credit risk (CR) by using various machine learning algorithms. Machine learning algorithms, namely linear regression, KNN, SVR, DT, RF, XGB, and MLP, are compared with and without feature selection and feature extraction techniques to examine their prediction capabilities. Various determinants of credit risk (features) have been extracted to predict credit risk, and these features have been used to train machine learning models. Findings revealed that the decision tree algorithm had the highest performance, with the lowest mean absolute error (MSE) value of 0.1637 and the lowest root mean squared error (RMSE) value of 0.2158. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Unsupervised Feature Selection Approach for Smartwatches
Traditional feature selection methods can be time-consuming and labor-intensive, especially with large datasets. This studys unsupervised feature selection approach can automate the process and help identify important features preferred by a particular segment of users. The unsupervised feature selection method is applied for smartwatches. Smartwatches continue to gain popularity. It is important to understand which features are most important to users to design and develop smartwatches that are more engaging, user-friendly, and meet the needs and preferences of their target audience. The rapid pace of technological innovation in the smartwatch industry means that new features and functionalities are constantly being developed. Multi-cluster feature selection, Laplacian score, and unsupervised spectral feature are used. Conjoint analysis is done on the most common features in all three selection methods. The unsupervised feature selection technique is used for identifying the relevant and important features of new smartwatch users.The practical implication of the research is in the application of the technique in the new product design of smartwatches. The result of the study also informs smartwatch manufacturers and developers on the features they need to prioritize and invest in. This can ultimately result in better and more user-friendly smartwatches and a good overall experience for the user. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Disaster resilience of flood in Kerala, India
Kerala, the southern state in the Indian peninsula, has been affected by floods for the last three consecutive years. Changing weather patterns leading to heavy monsoon and development without considering the ecological vulnerabilities of the region has been pointed out as the reasons for flooding. Displaced communities, the destruction of agricultural and industrial enterprises, and health concerns have made disaster management a challenge for communities and governments alike. Even though there were lots of difficulties, the way Keralites came out of all these miseries and their adaptation was really inexplicable and always provided scope for research in that area. This paper focuses on examining the flooding pattern and impact of floods in Kerala, India and assessing the resilience capacity of the affected community. Self-developed questionnaires were used to gather data from the flood-affected population in the most flood-affected districts in Kerala. To gauge the respondents' opinions, the questionnaire used a five-point variable Likert scale. When all was said and done, 260 valid questionnaires were successfully retrieved. The study found that communities show resilience to flood with partnership and decentralised management of disasters. The study could help recognise the strategies for building resilient communities through policy intervention and civil society participation. Published under licence by IOP Publishing Ltd. -
A Survey on Feature Selection, Classification, and Optimization Techniques for EEG-Based BrainComputer Interface
In braincomputer interface (BCI) systems, the electroencephalography (EEG) signal is extensively utilized, as the recording of EEG brain signals is having relatively low cost, the potentiality for user mobility, high time resolution, and non-invasive nature. The EEG features are extracted by the BCI to execute commands. In the feature set obtained, the computational complexity increases, and poor classifier generalization can be caused by the utilization of a lot of overlapping features. The irrelevant features accumulation could be avoided with the feature selection procedures application. The feature selection algorithms are utilized to select diverse features for each classifier. Classifiers are the algorithms that are run to attain the classification. The researchers have examined diverse classifier implementation techniques to identify the feature vectors class. A review of EEG-BCI techniques available in the literature for feature selection, classifiers, and optimization algorithms is presented in this work. The research challenges, gaps, and limitations are identified in this paper. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Genetic Algorithm-Based Optimization ofUNet forBreast Cancer Classification: A Lightweight andEfficient Approach forIoT Devices
IoT devices are widely used in medical domain for detection of high blood sugar and life threatening disease such as cancer. Breast cancer is one of the most challenging type of cancer which not only affects women but in some cases men also. Deep learning is one of the widely used technology which provides efficient classification of cancerous lumps but it is not useful for IoT devices as the devices lack resources such as storage and computation. For the suitability in IoT devices, in this work, we are compressing UNet, the popular semantic segmentation technique, for the pixel-wise classification of breast cancer. For compressing the deep learning model, we use genetic algorithm which removes the unwanted layers and hidden units in the existing UNet model. We have evaluated the proposed model and compared with the existing model(s) and found that the proposed compression technique suppresses the storage requirement to 77.1%. Additionally, it also improves the inference time by 3.82without compromising the accuracy. We conclude that the primary reason of inference time improvement is the requirement of less number of weight and bias by the proposed model. The Author(s), under exclusive license to Springer Nature Switzerland AG 2024. -
Blockchain Empowered IVF: Revolutionizing Efficiency and Trust Through Smart Contracts
Couples who are having trouble becoming pregnant now have hope thanks to in vitro fertilization (IVF), a revolutionary medical advancement. However, the IVF procedure calls for a large number of stakeholders, intricate paperwork, and highly confidential management of information that frequently results in inaccuracies, mistakes, and worries about data confidentiality and confidence. In this study, the revolutionary potential of the blockchain and smart contracts enabling the treatment of IVF is investigated. The IVF procedure may be accelerated by utilizing smart contracts, resulting in improved effectiveness, openness, and confidence among everybody involved. The paper explores the primary advantages of using smart agreements in IVF, including automation, implementing obligations under contracts, doing away with middlemen, assuring confidentiality and anonymity, and enabling safe and auditable operations. The implementation of electronic agreements and blockchain-based technologies in the discipline of IVF is also investigated, along with the problems it may face and possible alternatives. This study offers insightful information about the use of intelligent agreements and blockchain technology in the field of IVF, accompanied by conducting an in-depth evaluation of the literature on the topic, research papers, and interviews with professionals. The results demonstrate the possibility of lower prices, more accessibility, higher success rates, and better patient experiences in the IVF field. In general, this study intends to illuminate how blockchain and smart contracts have revolutionized IVF technological advances, opening the door for a more effective, transparent, and reliable IVF procedure. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
A Systematic Study on Unimodal and Multimodal Human Computer Interface for Emotion Recognition
A systematic study for human-computer interface (HCI) for emotion recognition is presented in this paper, with a focus on various methods used to identify and interpret human emotions. It delves into various methods used to identify and interpret human emotions and highlights the limitations of unimodal HCI for emotion recognition systems. The paper emphasizes the benefits of multimodal HCI and how combining different types of data can lead to more accurate results. Additionally, it highlights the importance of using multiple modalities for emotion recognition. The study has significant implications for mental health assessments and interventions as it offers insights into the latest techniques and advancements in emotion recognition. Future research can use these insights to improve the accuracy of emotion recognition systems, ultimately leading to better mental health assessments and interventions. Overall, the paper provides a valuable contribution to the field of HCI and emotion recognition, and it underscores the importance of taking a multimodal approach for this critical area of research. The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.