Browse Items (11810 total)
Sort by:
-
Deconstruction of representation of working women in Indian femvertisements /
Femvertisements are advertisements wherein brands use the concepts of feminism, women empowerment etc. These advertisements talk about breaking the stereotypes that women are confined to in our society. The irony comes when these empowering advertisements themselves have hidden stereotypes that invariably end up doing more harm than good. -
Decoupling Identification Method of Continuous Working Conditions of Diesel Engines Based on a Graph Self-Attention Network
For diesel engine malfunction detection, machine learning-based intelligent detection approaches have made great strides, but some performance deterioration is also observed due to the significant ambient noise and the change in operating circumstances in the actual application situations. Diesel engine fault diagnostic models can be negatively impacted by complex and erratic working circumstances. Identifying the working condition can provide as a baseline for the current unit operating state, which is crucial information when trying to pinpoint the source of an issue. Many existing techniques for identifying operational states use power as an identifier, segmenting it into discrete intervals from which the current state's power may be derived using a classification model. However, the working condition characteristics should be constant, and defining it exclusively in terms of power would lead to the connection of speed and load elements. In this study, we offer a regular working situation model that is independent of speed and load characteristics, and we use a graph self-attention network to construct a model for identifying the working condition. On a diesel engine research bench, a vast amount of experimental data is acquired for training and testing models, including 32 different operating situations under normal and typical fault scenarios. The R2 adj values of 99.70% and 99.27% for normal and typical defect experimental data, correspondingly, demonstrate the efficacy of the suggested technique under the circumstance of uninformed nnerating situations. 2023 IEEE. -
Decrypting Free Expression: AMMA-WCC Conflict and Comment Culture Rattling the Malayalam Film Industry
The chapter examines the gender-power dynamics in the Malayalam film industry through an analysis of a skit, a YouTube video and trolls related to a recent controversy involving the Association of Malayalam Movies Artistes (AMMA) and the Women in Cinema Collective (WCC). This analysis is supported by an exploration of the historical roots of sexism in the industry and a discussion about how it continues to perpetuate sexism in the industry. The study also investigates the emergence of WCC as a response to the actresss molestation case and the subsequent division within the industry. The research focuses on the Sthree Shaktheekaranam skit performed at AMMAs cultural show, a YouTube video, Oru Feminichi Kadha and a sample of trolls which targeted the WCC and women who refuse to comply with AMMAs patriarchal bias. The chapter analyses the content of these representations, highlighting the power play structuring them. The study sheds light on the contradictions and hypocrisy within the industry and its portrayal of progressive values while perpetuating regressive gender norms. 2024 selection and editorial matter, Francis Philip Barclay and Kaifia Ancer Laskar; individual chapters, the contributors. -
Deducing Water Quality Index (WQI) by Comparative Supervised Machine Learning Regression Techniques for India Region
Water quality is of paramount importance for the wellbeing of the society at large. It plays avery important role in maintaining the health of the living being. Several attributes like biological oxygen demand (BOD), power of hydrogen (pH), dissolved oxygen (DO) content, nitrate content (NC) and so on help to identify the appropriateness of the water to be used for different purposes. In this research study, the focus is to deduce the Water Quality Index (WQI) by means of artificial intelligence (AI)-based machine learning (ML) models. Six parameters, namely BOD, DO, pH, NC, total coliform (CO) and electrical conductivity (EC) are used to measure, analyze and predict WQI using nine supervised regression machine learning techniques. Bayesian Ridge regression (BRR) and automatic relevance determination regression (ARD regression) yielded a low mean squared error (MSE) value when compared to other regression techniques. ARD regression model parameters as independent a priori so that non-zero coefficients do not exploit vectors that are not just sparse, but they are dependent. In the estimation process, BRR contains regularization parameters; regularization parameters are not set hard but are adjusted to the relevant data. Due to these reasons, ARD regression and BRR models performed better. 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Deep Belief Network-Based User and Entity Behavior Analytics (UEBA) for Web Applications
Machine learning (ML) is currently a crucial tool in the field of cyber security. Through the identification of patterns, the mapping of cybercrime in real time, and the execution of in-depth penetration tests, ML is able to counter cyber threats and strengthen security infrastructure. Security in any organization depends on monitoring and analyzing user actions and behaviors. Due to the fact that it frequently avoids security precautions and does not trigger any alerts or flags, it is much more challenging to detect than traditional malicious network activity. ML is an important and rapidly developing anomaly detection field in order to protect user security and privacy, a wide range of applications, including various social media platforms, have incorporated cutting-edge techniques to detect anomalies. A social network is a platform where various social groups can interact, express themselves, and share pertinent content. By spreading propaganda, unwelcome messages, false information, fake news, and rumours, as well as by posting harmful links, this social network also encourages deviant behavior. In this research, we introduce Deep Belief Network (DBN) with Triple DES, a hybrid approach to anomaly detection in unbalanced classification. The results show that the DBN-TDES model can typically detect anomalous user behaviors that other models in anomaly detection cannot. 2024 World Scientific Publishing Company. -
Deep Belief Neural Network for 5G Diabetes Monitoring in Big Data on Edge IoT
The diabetes is a critical disease from the small children to old age people. Due to improper diet and physical activities of the living population, obesity becomes prevalent in young generation. If we analyze self care of individual life, no man or women ready to spend their time for health care. It leads to problem like diabetes, blood pressure etc. Today is a busy world were robots and artificial machines ready to take care of human personal needs. Automatic systems help humans to manage their busy schedule. It motivates us to develop a diabetes motoring system for patients using IoT device in their body which monitors their blood sugar level, blood pressure, sport activities, diet plan, oxygen level, ECG data. The data are processed using feature selection algorithm called as particle swarm optimization and transmitted to nearest edge node for processing in 5G networks. Secondly, data are processed using DBN Layer. Thirdly, we share the diagnosed data output through the wireless communication such as LTE/5G to the patients connected through the edge nodes for further medical assistance. The patient wearable devices are connected to the social network. The Result of our proposed system is evaluated with some existing system. Time and Performance outperform than other techniques. 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. -
Deep CNN Based Interpolation Filter for High Efficiency Video Coding
Video coding is a current focus in research area as the world focus more on multimedia transfer. High Efficiency Video Coding (HECV) is prominent among existing one. The interpolation in HEVC with fixed half-pel interpolation filter uses fixed interpolation filter derived from traditional signal processing methods. Some research came up with CNN based interpolation filter too, here we are proposing a deep learning-based interpolation filter to perform interpolation in inter prediction in HEVC. The network extracts the low-resolution image and extract the patch and feature in that to predict a high-resolution image. The network is trained to predict the HR image for the given patch, it can be repeated to generate the full frame in the HEVC. The system uses cleave approach to reduce the computational complexity. The trained network is validated and tested for different inputs. The results show an improvement of 2.38% in BD-bitrate saving for low delay configuration. 2024 IEEE. -
Deep Convolution Neural Network for RBC Images
The suggested study's objectives are to develop an unique criterion-based method for classifying RBC pictures and to increase classification accuracy by utilizing Deep Convolutional Neural Networks instead of Conventional CNN Algorithm. Materials and Procedures A dataset-master image dataset of 790 pictures is used to apply Deep Convolutional Neural Network. Convolutional Neural Network and Deep Convolutional Neural Network comparison using deep learning has been suggested and developed to improve classification accuracy of RBC pictures. Using Gpower, the sample size was calculated to be 27 for each group. Results: When compared to Convolutional Neural Network, Deep Convolutional Neural Network had the highest accuracy in classifying blood cell pictures (95.2%) and the lowest mean error (85.8 percent). Between the classifiers, there is a statistically significant difference of p=0.005. The study demonstrates that Deep Convolutional Neural Networks perform more accurately than Conventional Neural Networks while classifying photos of blood cells[1]. 2022 IEEE. -
Deep Convolutional Neural Network Driven Interpolation Filter for High Efficiency Video Coding
Research in video coding has gained significant importance in recent years, driven by the increasing demand for multimedia transmission. High Efficiency Video Coding (HEVC) has emerged as a prominent standard in this field. Interpolation is a crucial aspect of HEVC, particularly when using fixed half-pel interpolation filters derived from traditional signal processing techniques. In recent times, there has been an exploration of interpolation filters that are based on Convolutional Neural Networks (CNNs). Conventional signal processing techniques are used in traditional HEVC methods to employ fixed half-pel interpolation filters. Recent advancements have delved into the application of Convolutional Neural Networks (CNNs) to enhance interpolation performance. Our proposed method utilises a sophisticated CNN architecture specifically crafted to extract valuable features from low-resolution image patches and accurately predict high-resolution images. The network consists of multiple layers of CNN blocks, which utilise 1 and 3 convolutional kernels to enable efficient and thorough feature extraction through parallel processing. This architecture improves computational efficiency and greatly enhances prediction accuracy The suggested interpolation filter shows a 2.38% enhancement in bitrate savings, as evaluated by the BD-rate metric, specifically in the low delay P configuration. This highlights the potential of deep learning techniques in improving video coding efficiency. 2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). -
Deep Convolutional Neural Networks Network with Transfer Learning for Image-Based Malware Analysis
The complexity of classifying malware is high since it may take many forms and is constantly changing. With the help of transfer learning and easy access to massive data, neural networks may be able to easily manage this problem. This exploratory work aspires to swiftly and precisely classify malware shown as grayscale images into their various families. The VGG-16 model, which had already been trained, was used together with a learning algorithm, and the resulting accuracy was 88.40%. Additionally, the Inception-V3 algorithm for classifying malicious images into family members did significantly improve their unique approach when compared with the ResNet-50. The proposed model developed using a convolution neural network outperformed the others and correctly identified malware classification 94.7% of the time. Obtaining an F1-score of 0.93, our model outperformed the industry-standard VGG-16, ResNet-50, and Inception-V3. When VGG-16 was tuned incorrectly, however, it lost many of its parameters and performed poorly. Overall, the malware classification problem is eased by the approach of converting it to images and then classifying the generated images. 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Deep Dive Into Diabetic Retinopathy Identification: A Deep Learning Approach with Blood Vessel Segmentation and Lesion Detection
In the landscape of diabetes-related ocular complications, diabetic retinopathy stands as a formidable challenge, reigning as the leading cause of vision impairment worldwide. Despite extensive research, the quest for effective treatments remains an ongoing pursuit. This study explores the burgeoning domain of AI-driven approaches in ocular research, particularly focusing on diabetic retinopathy detection. It delves into various diagnostic methodologies, encompassing the detection of microaneurysms, identification of hemorrhages, and segmentation of blood vessels, primarily utilizing retinal fundus photographs. Our findings juxtapose conventional machine learning techniques against deep neural networks, showcasing the remarkable efficacy of Convolutional neural network (CNN) and Random Forest (RF) in segmenting blood vessels and the robustness of deep learning in lesion identification. As we navigate the quest for clearer vision, artificial intelligence takes center stage, promising a transformative leap forward in the realm of vision care. 2024 River Publishers. -
Deep fake detection using cascaded deep sparse auto-encoder for effective feature selection
In the recent research era, artificial intelligence techniques have been used for computer vision, big data analysis, and detection systems. The development of these advanced technologies has also increased security and privacy issues. One kind of this issue is Deepfakes which is the combined word of deep learning and fake. DeepFake refers to the formation of a fake image or video using artificial intelligence approaches which are created for political abuse, fake data transfer, and pornography. This paper has developed a Deepfake detection method by examining the computer vision features of the digital content. The computer vision features based on the frame change are extracted using a proposed deep learning model called the Cascaded Deep Sparse Auto Encoder (CDSAE) trained by temporal CNN. The detection process is performed using a Deep Neural Network (DNN) to classify the deep fake image/video from the real image/video. The proposed model is implemented using Face2Face, FaceSwap, and DFDC datasets which have secured an improved detection rate when compared to the traditional deep fake detection approaches. 2022. Balasubramanian et al. -
Deep Insights into 3D Face Reconstruction from Blurred 2D Inputs: A Comprehensive Framework
This framework outlines a multi-stage methodology for 3D face reconstruction driven by advancements in deep learning. The process involves image preprocessing with deblurring techniques and subsequent feature extraction using CNNs alongside traditional methods. Deep learning adapts to diverse image challenges, ensuring accuracy in 3D reconstructions. In medical imaging, the proficiency of 3D CNNs and GANs shines in extracting structures from MRI and CT scans. Post-processing steps encompass mesh smoothing and texture mapping for enhanced visual quality. Evaluation metrics (MAE, RMSE, IoU) guarantee the precision of depth estimations. Applications of deep learning span across CNNs, 3DMM, GANs, and networks for landmark detection and dense correspondence. Challenges include optimizing eye reconstruction, expanding applications, and addressing concerns related to data quality, privacy, and hardware requirements. 2024 IEEE. -
Deep Learning Advancements in E-commerce Supply Chain Management in Forecasting and Optimization Strategies
In this study, the influence of deep learning technologies on the optimization of supply chain management in the context of the e-commerce industry is examined. Using a dataset of historical data of sales, inventories, market fluctuations, and customer and supplier details, I investigate the efficiency of different deep learning models to predict demand and facilitate the optimal balance of inventories. Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNN), Convolutional Neural Networks (CNN), and a model proposed by the authors are defined and applied, considering their accuracy, precision, recall, and F-1 score. The results show that the proposed model outperforms traditional products, achieving 97.5% of accuracy. In the context of the comparative analysis, the specific features of CNN, LSTM, and RNN are revealed, helping to understand the benefits and drawbacks of each recommendation. As a result, the proposed model proves that deep learning technologies have the power to change the approach to predictive analytics and supply chain management, allowing practitioners to focus on strengths and overcome the weaknesses of their structures. The impact of data preprocessing and hyperparameters is also considered along with the necessity to choose the most appropriate model evaluation technique. In the future, it is possible to implement other complex deep learning models, integrate additional data, and address the problem of data scaling and heterogeneity. In the era of modern technologies, e-commerce organizations should take these findings into consideration to discover the potential of deep learning, improve supply chain performance, reduce costs, and attract clients. This research contributes to the topic of using deep learning technologies in supply chain management, promoting innovation, and changes that may affect the industry drastically. 2024 IEEE. -
Deep Learning Algorithms Comparison forMultiple Biological Sequences Alignment
In this paper, deep learning algorithms are compared for aligning multiple biological molecular sequences such as DNA, RNA, and protein. Efficient algorithms are necessary for sequence alignment to identify significant insights, but there is a trade-off between time and accuracy. This study compares deep learning algorithms for multiple sequence alignment with better accuracy, using a new similarity measure to choose the best resemblance sequences in a set. Using a benchmark dataset, the algorithms compared include CNN, VAE, MLPNN, DBNs, Deep Boltzmann Machine, and GAN. 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. -
Deep learning algorithms for intrusion detection systems in internet of things using CIC-IDS 2017 dataset
Due to technological advancements in recent years, the availability and usage of smart electronic gadgets have drastically increased. Adoption of these smart devices for a variety of applications in our day-to-day life has become a new normal. As these devices collect and store data, which is of prime importance, securing is a mandatory requirement by being vigilant against intruders. Many traditional techniques are prevailing for the same, but they may not be a good solution for the devices with resource constraints. The impact of artificial intelligence is not negligible in this concern. This study is an attempt to understand and analyze the performance of deep learning algorithms in intrusion detection. A comparative analysis of the performance of deep neural network, convolutional neural network, and long short-term memory using the CIC-IDS 2017 dataset. 2023 Institute of Advanced Engineering and Science. All rights reserved. -
Deep Learning Approaches for Environmental Monitoring in Smart Cities
It introduces a novel integrated environmental monitoring system capable of doing on-the-go measurements. In metropolitan settings, air pollution is one of the most serious environmental threats to human health. The widespread use of automobiles, emissions from manufacturing processes, and the use of fossil fuels for propulsion and power generation have all contributed to this issue. Air quality predictions in smart cities may now be made using deep learning methods, thanks to the widespread adoption of these tools and their continued rapid growth. Particulate Matter (PM) with a width of less than 2.5 m (PM2.5) is one of the most perilous kinds of air pollution. To anticipate the hourly gauge of PM2.5 focus in Delhi, India, we utilized verifiable information of poisons, meteorological information, and PM2.5 fixation in the adjoining stations to make a spatial-worldly element for our CNN-LSTM-based deep learning arrangement. According to our experiments, our 'hybrid CNN-LSTM multivariate' method outperforms all of the above conventional models and allows for more precise predictions. 2024 IEEE. -
Deep learning approaches to understanding psychological impacts on vulnerable populations
This chapter investigates the psychological effects on vulnerable groups, with a particular emphasis on the relationship between deep learning techniques and the impact of climate. Vulnerable groups confront particular problems, which might lead to negative psychological results. Investigating this complexity is critical to designing effective intervention techniques. Using sophisticated deep learning techniques, this study seeks to find subtle patterns and correlations in a variety of datasets, including psychological markers, socioeconomic characteristics, and climatic variables. The work employs a comprehensive technique that includes deep learning models, feature extraction, and interpretability analysis to untangle complicated relationships. Preliminary findings imply that deep learning approaches might uncover previously unknown links between climate change and psychological effects on vulnerable groups. This insight adds to a more comprehensive understanding of the difficulties. This understanding contributes to a more holistic grasp of the challenges faced by these groups. By including climate-related factors into the deep learning framework, this study hopes to close the gap between environmental impacts and psychological 2024, IGI Global. All rights reserved. -
Deep Learning Based Age Estimation Model
To improve accuracy and resilience in demographic categorization, this research presents a novel use of Convolutional Neural Networks (CNNs) for age prediction. Deep learning is utilized to achieve this goal. Precise estimation of age has become essential in a variety of areas, including human-computer interaction, marketing, and healthcare. The ability of CNNs to handle the intricacies of facial features for accurate demographic forecasts is examined in this study. The research covers every step of the age prediction process, including dataset collection, prepossessing, model architecture, and assessment measures. The CNN is trained to automatically extract hierarchical characteristics from facial photos, which enables the model to recognize complex patterns related to age. The architecture's flexibility to different lighting conditions, facial expressions, and postures. In this research, we deal with deep learning-based perceived age estimation in still-face pictures. Our Convolution Neural Network models (CNNs) have been trained prior on Image Net for picture classification, as they use the VGG architecture. In addition, we analyze the effects of tailoring over Web photos having known age, considering a lack of apparent age-annotated annotated images. In addition, this work adds to the increasing library of studies on the use of deep learning methods for demographic data evaluation by showing the effectiveness of CNNs to predict age. The results show how, in practical situations, CNNs could significantly enhance the precision and dependability of age prediction systems. 2024 IEEE.