Browse Items (11809 total)
Sort by:
-
Blockchain Computing: Unveiling the Benefits, Overcoming Difficulties, and Exploring Applications in Decentralized Ledger Infrastructure
The protocol known as blockchain, which is composed of blocks, utilizes a decentralized distributed system of nodes (miners). There are three parts to every block: information, which is represented by a hash, and the hash of a previous transaction. In order to regulate data after it has been stored, it is quite difficult to make changes. Mining is compensated for each encrypted function computation they carry out to verify the transaction. This research paper will provide a comprehensive understanding of blockchain-based technologies and how they are applied in a variety of industries, including those that deal with digital currencies, financial services, medical manufacturing, privacy, and a number of other fields. Digital money, notably the cryptocurrency Bitcoin, had previously been one of the most well-known network applications. As there have lately been several studies about the unique utilization of this sort of technology, we will discuss some of these academic works as well as the challenges encountered during the development of these kinds of applications. Blockchain technology is a quickly growing area of database technology that has recently found use in a wide range of industries, including the use of digital money, hospital administration, and other academic subjects. Because of how blockchain technology works and operates, these types of applications are now possible. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
An Intelligent Portfolio Management Scheme Based On Hybrid Deep Reinforcement Learning and Cumulative Prospective Approach
Stock markets retain an extensive role towards economic growth of diverse countries and it is a place where investors invest assured amount to earn more profit and the issuers pursue the investors for project investing. However, it is deliberated as a challenging task to buy and sell because of its explosive and complex nature. The existing portfolio optimization models are primarily focused on just improving the returns whereas, the selection of optimal assets is least focused. Hence, the proposed research article focuses on the integration of stock prediction with the portfolio optimization model (SPPO). Initially, the stock prices for the next period are predicted using the hybrid deep reinforcement learning (DRL) model. Within this prediction model, the gated recurrent unit network (GRUN) model is utilized to simulate the interactions of the agent with the environment. The best actions in the prediction model are determined throughout the prediction process using the quantum differential evolution algorithm (Q-DEA). After the prediction of best assets, the optimal portfolio with the best assets is selected using the cumulative prospect theory (CPT) model. The work will be implemented in python and evaluated using the NIFTY-50 Stock Market Data (2000 -2021) dataset. Minimal error rates of 0.130, 0.114, 0.148 and 0.153 is obtained by the proposed model in case of MSE, MAE, RMSE and MAPE. 2024 IEEE. -
Hybrid Approach for Multi-Classification of News Documents Using Artificial Intelligence
In the context of news articles, text classification is essential for organizing and retrieving useful information from massive amounts of textual data. Effectively categorizing news titles has gotten more challenging due to the development of online news outlets and the ongoing production of news. A multi-text classification technique primarily targeted at news titles is shown. The suggested approach automates the classification of news titles into predetermined classes or subjects by combining deep learning approaches and natural language processing (NLP) algorithms. Data preprocessing, which includes text normalization, tokenization, and feature extraction, is the first step in the procedure. This prepares the raw news titles for deep learning models. 2024 IEEE. -
Investigation on Preserving Privacy of Electronic Medical Record using Split Learning
Artificial Intelligence is deployed in multiple areas, including healthcare. Utmost research is done in AI enabled healthcare industry because of the demands like accurate result, data security, exact prediction, huge volume of data, etc. In conventional deep learning models, the training happens with the dataset that are stored in a single device. This requires a huge storage space and highly efficient machines to train the data. Usage of big data, demands for innovative models that can be deployed and used in confined storage. Split learning is one such collaborative distributed deep learning model that allows the data to be stored in a split fashion. Split learning supports desirable features like less storage, more privacy to raw data, ability to work with resource constraints, etc., making it suitable for storing electronic medical record of patients. This paper discusses the advantages of using split learning for healthcare, the possible configurations of split learning that supports data privacy in healthcare and finally discusses the open research challenges in implementing split learning for healthcare. 2024 The Authors. Published by Elsevier B.V. -
A Novel Ensemble based Model for Intrusion Detection System
In the present interconnected world, the increasing reliance on computer networks has made them susceptible to multiple security threats and intrusions. Intrusion Detection Systems (IDS) is essential for shielding these networks by detecting and mitigating potential threats in real-time. This research paper presents an in-depth study of employing the Random Forest algorithm for building an effective intrusion detection System. The proposed IDS uses the power of the Random Forest algorithm, a popular ensemble learning technique, to detect various types of intrusions in network traffic effectively. The algorithm integrates more than one decision trees to produce a robust and accurate classifier, capable of handling large-scale and complex datasets typical of network traffic. The proposed system can be used in various industries and sectors to protect critical assets, ensuring the uninterrupted operation of computer networks. Evolving cyber threats have encouraged further research into ensemble analytics methods to increase the resilience of Intrusion Detection Systems in an ever-changing threat landscape. 2024 IEEE. -
Predictive Modeling of Solar Energy Production: A Comparative Analysis of Machine Learning and Time Series Approaches
In this study, we dive into the world of renewable energy, specifically focusing on predicting solar energy output, which is a crucial part of managing renewable energy resources. We recognize that solar energy production is heavily influenced by a range of environmental factors. To effectively manage energy usage and the power grid, it's vital to have accurate forecasting methods. Our main goal here is to delve into various predictive modeling techniques, encompassing both machine learning and time series analysis, and evaluate their effectiveness in forecasting solar energy production. Our study seeks to address this by developing robust models capable of capturing these complex dynamics and providing dependable forecasts. We took a comparative route in this research, putting three different models to the test: Random Forest Regressor, a streamlined version of XGBoost, and ARIMA. Our findings revealed that both the Random Forest and XGBoost models showed similar levels of performance, with XGBoost having a slight edge in terms of RMSE.. By providing a comprehensive comparison of these different modeling techniques, our research makes a significant contribution to the field of renewable energy forecasting. We believe this study will be immensely helpful for professionals and researchers in picking the most suitable models for solar energy prediction, given their unique strengths and limitations. 2024 IEEE. -
Artificial Intelligence-Based L&E-Refiner forBlind Learners
An Artificial Intelligence (AI)-based scribe known as L &E Refiner for blind learners is a technology that utilizes natural language processing and machine learning techniques to automatically transcribe lectures, books, and other written materials into audio format. This system is designed to provide an accessible learning experience for blind students, allowing them to easily access and interact with educational content. The AI scribe is able to recognize and understand various forms of text, including handwriting, printed text, and digital documents, and convert them into speech output that blind learners easily comprehend. This technology has the potential to significantly improve the accessibility and inclusion of education for blind individuals. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Detecting Cyberbullying in Twitter: A Multi-Model Approach
With cyberbullying surging across social media, this study investigates the effectiveness of four prominent deep learning models - CNN, Bi-LSTM, GRU, and LSTM - in identifying cyberbullying within Twitter texts. Driven by the urgent need for robust tools, this research aims to enrich the field of cyberbullying detection by thoroughly evaluating these models' capabilities. A dataset of Twitter texts served as the training ground, rigorously preprocessed to ensure optimal model compatibility. Each model, CNN, Bi-LSTM, GRU, and LSTM, underwent independent training and evaluation, revealing distinct performance levels: CNN achieved the highest accuracy at 83.10%, followed by Bi-LSTM (81.90%), GRU (81.73%), and LSTM (16.07%). These differences highlight the unique strengths of each architecture in analysing and representing text data. The findings highlight the CNN model's superior performance, indicating its potential as a highly effective tool for Twitter-based cyberbullying detection. While the deep learning models explored here offer promising avenues for detecting cyberbullying on Twitter, their performance highlights the complexities inherent in this task. The limited space of tweets can often obscure the true intent behind words, making accurate identification a nuanced challenge. Despite this, the CNN model's robust performance suggests that carefully chosen architectures hold significant potential for combating online harassment. This research paves the way for further explorations in harnessing the power of AI to create a safer and more civil online experience where respectful communication can flourish even within the constraints of concision. 2024 IEEE. -
Leveraging Deep Autoencoders for Security in Big Data Framework: An Unsupervised Cloud Computing Approach
Abnormalities recognition in bank transaction big data is the number one issue for stability of financial security system. Due to the rate digital transactions are increasing it is vital to have effective ways. Encryption with deep autoencoder model should be explored as it involves trained neural networks that learn such patterns from the complex transaction data. The following paper demonstrates application of anomaly detection using deep autoencoders in the banking big data transactions. It focuses on the theoretical bases, network design, preparedness and the testing measures for deep autoencoders. On the other hand, it solves problems such as high dimensionality and imbalanced dataset. This research paper shows deep autoencoders effectiveness in deep learning and how the network identifies different fraudulent big data transactions, money laundry and unauthorized access. It also encompasses recent developments of cloud environments and future methods using deep autoencoders including the fact that constant search for new possible solutions is a must. The insights delivered contribute to the discourse in financial security community, which incorporates researchers, practitioners, and policymakers involved in anomaly detection in cloud. 2024 IEEE. -
ATRSI: Automatic Tag Recommendation for Videos Encompassing Semantic Intelligence
There is a requirement for an automatic semantic-oriented framework for Web video tagging in the epoch of Web 3.0, as Web 3.0 is much denser, intelligent, but more cohesive compared to Web 2.0. This paper proposes the ATRSI framework which is the Automatic Tag Recommender framework which encompasses the semantic-oriented Artificial Intelligence that outgrows the dataset by making the use of informative terms using TF-IDF and bag of words model to build the intermediate semantic network which is further organized using an Lin similarity measure and is optimized using red deer optimization by encompassing the entities from the World Wide Web to focused crawling. RNN is a classifier that is used for the classification of the dataset, it is a strong deep-learning classifier. Semantic-oriented Intelligence is achieved using the CoSim rank and Morisita's overlap index. The bag of lightweight graphs is obtained from the semantic network which is an intermediate knowledge representation mechanism that is further embedded in the intrinsic model. A semantically consistent system for video recommendation, ATRSI outperforms the other baseline models in terms of average accuracy, average precision and F-measure for a variety of recommendations. 2024 IEEE. -
Effective Techniques Non-linear Dynamic Model Calibration using CNN
This paper proposes an efficient method to estimate nonlinear dynamic models using convolutional neural networks (CNNs). The proposed method combines the power of statistical optimization and machine learning to obtain more accurate and efficient estimates of complex models by training CNNs to recognize maps featuring input models and between results, thereby reducing the computational cost of measurements and then using the trained CNN to generate surrogate models -The method can determine accuracy for a range of exposed cases in various nonlinear dynamic models, including differential equation model of chemical reactor and stochastic model of biological systems The results show that the proposed methods are effective for measuring these models, if at most with such accuracy and reducing the computational cost in terms of both frequency and magnitude, the proposed method represents a promising method for estimating nonlinear dynamic models, offering significant advantages in terms of accuracy, efficiency and in scalability 2024 IEEE. -
Handwritten Telugu Character Recognition Using Machine Learning
The Telugu language is the most prominent representative within the Dravidian language family, predominantly spoken in the southeastern regions of India. Handwritten character recognition in Telugu has significant applications across diverse fields such as healthcare, administration, education, and paleography. Despite its importance, the Telugu script differs significantly from English, presenting distinct challenges in recognizing characters due to its complexity and diverse character shapes. This study explores the application of machine learning, particularly delving into deep learning techniques, to improve the accuracy of Telugu character recognition. This paper proposes a model to recognize handwritten Telugu characters using Convolutional Neural Network (CNN). The proposed study demonstrates the accuracy in identifying diverse handwritten Telugu characters. We assess the system's performance against conventional and machine learning methodologies and preprocess an extensive dataset to guarantee strong model training. The proposed model excels in accurately predicting visually similar but distinct characters, achieving an impressive accuracy rate of 96.96%. 2024 IEEE. -
Intelligent Agents System for Vegetable Plant Disease Detection Using MDTW-LSTM Model
When it comes to agricultural output, nation, India, ranks first in the world, and agriculture is unparalleled. The need to categorize and trade agricultural goods is paramount. Manual organization, which is tedious and laborious, is not a choice. When agricultural products are graded automatically, a lot of time is saved. The application of image processing techniques facilitates the examination and evaluation of the products. A technique for identifying diseased vegetables is the focus of this effort. Feature extraction, preprocessing, segmentation, and training the model are all heavily dependent on sequence. Among the preprocessing technologies at disposal are image segmentation and filtering. Using Kapur's thresholding based segmentation method, the image's sick areas can be located during the segmentation process. Use k-means clustering for feature extraction to identify vegetable plant diseases. The training of an MDTW-LSTM model relies heavily on feature selection. In terms of performance, the proposed method surpasses two cutting-edge algorithms: LSTM and DTW. The results showed an accuracy of 97.35 percent, indicating a remarkable improvement. 2024 IEEE. -
Impact of Demographicson Green Behavior
The need to preserve the environment, lower pollution levels, expand the amount of green space, and encourage environmentally responsible behavior has grown in recent years, all of which will contribute to a more sustainable society. This study seeks to determine the probability that demographic variables of students in higher education in Delhi NCR will influence their desire to participate in environmental education. Binary Logistics Regression has been used on the data gathered from 302 respondents and the model has been found to have been a good one as shown by Omnibus Test. It is found that 'Gender' and 'Field of Study' are the two most significant variables, which have a higher probability impact on students' willingness to join environmental education. Specifically, female students vis-vis male students and students with engineering & and science background vis-vis other students have more chance of joining environmental education courses. 2024 IEEE. -
A Comprehensive Methodical Strategy for Forecasting Anticipated Time of Delivery in OnlineFood Delivery Organizations
Determining the cost of shipping has long been a cornerstone of urban logistics, but today's effective outcomes need acceptable precision. Around the globe, internet-based meal ordering and distribution services have surpassed public expectations; for example, in India, platform-to-consumer distributions and delivery of food and drinks reached an astounding amount of more than 290 million transactions in 2023. Businesses are required to provide customers with precise details on the time it will take for their food to be delivered, starting from the moment the purchase is placed until it reaches the customer's door. Customers won't place orders if the result measure is greater than the actual delivery date, but a greater number of consumers are going to contact the customer service line if the period of waiting falls shorter than their actual shipment period. This study's primary goals are to identify critical variables that affect the availability of nutritious food inspiring leaders as well as to provide an approach for making accurate predictions. Analyzing and contrasting the primary effects and challenges of distribution and shipping in the nation's many different sectors. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Cultivating Digital Fields: A Cloud-Centric Blueprint for Stakeholder Engagement in the Indian Agriculture
This paper examines the potential of cloud computing to revolutionize the Indian agricultural sector, government operations, and rural connectivity. It highlights the benefits and challenges associated with cloud computing in agriculture and proposes a structured model to implement it effectively. Cloud computing allows farmers to access real-time information, make informed decisions, and improve access to markets. The paper examines the difficulties and advantages of cloud computing for the government in transitioning to a cloud-based version of itself for its operations. Additionally, it draws attention to specific areas related to the agricultural sector in India and certain applications offered by the government to enhance the consumer experience for stakeholders. The Government of India has demonstrated its commitment to developing technology-driven agriculture through e-NAM, Kisan Suvidha, and Agri-market initiatives. However, some challenges must be addressed to ensure the successful adoption of cloud computing in the agricultural sector. The proposed implementation model outlines the essential stages of the process, including the needs assessment, the selection of cloud providers, the automation of workflow, the modernization of applications, the implementation of security measures, and the implementation of continuous improvement. The model emphasizes the importance of training, feedback mechanisms, and collaboration. Furthermore, the paper underscores the need for a specific feedback system and grievance redress for agricultural cloud applications to enhance user experiences. To reap the full benefits of cloud computing in the Indian agricultural sector, a comprehensive strategy is necessary. This strategy necessitates technology adoption, awareness-raising, education, and stakeholder engagement. Utilizing cloud technologies, the Indian agricultural sector can realize sustainable growth, increased efficiency, and equitable development. This paper emphasizes the importance of cloud computing in transforming the Indian agrarian landscape. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
AI Driven Finite Element Analysis on Spur Gear Assembly to Enhance the Fatigue Life and Minimized the Contact Pressure*
The major goal of the current research is to carry out mathematical and finite element analysis on spur gear assemblage to improve fatigue life as well as minimize contact pressure among contact teeth by modifying the face width of spur gear. AI automates FEA simulations and analyses, speeding up the design process. The investigation presented above was conducted using three separate 3d models of driving gear. The equivalent stress for the spur gear assembly of design-3 has decreased up to 13.45% in comparison to design-1, and the fatigue life has increased up to 81.59% at 600 N m, according to the results. Further AI models shall predict stress distribution, contact pressure, and other relevant factors in spur gear assemblies. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Smart Skin Cancer Diagnosis: Integrating SCA-RELM Method for Enhanced Accuracy
One out of three cancers now is skin cancer, a figure that has exploded in the previous several decades. Melanoma is the worst kind of skin cancer and occurs in 4% of cases. It is also the most aggressive type. The health and economic impact of skin cancer is substantial, especially given its rising incidence and fatality rates. However, with early detection and treatment, the 5-year survival rate for skin cancer patients is much improved. As a result, a lot of money has gone into studying the disease and developing methods for early diagnosis in the hopes of stopping the rising tide of cancer cases and deaths, particularly melanoma. In order to enhance non-invasive skin cancer diagnosis, this research examines a range of optical modalities that have been utilized in recent years. The suggested system uses image processing to identify, remove, and categorize lesions from dermoscopy images; this system will greatly aid in the detection of melanoma, a type of skin cancer. A median filter is employed for preprocessing. Using watershed and clever edge detector, it can segment objects. The BOF plus SURF method is employed for feature extraction. It employs SCA-RELM, which performs better than the other two conventional approaches, to train the model. 2024 IEEE. -
Catalyzing Security and Efficiency: Blockchains Integration with IoT and Cloud Computing
Blockchain technology is a system that combines a number of computer technologies, encryption, shared storage, namely intelligent contracts, consensus processes, and peer-to-peer (P2P) networks. This research project begins with a description of the architecture of blockchains, followed by a comparison of the various consensus techniques used across various blockchain implementations. This studys scope includes a thorough analysis of the entire blockchain ecosystem. Our investigation also explores the complexity of the consensus models built into different blockchain platforms. This research painstakingly dissects these elements to pinpoint crucial elements that are essential for propelling the adoption and development of blockchain technology. In conclusion, our research corrects misconceptions about blockchains expansive potential and helps to direct the development of the technology across a wide range of industries. These results are significant for determining the future direction of blockchains enduring influence. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024. -
Exploring the Balance Between Automated Decision-Making and Human Judgment in Managerial Contexts
The study delves into the dynamic and evolving discussion surrounding the balance between automated and human judgment within the realm of managerial decision-making. The primary objective of this research is to gain insight into how AI is evolving to mitigate ethical biases that are inherent in managerial decision-making. To accomplish this goal, the study adopts a theoretical approach, supported by qualitative analysis through an extensive review of existing literature. By systematically investigating AI techniques for managerial decision-making, the research contributes to a broader understanding of how AI is progressing to promote ethically sound managerial decisions in future. The findings from this study are pertinent to business leaders, policymakers, and researchers, offering guidance as they navigate the intricate relationship between automation and human judgment in todays managerial landscape. The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024.