Browse Items (11809 total)
Sort by:
-
Exploring the Influence of Service Learning on the Socio-Educational Commitment and Self- Efficacy of Graduate Educators in the Artificial Intelligence (AI) Domain.
This study, conducted by a distinguished university, aims to contribute significantly to the professional development of educators dedicated to creating a fair, sustainable, and socially conscious world. The research focuses on a pedagogical approach using Service Learning to foster civic and social skills in higher education students. The main goal is to examine how graduate students, actively participating in Service-Learning initiatives, develop socio-educational commitment and self-efficacy compared to traditional university volunteering. The study, involving 1562 aspiring educators, employs a quantitative correlational methodology. The hypothesis suggests that Service-Learning leads to more positive outcomes in socio-educational commitment, pedagogical self-efficacy, and crafting instructional materials. The findings, statistically significant (p < 0.01), highlight the increased development of these metrics among participants in Service-Learning programs. 2024 IEEE. -
Analysis and Actions Planned for Programme Outcomes in Outcome Based Education for a Particular Course
In India many of the technical institutions are NBA (National Board of Accreditation) accredited and the accreditation is a way to maintain quality of education. The outcome-based education (OBE) plays an important role in technical education across the world. So, in this research we will show how we can implement the attainment process related to OBE for a particular course. In this paper we will discuss how the course outcome and mapping of course outcome with program outcome can be defined. Then we will discuss the process to calculate the attainment. Finally, the program gaps were identified for that course and actions were suggested. 2024 IEEE. -
Regression Analysis using Machine Learning Algorithms to Predict CO2 Emissions
Precise measurement of fuel consumption and emissions plays an important role in evaluating the environmental effects of materials and stringent emission control methods, especially within the transportation sector. This sector represents a substantial contributor to both global greenhouse gas emissions and the release of hazardous pollutants, making accurate assessment imperative for addressing climate change. The primary objective is to construct accurate predictive models that estimate CO2 emissions based on vehicle attributes, fostering a deeper understanding of the environmental impact of vehicular activities. Leveraging the 'CO2 Emissions-Canada.csv' dataset, the paper embarks on an extensive journey of data preprocessing, exploratory data analysis, and model training. These algorithms are meticulously fine-tuned and evaluated through metrics such as R-squared and mean absolute percentage error, rendering insights into their predictive accuracies. In essence, this paper pioneers a pathway towards environmentally responsible mobility solutions, capitalizing on the fusion of data science and environmental conservation. 2024 Bharati Vidyapeeth, New Delhi. -
A Study of Emotion Classification of Music Lyrics using LSTM Networks
Emotion Recognition is a vital component of human-computer interaction and plays a pivotal role in applications such as sentiment analysis, virtual assistants, and affective computing. Long Short-Term Memory (LSTM) models are a subset of Recurrent Neural Networks (RNNs). It has gained significant popularity for their effectiveness in sequence modeling tasks, including emotion recognition. The study presents a review on the application of Long Short-Term Memory (LSTM) networks for emotion classification using music lyrics. It offers a thorough review of relevant literature and outlines the methodology for implementing LSTM models for emotion recognition. Furthermore, the study emphasizes the significance of hyperparameter tuning in building effective machine-learning models, particularly LSTM-based models. 2024 IEEE. -
Blockchain Integrated Pharmaceutical Cold Chain: An Adoption Perspective
A complex and sensitive chain needs to be appropriately maintained to manage public health and people's lives. This is especially true of the cold pharmaceutical chain. The primary objective of this study is to explain how blockchain adaption might meet a pharmaceutical cold chain's requirements. A comprehensive technological adoption model, partial least square structural equation modeling, and a quantitative cross-sectional survey approach were utilized to identify stakeholder adoption intentions toward a blockchain-enabled cold supply chain. This study provides evidence that blockchain technology has the potential to support the objectives of the cold pharmaceutical chain. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
GWebPositionRank: Unsupervised Graph and Web-based Keyphrase Extraction form BERT Embeddings
Automatic keyphrase extraction is considered a preliminary task in many Natural Language Processing (NLP) applications that attempt to extract the descriptive phrases representing the main content of a document. Owing to the need for a large amount of labelled training data, an unsupervised approach is highly appropriate for keyphrase extraction and ranking. Keyphrase Extraction with BERT Transformers (KeyBERT) leverages the BERT embeddings that utilize the cosine similarity to rank the candidate keyphrases. However, extracting keyphrases based on the fundamental cosine similarity measure does not consider the spatial dimension locally and globally. Hence, this work focuses on enhancing the KeyBERT-based method with a Graph-based WebPositionRank (GWebPositionRank) design. The proposed unsupervised GWebPositionRank is the composition of graph-based ranking, referring to local analysis and web-based ranking, referring to the global analysis. To spatially examine the keyphrases, the proposed approach conducts the keyphrase position analysis at the document level through graph-based ranking and the web level using the WebPositionRank algorithm. Initially, the proposed approach extracts the coarse-grained keyphrases from the KeyBERT model and ranks the extracted keyphrases, the modelling of quality and fine-tuned keyphrases. In the GWebPositionRank method, the quality keyphrase ranking involves the document-level position analysis and four different graph centrality measures in a constructed textual graph for each text document, whereas the fine-tuned keyphrase ranking involves the web-level position analysis and diversity computation for the quality keyphrases extracted from the graph-based ranking method. Thus, the proposed approach extracts a set of potential keyphrases for each document through the advantage of the GWebPositionRank algorithm. The experimental results illustrate that the proposed unsupervised algorithm yielded superior results than the comparative baseline models while testing on the SemEval2017 dataset. 2024 IEEE. -
A Methodology to Formulate Attainment Process of Outcome-based Education for Undergraduate Engineering Degree Programme
The Outcome-Based Education (OBE) has important role in accreditation of any engineering programme. The OBE involves attainment of programme mission, objectives and outcomes. The paper discusses a methodology to calculate attainment of programme educational objectives and programme outcomes. The results of particular batch 2020 were shown. The process would help in implementing OBE in any technical institution approved by AICTE, India. 2024 IEEE. -
Resume Ranking and Shortlisting with DistilBERT and XLM
The research presented in this paper offers a solution to the time-consuming task of manual recruitment process in the field of human resources (HR). Screening resumes is a challenging and crucial responsibility for HR personnel. A single job opening can attract hundreds of applications. HR employees invest additional time in the candidate selection process to identify the most suitable candidate for the position. Shortlisting the best candidates and selecting the appropriate individual for the job can be difficult and time-consuming. The proposed study aims to streamline the process by identifying candidates who closely match the job requirements based on the skills listed in their resumes. Since it is an automated process, the candidate's individual preferences and soft skills remain unaffected by the hiring process. We leverage advanced Natural Language Processing (NLP) models to improve the recruitment process. Specifically, our emphasis lies in the utilization of the distilBERT model and the XLM (Crosslingual Language Model). This paper explores the application of these two models in taking hundreds of resumes for the job as input and providing the ranked resumes fit for the job as output. To refine our approach further, two types of metrics for resume ranking, such as Cosine similarity score and Spatial Euclidean distance, are used, and the results are compared. Intriguingly, distilBERT and XLM result in different sets of top ten ranked resumes, highlighting the nuanced variations in their ranking approaches. 2024 IEEE. -
LBP-GLZM Based Hybrid Model for Classification of Breast Cancer
Classifying mammogram images is difficult because of their complex backgrounds and the differences in resolutions across the images. One of the toughest parts is telling the difference between harmless (benign) and harmful (malignant) tissue. This is hard because the differences between them are incredibly subtle. As a consequence, the distinctive features embedded within tissue patches become not just relevant but critical for the accurate and automatic classification of these images. Traditionally, efforts to automate this classification process have encountered limitations when relying on a singular feature or a restricted set of characteristics. The subtle variations in texture within these images often render such approaches insufficient in achieving high-quality categorization results. Recognizing this, the present investigation undertakes a more comprehensive approach by incorporating distinct feature extraction techniques - specifically, the utilization of Local Binary Pattern (LBP) and Gray Level Zone Matrix (GLZM). These techniques are adept at capturing and delineating the nuanced texture features inherent in mammogram images. By extracting and analyzing these textural nuances, the aim is to construct a hybrid model capable of classifying mammograms into three distinct categories: malignant, benign, and without the necessity for further examination or follow-up. This proposed hybrid model holds significant promise in the field of mammography classification by leveraging the strengths and complementary attributes of multiple feature extraction methods. The integration of LBP and GLZM aims not only to enhance the accuracy of classification but also to improve the robustness of the system in identifying subtle yet crucial differences in tissue textures. Ultimately, the goal is to create a hybrid feature extraction framework that augments the diagnostic capabilities of mammography, providing more precise and reliable categorization of breast tissue for effective medical decision-making and patient care. 2024 IEEE. -
Combining Text Information and Sentiment Dictionary for Sentiment Analysis on Twitter During Covid
Presence of heterogenous huge data leads towards the 'big data' era. Technique's proliferation is rapidly increasing data and making dynamic changes that results in 'big data' world. Progressive transition in technologies and adoption of social media in the society also stepped into the 'big data' epoch. Social media popularity is uprising attention in the community. This platform reduces the communication gap among people. Recently, tweeter use increased with unprecedented rate. Presence of social media like tweeter has broken the boundaries and touches the mountain in generating the unstructured data. It opened research gate with great opportunities for analyzing data and mining 'valuable information'. Sentiment analysis is the most demanding, versatile research to know user viewpoint. Society current trend can be easily observed through social network websites. These opportunities bring challenges that leads to proliferation of tools. This research works to analyze sentiments using tweeter data using Hadoop technology. This study explores the big data arduous tool called Hadoop. Further, it explains the need of Hadoop in present scenario and role of Hadoop in storing ample of data and analyzing it. Hadoop cluster, HDFS, and Hive are also discussed in detail. Researchers enthusiastic work is deeply studied and presented here. Dataset used in performing the experiment is explained briefly. Moreover, this research explains thoroughly the implementation work and provide workflow. Next session provides the experimental results and analyzes of result. Finally, last session concludes the paper, its purpose, and how it can be used in upcoming research. 2024 IEEE. -
Design and Development of Teaching and Learning Tool Using Sign Language Translator to Enhance the Learning Skills for Students With Hearing and Verbal Impairment
This research paper presents a system designed for the students with verbal and hearing impairments by enabling realtime Sign-to-Text and Text-to-Sign Language conversion, with a specific focus on the Indian Sign Language (ISL). The proposed study aligns to the United Nations Sustainable Development Goal (SDG) of Quality Education. The system leverages cutting-edge technologies, MediaPipe for holistic key point extraction encompassing hand and facial movements, and Long Short-Term Memory (LSTM) architecture powered by TensorFlow and Keras for accurate sign language interpretation. This comprehensive approach ensures nuanced aspects of sign language, such as facial expressions and hand movements, are faithfully represented. On the receiving end, the system excels at Text-to-Sign Language conversion, allowing non-sign language users to interact naturally with sign language users through textual input transformed into sign language animations and Sign-to-Text conversion where the information from the sign language users is converted to text which ensures smooth communication. A user-friendly web application, developed using HTML, CSS, and JavaScript, enhances accessibility and intuitive usage for realtime communication. This research represents a significant advancement in assistive technology, promoting inclusivity and communication accessibility. It underlines the transformative potential of innovation infostering a more connected and inclusive world for all, regardless of their hearing abilities 2024 IEEE. -
Design and implementation of Adaptive PI control based dynamic voltage restorer for solar based grid integration
This paper introduces an innovative approach to address voltage fluctuations in solar-based grid integration by implementing an adaptive PI control-based Dynamic Voltage Restorer (DVR). This DVR is engineered to counteract voltage disruptions resulting from grid disturbances and the intermittent nature of solar energy generation. To achieve optimal performance in diverse operating conditions, the adaptive PI controller dynamically adjusts its parameters, adapting to changes in load and solar generation. The system is realized on a digital signal processor (DSP) and evaluated within a laboratory-scale solar-based grid integration setup. The findings reveal that the proposed system effectively mitigates voltage fluctuations, ensuring a stable integration of solar energy into the grid. The adaptive PI control-based DVR outperforms traditional PI control-based DVRs, particularly when dealing with variable solar energy generation. This approach holds significant potential for practical applications in solar-based grid integration systems. 2024 IEEE. -
Predictive Modelling of Heart Disease: Exploring Machine Learning Classification Algorithms
In addressing the critical challenge of early and accurate heart failure diagnosis, this study explores the application of five machine learning models, including XGBoost, Decision Tree, Random Forest, Logistic Regression, and Gaussian Naive Bayes. Employing cross-validation and grid search techniques to enhance generalization, the comparative analysis reveals XGBoost as the standout performer, achieving a remarkable accuracy of 85%. The findings emphasize the significant potential of XGBoost in advancing heart failure diagnosis, paving the way for earlier intervention, and potentially improving patient prognosis. The study suggests that integrating XGBoost into diagnostic processes could represent a valuable and impactful advancement in the realm of heart failure prediction, offering promising avenues for improved healthcare outcomes. 2024 IEEE. -
Regression Analysis as a Metric for Sustainability Development: Validation of Indian Territory
The 2030 Development Agenda styled' Transforming our world The 2030 Agenda for Sustainable Development' was hugged by the transnational locales of the UN General Assembly in 2015. Monitoring the progress of countries towards achieving these pretensions is pivotal for sustainable development. This exploration paper offers an innovative stance toward foretelling the SDG Index of Indian states for the near future times using machine learning ways, logical and visualization tools. The paper focuses on India's sweats towards achieving the SDGs and investigates the factors impacting the SDG performance of individual Indians states. A comprehensive dataset is collected, encompassing a wide range of socio-profitable pointers, demographic data, and environmental criteria applicable to each SDG target. Literal SDG Index scores and corresponding state-specific data are collected to assay and find some trends. The study demonstrates the eventuality of vaticination ways in vaticinating the unborn SDG Index scores of Indian states. The time series graph showcases varying degrees of delicacy across different SDGs, indicating the complexity and diversity of experimental challenges. 2024 IEEE. -
Design & Analysis of CPE Based Fractional Filters
In this paper, a design and analysis of a constant phase element (CPE) based fractional-order filter (FOF) is presented. This paper leverages a voltage differencing transconductance amplifier (VDTA) to design a current-mode fractional-order filter, capable of realizing four types: low-pass, high-pass, band-pass, and band-reject, all with just two VDTAs. The circuit utilizes both a standard integer-order capacitor and a novel fractional-order capacitor. The proposed filter is resistor-less and electronically tunable. Mathematical formulations are outlined for the transfer functions of FOF. All the filter responses are obtained at varying value of ?=0.5,0.6, 0.7, 0.8 and 0.9. All the simulations are carried out using Cadence Virtuoso at 45nm CMOS technology node. 2024 IEEE. -
An Empirical and Statistical Analysis of Fetal Health Classification Using Different Machine Learning Algorithm
The health of both the mother and the baby is affected by how well the fetus is doing during pregnancy, making it a matter of utmost importance. To achieve the best results possible, it is essential to regularly monitor and intervene when needed. While there are many ways to observe the wellbeing of the fetus in the mother's womb, using artificial intelligence (AI) has the potential to enhance accuracy, efficiency, and speed when it comes to diagnosing any issues. This study focuses on developing a machine learning-driven system for accurate fetal health classification. The dataset comprises detailed information on the signs and symptoms of pregnant individuals, particularly those at risk or with emerging fetal health issues. Employing a set of ten machine learning models namely Nae Bayes, Logistic Regression, Decision Tree, Random Forest, KNN, SVM, Gradient Boosting, Linear Discriminant Analysis, Quadratic Discriminant Analysis Light Gradient Boosting Machine (LGBM) along with ensemble-based processes, the Light Gradient Boosting Machine (LGBM) has been identified as a standout performer, accomplishing an accuracy of 96.9%. Furthermore, our exploration demonstrates overall performance like character fashions, signaling promising prospects for sturdy and correct fetal fitness class systems. This study highlights the power of machine learning that could revolutionize prenatal care by identifying fetal health problems early. 2024 IEEE. -
PE-v-SVR based Architecture to Predict and Prevent Low and Slow-Rate DDoS Attacks using Machine Learning
Distributed Denial of Service (DDoS) attacks continue to emerge; low and slow attacks pose a serious threat. These small-scale attacks often evade traditional security protections and increase the risk of long-term outages and loss of service. Our research aims to develop effective predictive models and strategic defences to detect and mitigate slow DDoS attacks. The proposed model combines Power Spectral entropy and V-Support Vector Regression. More importantly, the version achieves the first-class error price in the variety of zero to at least one, demonstrating its effectiveness in detecting and predicting DDoS attacks. Research results show the effectiveness of the proposed design using PSD (power spectral density) entropy and V-SVR. The best mean square error obtained further confirms the ability of the model in this context. V-SVR in low and sluggish DDoS assaults. 2024 Bharati Vidyapeeth, New Delhi. -
Implementation of Movie Recommendation System Using Hybrid Filtering Methods and Sentiment Analysis of Movie Reviews
In present era of digitization of entertainment, immense volume of movies are produced, which results in the necessity of sophisticated recommendation systems. In the streaming platform these systems empower users to discover new and relevant movies, benefiting both viewers and the entertainment industry. This research paper offers a comprehensive method for incorporating movie review sentiment analysis into a hybrid recommendation system. The study focuses on 4890 movies using a broad dataset containing the detailed descriptions of the movies along with the reviews. To employ the demographic filtering, the popularity score of the movies were calculated, then to apply the collaborative filtering, the textual movie descriptions were vectorized using the countvectorizer method. To predict the sentiment of the movie reviews, the high accuracy model "ControX/Sen1"was used. This hybrid recommendation system ranked the movies based on the user's preferences by employing cosine similarity, the sorted list was further filtered with the positive sentiment reviews. By including sentiment analysis, this research advances sophisticated movie recommendation systems by providing a comprehensive method for addressing user preferences and emotional resonance in film selections. 2024 IEEE. -
Identification of Student Programming Patterns through Clickstream Data
In present educational era, teaching programming to the undergraduates is challenging. For an instructor, focusing on each of the aspect of programming like coding language, logical reasoning, debugging errors, troubleshooting code and problem solving is very daunting task. So, educational researchers are identifying ways to easily identify the student's struggles during programming so that timely assistance can be provided. Using programming platforms or software, a lot of programming data is generated in the form of activity logs or clickstream data. Using machine learning along with data analytics over this programming data can reveal programming patterns of students that may help in early interventions. This study focusses on identifying programming patterns of the students through clustering and groups the students into three major categories namely low performers, strugglers, and high scorers. Further, relevant features like test case success, code compile success and failure, finish test etc. that majorly contribute towards the student programming scores are identified through regression analysis. Through this research, educators can early categorize the students based on their programming patterns and provide timely intervention when necessary, ensuring that no student gets left behind in the fast-paced world of programming education. 2024 IEEE. -
Gems of Prediction: From Clarity to Carats - Unveiling Diamond Prices with Machine Learning in Waikato Environment for Knowledge Analysis
Background: This research focuses on using Weka's toolkit to test machine learning models for predicting diamond prices. The complexity of diamond value characteristics, such as carat, cut, color, and clarity, motivates the study to find the most accurate models. The goal is to promote fairer market processes and customer education. Methods used: The research rigorously preprocesses a diamond attributes dataset using Weka for analysis. Various machine learning algorithms are examined, including simple algorithms like Decision Stump and ZeroR, sophisticated models like M5P and REP Tree, and advanced ensemble approaches like Bagging with REP Tree. Model performance is evaluated using train/test splits (80-70-60%) and cross-validation (5-fold and 10-fold) with metrics such as Correlation Coefficient, MAE, and RMSE. Results achieved: The research finds that ensemble approaches, particularly Bagging with REP Tree, outperform simple and sophisticated models in diamond price prediction. These techniques demonstrate higher accuracy and lower error rates, highlighting the need for multiple models to capture the complexity of diamond valuation. Simple models provide benchmarks and insights into dataset trends but are less precise. Concluding remarks: This study contributes to the understanding of machine learning algorithms for diamond price prediction, an important economic valuation subject. It demonstrates the effectiveness of complex data analysis methods using Weka. The research also highlights the accessibility and sophistication of machine learning at the crossroads, with Weka's cutting-edge algorithms making complicated analytical methods more accessible for practical, everyday use. This work adds to the knowledge of the dynamics of diamond prices and the role of machine learning in economic research. 2024 IEEE.