Browse Items (11855 total)
Sort by:
-
An Empirical and Statistical Analysis of Classification Algorithms Used in Heart Attack Forecasting
The risk of dying from a heart attack is high everywhere in the world. This is based on the fact that every forty seconds, someone dies from a myocardial infarction. In this paper, heart attack is predicted with the help of dataset sourced from UCI Machine Learning Repository. The dataset analyses 13 attributes of 303 patients. The categorization method of Data Mining helps predict if a person will have a heart attack based on how they live their lives. An empirical and statistical analysis of different classification methods like the Support Vector Machine (SVM) Algorithm, Random Forest (RF) Algorithm, K-Nearest Neighbour (KNN) Algorithm, Logistic Regression (LR) Algorithm, and Decision Tree (DT) Algorithm is used as classifiers for effective prediction of the disease. The research study showed classification accuracy of 90% using KNN Algorithm. The Author(s), under exclusive license to Springer Nature Switzerland AG 2024. -
Review and Design of Integrated Dashboard Model for Performance Measurements
This article presents a new approach for performance measurement in organizations, integrating the analytic hierarchy process (AHP) and objective matrix (OM) with the balanced scorecard (BSC) dashboard model. This comprehensive framework prioritizes strategic objectives, establishes performance measures, and provides visual representations of progress over time. A case study illustrates the methods effectiveness, offering a holistic view of organizational performance. The article contributes significantly to performance measurement and management, providing a practical and comprehensive assessment framework. Additionally, the project focuses on creating an intuitive dashboard for Fursa Foods Ltd. Using IoT technology, it delivers real-time insights into environmental variables affecting rice processing. The dashboard allows data storage, graphical representations, and other visualizations using Python, enhancing production oversight for the company. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Arabica Coffee Bean Grading into Specialty and Commodity Type Based on Quality Using Visual Inspection
Expanding potential of coffee consumers to seek out the freshest and best flavors is a cause for the rise of specialty coffee inthe market. Specialty coffee is grown and harvestedmaintaining an emphasis on quality and clarity of flavor, whereas commodity coffee is harvested for caffeine content. Within those inclusive categories, arabica and robusta are the two types of main branches of coffee that weencounter in the coffee market. Specialty coffees differ significantly from conventional coffees in that they are cultivated at higher altitudes, can be traced, and are professionally processed after being harvested. The quality is constantly examined and understood at every stage, from growth to brewing. Green arabica quality is assessed by counting the defective beans present in the sample. These defects can be primary (Category I) or secondary (Category II). If the primary defects are null and less than five secondary defects, coffee is said to be a specialty.Prior research has been done on classifying the coffee species and differentiating good beans from bad beans. Our research involves the combination of machine learning like K-NN and deep learning convolutional neural networks for classifying specialty coffee from commodity type using computer vision. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Multimodal Face and Ear Recognition Using Feature Level and Score Level Fusion Approach
Recent years have seen a significant increase in attention in multimodal biometric systems for personal identification especially in unconstrained environments. This paper presents a multimodal recognition system by combining feature level fusion of ear and profile face images. Multimodal biometric systems by combining face and ear can be used in an extensive range of applications because we can capture both the biometrics in a non-intrusive manner. Local texture feature descriptor, BSIF is used to extract discriminative features from biometric templates. Feature level and score level fusion is experimented to improve the performance of the system. Experimental results on different public datasets like GTAV, FEI, etc., show that the proposed method gives better performance in recognition results than individual modality. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Improving Speaker Gender Detection by Combining Pitch and SDC
Gender detection is helpful in various applications, such as speaker and emotion recognition, which helps with online learning, telecom caller identification, etc. This process is also used in speech analysis and initiating human-machine interaction. Gender detection is a complex process but an essential part of the digital world dealing with voice. The proposed approach is to detect gender from a speech by combining acoustic features like shifted delta cepstral (SDC) and pitch. The first step is preprocessing the speech sample to retrieve valid speech data. The second step is to calculate the pitch and SDC for each frame. The multifeature fusion method combines the speech features, and the XGBoost model is applied to detect gender. This approach results in accuracy rates of 99.44 and 99.37% with the help of RAVDESS and TIMIT datasets compared to the pre-defined methods. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Forex Analysis on USD to INR Conversion: A Comparative Analysis of Multiple Statistical and Machine Learning Algorithms
Foreign Currency Exchange (FOREX) engages a major role in world economy and the international market. It is a vast study based on determining whether or not to wait, buy or sell on a trading currency pair. The main objective is to predict the future currency prices using historical data in order to make more informed and accurate investment decisions for business traders and monetary market. This work experimented and implements ten machine learning strategies namely Random Forest, Decision Tree, Support vector regressor (SVM), Linear SVM, Linear Regression, Ridge, Lasso, K-Nearest Neighbor (KNN), Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) to assess the historical data and help the traders to invest in foreign currency exchange. The dataset used to validate and verify the machine learning algorithms is available in public domain and it is the daily Foreign Currency Exchange price of United States Dollars (USD) to Indian Rupees (INR). The experimented result shows that the Long Short-Term Memory (LSTM) model performs a bit better than the other machine learning models for this particular case. This work straight away does not reject the other methods it rather needs more experimental analysis with other models that has changed architecture and different dataset. 2024 IEEE. -
Secure Identity Based Authentication for Emergency Communications
The Vehicular Ad Hoc Network (VANET) offers secure data transmission between vehicles with the support of reliable authorities and RSUs. RSUs are fully damaged in emergency scenarios like natural catastrophes and are unable to provide the needed services. Vehicles in this scenario must communicate safely without RSUs. Hence, this study suggests a secure and reliable identity-based authentication technique for emergency scenarios. To provide secure vehicle-to-vehicle communication without RSUs, ECC-based IBS is utilized. Additionally, it offers security features like message integrity, privacy protection, and authentication. It is also resistant to attacks depending on authentication and privacy. The proposed technique performs efficiently with less communication and computing cost when its performance is compared with recent schemes. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
A Review on Deep Learning Algorithms in the Detection of Autism Spectrum Disorder
Autism spectrum disorder (ASD) is a neurodisorder that has an impact on how people interact and communicate with each other for the rest of their lives. Most autistic symptoms appear throughout the first two years of a child's life. This is why autism is called a behavioral disease. If you have a child with ASD, the problem starts in childhood and keeps going through adolescence and adulthood. Deep learning techniques are becoming more common in research on medical diagnosis. In this paper, there is an effort to see if convolutional neural network (CNN), recurrent neural network (RNN), long short-term memory network (LSTM), and a fusion technique known as convolutional recurrent neural network (CRNN) can be used to detect ASD problems in a child, adolescents, and adults. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Enhancing Visual Passwords Using a Grid-Based Graphical Password Authentication to Mitigate Shoulder Surfing
Surfing Shoulder Surfing is a secret phrase-based attack which is a serious worry of protection in data security. Alphanumeric passwords are more helpless to attacks like shoulder surfing, dictionary attacks, etc., than graphical passwords. The creation of more muddled, challenging to-break passwords can be made simpler for clients with graphical authentication by consolidating the visuals and memory-based strategies like recall and recognition. In an imaged-based password, the user can choose pixels from the image to use as a secret key in the grid-based strategy, the user-selected image would show up on the screen with a framework overlay on it, and the client can pick explicit lattices to set their secret phrase. Besides, graphical passwords are powerless against shoulder surfing attacks, and due to this, clients are given a one-time made password via email. We investigated the limitations of image-based and grid-based authentication techniques and propose a grid-based graphical authentication system that addresses the limitations of image-based and grid-based techniques. The results of the grid-based graphical technique, as well as the image-based and grid-based approaches, have likewise been differentiated and analyzed. The convenience objective of our authentication system is to assist users in making better password selections, hence boosting security and broadening the usable password field. This method can be employed in many different contexts, such as forensic labs, banking, military, and other scenarios. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Identification of Phishing URLs Using Machine Learning Models
In this study, we provide a machine learning-based method for identifying phishing URLs. Sixteen features, including Have IP, Have At, URL Length, URL Depth, Non-standard double slash, HTTPS domain, Shortened URL, Hyphen Count, DNS Record, Domain age, Domain active, iFrame, Mouse Over, Right click, Web Forwards, and Label, were extracted from the 600,000 URLs we gathered as a dataset of legitimate and phishing URLs. We then used this dataset to train a variety of machine learning models. These included standalone models such Naive Bayes, Logistic Regression, Decision Trees, and K-Nearest Neighbors (KNN). We also used ensemble models likeHard Voting, XGBoost, Random Forests, and AdaBoost. Finally, we used deep learning models such as Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN).On evaluation of performance metrics like accuracy, precision, recall, train time and prediction time it was found that XGBoost provides the best performance across all categories. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
On Some Graphs Whose Domination Number Is thePerfect Italian Domination Number
Perfect Italian Domination (PID) is a vertex labelling of a graph G by numbers from the set such that a vertex in G labelled 0 has a neighbourhood where the summation of the labels of the vertices in it is precisely 2. The summation of labels on the vertices of the graph which satisfy the PID labelling is known as its PID number, and is the minimum possible PID number of a graph G. We find some characterization of graphs for which . We also find a lower bound for |V(G)|, which satisfies the same. Further, we discuss the graphs that satisfies or . A realisation problem is used to prove that PID cannot be bounded by a scalar multiple of the Domination number. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Analysis of the UAV Flight Logs in Order to Identify Information Security Incidents
The article discusses issues related to the analysis of the UAV flight logs to identify information security incidents that occurred during flights. Existing methods and tools for analyzing logs are described, and sources for obtaining logs are presented. In the main part of the article, first, the parameters important for the analysis are highlighted. The features of analyzing the values in the flight logs for the detection of two types of attacksGPS Spoofing and GPS Jamming are also given. For this purpose, the parameters that are most important for the detection of each of these attacks have been identified, systems of equations have been compiled to analyze these parameters, the calculations of which make it possible to detect the fact of attacks with high efficiency. The paper also presents the developed software that implements a number of functions that allow automating the analysis of flight logs, as well as determining the presence of information security incidents that occurred during the flight. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
On C-Perfection of Tensor Product of Graphs
A graph G is C-perfect if, for each induced subgraph H in G, the induced cycle independence number of H is equal to its induced cycle covering number. Here, the induced cycle independence number of a graph G is the cardinality of the largest vertex subset of G, whose elements do not share a common induced cycle, and induced cycle covering number is the minimum number of induced cycles in G that covers the vertex set of G. C-perfect graphs are characterized as series-parallel graphs that do not contain any induced subdivisions of K2,3, in literature. They are also isomorphic to the class of graphs that has an IC-tree. In this article, we examine the C-perfection of tensor product of graphs, also called direct product or Kronecker product. The structural properties of C-perfect tensor product of graphs are studied. Further, a characterization for C-perfect tensor product of graphs is obtained. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Multimodal Early Fusion Strategy Based on Deep Learning Methods for Cervical Cancer Identification
It is essential to enhance the accuracy of automatic cervical cancer diagnosis by combining multiple forms of information obtained from a patients primary examination. However, existing multimodal systems are not very effective in detecting correlations between different types of data, leading to low sensitivity but high specificity. This study introduces a deep learning system for automatic diagnosis of cervical cancer by incorporating multiple sources of data. First, a convolutional neural network (CNN) to transform the image database to a vector that can be combined with non-image datasets is used. Subsequently, an investigation of jointly the nonlinear connections between all image and non-image data in a deep neural network is performed. Proposed deep learning-based method creates a unified system that takes advantage of both image and non-image data. It achieves an impressive 89.32% sensitivity at 91.6% specificity when diagnosing cervical intraepithelial neoplasia on a wide-ranging dataset. This result is far superior to any single-source system or prior multimodal approaches. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
ICT Policy Reforms for Innovation and Economic Development: A Comparative Study of India and China
The widespread adoption of Information and Communication Technologies (ICTs) has become essential for economic and social growth across the world. This paper aims to examine the impact of ICT policies and reforms on the level of economic development and adoption of ICTs in two countries, India and China. Previous studies have shown the positive impact of ICT adoption on economic growth, productivity, and innovation. However, the effectiveness of specific policy measures in promoting ICT adoption and economic development remains ambiguous to the users of ICT. This paper presents a comparative analysis of the ICT policies and reforms implemented in India and China from 2010 to 2021 and their impact on GDP per capita and internet usage. The study aims to identify and analyze the key ICT policies and reforms implemented in the two countries and examine their impact on economic development. The data for this study have been collected from the World Bank indicators database. The sample consists of the two fastest-growing economies in the world, India and China. The data analysis involves conducting descriptive statistics, correlation, and regression analysis to examine the relationship between ICT policies and reforms and their impact on GDP per capita, internet usage, and research and development expenditure. The findings of this study will contribute to the existing literature on the relationship between ICTs and economic development and provide insights into the policy measures that can promote ICT adoption and economic growth in different contexts. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Evaluation of Virtual Reality Experiential Dimensions using Sentiment Analysis
Experiential technologies like Virtual Reality (VR) are revitalizing the gaming industries through higher immersive and interactive gaming experiences. The immersive technology has a considerable impact on the industry and will evolve simultaneously as the technology continues to update and improve further. Indian tech cities Bangalore, Delhi NCR, Mumbai, Kolkata, Chennai, Pune, and Hyderabad were chosen for the study and the user-generated content was scraped from the top gaming centers of each city. User Generated Content analysis is gaining immense interest among businesses for devising better decision-making and marketing strategies. The study devised an integrated framework comprised of web data scraping, data cleaning, data pre-processing, AI model designing, sentiment analysis, logistic regression model, and support vector machine model. Logistic Regression predicted the sentiment of the text and the Support Vector Machine classified the VR experiential dimensions and helped in understanding the most important dimension for customer satisfaction. The study has found that VR experiences are gaining positive responses among the customers and illusion emerges as the most significant dimension for their satisfaction. 2024 IEEE. -
Integral Transforms andGeneralized Quotient Space ontheTorus
In this chapter, we discuss one of the recent generalization of Schwartz distributions that has significantly influenced the expansion of various mathematical disciplines. Here, we study the space of generalized quotient on the torus. Different integral transforms are investigated on the space of generalized quotients on the torus BS?(Td). The space BS?(Td) is made of both distributions as well as space of hyperfunctions on the torus. Further, by introducing the relation between the Fourier and other integral transforms, the conditional theorems are proved for generalized quotients on tours. Moreover, we study the convergence structure of delta-convergence on the generalized quotient space, and an inversion theorem is proved. The Author(s), under exclusive license to Springer Nature Switzerland AG 2024. -
Hybrid sparse and block-based compressive sensing algorithm for industry based applications
Image reconstructions are a challenging task in MRI images. The performance of the MRI image can be measure by following parameters like mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM). Compromising the above parameters and reconstructing the MRI image leads to false diagnosing. To avoid the false diagnosis, we have combined sparse based compressive sensing and block-based compressive sensing algorithm, and we introduced the hybrid sparse and block-based compressive sensing algorithm (HSBCS). In compressive stage, however, image reconstruction performance is decreased, hence, in the image reconstruction module, we have introduced convex relaxation algorithm. This proposed algorithm is obtained by relaxing some of the constraints of the original problem and meanwhile extending the objective function to the larger space. The performance is compared with the existing algorithm, block-based compressive sensing algorithm (BCS), BCS based on discrete wavelet transform (DWT), and sparse based compress-sensing algorithm (SCS). The experimentation is carried out using BRATS dataset, and the performance of image compression HSBCS evaluated based on SSIM, and PSNR, which attained 56.19 dB, and 0.9812. Copyright 2024 Inderscience Enterprises Ltd. -
Certificate Generation and Validation Using Blockchain
Verifying academic credentials is a standard procedure for employers when making job offers. After the interview procedure is complete, the employer takes a long time to supply the offer letter. The employer must have the certificate authenticated by the organization that issued it to confirm its originality. While confirming the authenticity of a certificate, the employer takes a long time. The selection procedure takes longer overall because of the long process involved in certificate verification. Blockchain offers a verified distributed ledger with a cryptography technique to combat academic certificate forgery to address this issue. The blockchain also offers a standard platform for document storage, access, and minimization of verification time. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
A Lesion Feature Engineering Technique Based on Gaussian Mixture Model to Detect Cervical Cancer
Latest innovations in technology and computer science have opened up ample scope for tremendous advances in the healthcare field. Automated diagnosis of various medical problems has benefitted from advances in machine learning and deep learning models. Cancer diagnosis, prognosis prediction and classification have been the focus of an immense amount of research and development in intelligent systems. One of the major concerns of health and the reason for mortality in women is cervical cancer. It is the fourth most common cancer in women, as well as one of the top reasons of mortality in developing countries. Cervical cancer can be treated completely if it is diagnosed in its early stages. The acetowhite lesions are the critical informative features of the cervix. The current study proposes a novel feature engineering strategy called lesion feature extraction (LFE) followed by a lesion recognition algorithm (LRA) developed using a deep learning strategy embedded with a Gaussian mixture model with expectation maximum (EM) algorithm. The model performed with an accuracy of 0.943, sensitivity of 0.921 and specificity of 0.891. The proposed method will enable early, accurate diagnosis of cervical cancer. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.