Browse Items (11810 total)
Sort by:
-
Electrocatalytic oxidation and determination of morin at a poly(2,5-dimercapto-1,3,4-thiadiazole) modified carbon fiber paper electrode
Voltammetric determination of morin on carbon fiber paper (CFP) electrode modified by electropolymerization of 2,5-dimercapto- 1,3,4-thiadiazole (DMTD) in phosphate buffer solution (PB, pH 9.0) have been studied. This modified electrode showed strong electrocatalytic activity toward the oxidation of morin, a flavonoid at physiological pH (PB, pH 7.0). Morin gave a sensitive anodic peak at 0.245 V (vs. SCE). The parameters influencing the anodic peak of morin such as effect of pH, effect of scan rate and concentration have been optimized. The electrochemical process was found to be irreversible and adsorption-controlled. Under the optimum conditions, the anodic peak current was linear to concentration of morin in the range of 2.5 10-10-2.75 109 M and detection limit was found to be 8.3 10-11 M. The practical application of the modified electrode was successfully demonstrated for the determination of morin in mulberry leaves. 2016 The Electrochemical Society. All rights reserved. -
Electrocatalytic oxidation of morin on electrodeposited Ir-PEDOT nanograins
Nanoclusters of Ir were electrochemically deposited on carbon fiber paper (CFP) substrate modified with poly(3,4-ethylenedioxythiophene) (PEDOT), a conducting polymer between the potential range 0.0 V and 0.6 V at 0.05 V/s scan rate. The electrocatalytic activity of IrPEDOT/CFP electrode towards oxidation of morin, a flavonoid was significantly greater than that of PEDOT/CFP and bare CFP electrodes. Factors affecting the anodic peak of morin namely, effect of pH, scan rate and number of cycles were optimized. The electrochemical route involved adsorption controlled and irreversible processes. Under optimal conditions, the linear dynamic range for the determination of morin was found to be 0.12 nM2.80 nM. The significantly low detection limit (42.18 pM) demonstrates the ultrasensitivity of the proposed method. The reliability of the method was evaluated for the quantification of morin present in mulberry leaves, guava leaves and grape wine. 2018 Elsevier Ltd -
Electrochemical behavior of cast and forged aluminum based in-situ metal matrix composites
The present work focuses on the electrochemical behaviour of Al6061 alloy and Al6061-TiB 2 in-situ metal matrix composites. Al6061-TiB 2 in-situ Composites were synthesized by a stir casting route at a temperature of 860C using potassium hexafluorotitanate (K 2 TiF 6 ) and potassium tetrafluoroborate (KBF 4 ) halide salts. Percentage of TiB 2 was kept at 0 wt% and 10wt%. The cast Al6061 alloy and Al6061-TiB 2 composites (0wt% &10wt %) were subjected to open die hot forging process at a temperature of 500C. Both cast and forged Al6061 alloy and its composites were subjected to micro-structural and electrochemical characterization. Corrosion behaviour of alloy and composites in both cast and forged conditions were evaluated using electrochemical impedance spectroscopy and the results were backed up by a potentiodynamic polarization test. Results indicate that addition of TiB 2 particles increases the corrosion rate and reduces the polarization resistance of aluminium alloy in both cast and forged condition owing to galvanic coupling between the reinforcements and base metal. Further, when compared with cast alloy and its composites, forged alloy and its composites exhibited poor corrosion resistance under identical test conditions. 2019 Author(s). -
Electrochemical characteristics of Co3O4 nanoparticles synthesized via the hydrothermal approach for supercapacitor applications
Cobalt oxide (Co3O4), a transition metal oxide known for its favourable capacitive properties and surface characteristics, is a promising candidate for electrode materials in supercapacitive energy storage applications. This study presents a comprehensive analysis of cobalt oxide nanoparticles synthesized through the hydrothermal method at varying synthesis temperatures, focusing on their structural, optical, electrochemical, and surface properties. X-ray diffraction analysis confirmed the cubic spinel structure of Co3O4, while Raman spectroscopy verified the phase composition of the nanoparticles. X-ray photoelectron spectroscopy offered insights into the near-surface chemistry of the synthesized material. The study determined two direct bandgaps of Co3O4 through absorption spectra and Tauc plots. To assess surface morphology and particle size distribution, field-emitting scanning electron microscopy and transmission electron microscopy were employed. Electrochemical investigations involved cyclic voltammetry and Nyquist plots, while galvanostatic chargedischarge tests demonstrated a specific capacitance (Csp) of 450 Fg?1 at 1 Ag?1. Impedance analysis indicated favourable capacitive behaviour with low charge transfer resistance. Furthermore, the study observed cyclic stability with a capacitive retention rate exceeding 88% at a current density of 20 Ag?1 over 10,000 cycles. The paper also discusses the capacitive and diffusion-controlled charge storage mechanisms at lower scan rates, emphasizing the potential of Co3O4 nanoparticles as the electrode material in the development of supercapacitor devices. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. -
Electrochemical deposition for metal organic Frameworks: Advanced Energy, Catalysis, sensing and separation applications
The advent of metalorganic frameworks has gathered ever-increasing attention owing to their versatility, unparalleled porosity, tuneability, and rich topography. The need for an efficient synthetic method and the trending appeal for thin film MOFs has brought in huge data on electrochemical deposition techniques. Thin films have immense applications in the field of electronics (including energy devices such as batteries and supercapacitors), sensors, catalysis, and as liquid/gas separation devices. Here, the electrodeposition method requires no pre-treatment step, allows miniaturization, a homogeneous film with desirable thickness, and is observed to be an eco-friendly method. The limited number of articles focusing on the supremacy of the technique has motivated the authors to collectively summarize the scattered data. To limit the discussion to reasonable bounds, the article focuses on a critical comparison of electrodeposition techniques with other synthetic methods, and different types of electrodeposition methods, and familiarize them with the various electrodeposited MOF-composite designs. Finally, we discuss extensively the existing as well as future applications. This will encourage future researchers to exploit this electrochemical technique for designing & developing newer MOF films and similar next-generation materials which are energy-efficient, rapid, and accurate while in use. This review article hopes to list out significant advances in the area to the advantage of both commercial and academic aspects. 2023 Elsevier B.V. -
Electrochemical determination of Vitamin B6 using coral-like MnO2-Pi on Ti3C2Tx MXene
MXenes are 2D nanomaterials that are considered the materials of the future generation due to their high electrical conductivity, good biocompatibility, and ease of functionalization. This research work reports the electrochemical sensing of Vitamin B6 using the Manganese dioxide-inorganic phosphate/MXene brush-coated Carbon fiber paper electrode (MnO2-Pi/MXene/CFP) electrode for the first time. The three-dimensional Ti3C2Tx MXene nanosheets consisting of highly ordered, vertically aligned nanosheets with electrochemically deposited MnO2-Pi are capable of yielding a synergistic effect in combination with high electrochemical performance and large surface area of MnO2-Pi. The reported electrochemical sensor exhibited a wide linear dynamic range (0.06650 M) and a low-level detection limit of 0.021 M. An increase in the anodic peak current confirms the rapid transfer of electrons transfer arising between the Ti3C2Tx MXene and MnO2-Pi. The results attained substantiate that the fabricated sensor has enhanced selectivity, reproducibility, and stability toward the electrochemical determination of Vitamin B6 in real samples. 2023 Elsevier Ltd -
Electrochemical efficacies of coal derived nanocarbons
Carbon based nanomaterials are acknowledged for their admirable optical, electrical, mechanical characteristics and broad class of applications. Choice of precursor and simple synthesis techniques have decisive roles in viable production and commercialization of carbon produce. The intense demand to develop high purity carbon nanomaterials through inexpensive techniques has promoted usage of fossil derivatives as feasible source of carbon. Coal serves as a naturally available, abundant and cheap feedstock for carbon materials. From the crystalline clusters of aromatic hydrocarbons in a cross-linked network, carbon nanostructures can easily be extracted through green synthesis routes. It promotes a potent alternative for the cost effective and scaled up production of nanocarbon. The well-developed pores distribution, presence of numerous active sites and appropriate migration channels for ions enhance the electrochemical parameters necessary for the fabrication of supercapacitors, batteries and electrochemical sensors. The metallic impurities contained in coal contribute towards faradic redox reactions required for an efficient electrode modification. In this review, the potential uses of coal based carbon nanomaterials in energy storage and environmental sectors are discussed in detail. 2020, The Author(s). -
Electrochemical Hydrogenation of Organic Compounds: A Sustainable Approach
Conventional methods for hydrogenation of organic compounds generally use corrosive catalysts and reagents, along with extreme conditions like high temperatures and pressures. Quenching of corrosive materials does not deter its negative impact on the environment, nor is one safe when it comes to working with high temperature and pressure. Electrochemical hydrogenation (ECH) has proven to be safe and green since most of the efficient reactions are conducted at ambient pressure and temperature, minimizing, and sometimes even negating the use of toxic catalysts and corrosive reagents as compared to conventional methods. This review therefore provides different strategies used for ECH in the past, modification of different electrodes, half reactions taken up for efficient energy usage and catalysts used for different hydrogenation reactions. It presents the advances in electrochemical hydrogenation reactions of organic compounds, starting from simple aliphatic compounds to complex polyaromatics and heterocyclic aromatic compounds. 2023 Wiley-VCH GmbH. -
Electrochemical investigation of neodymium doped vanadium pentoxide anchored on reduced graphene oxide nanocomposites for hybrid symmetric capacitor devices
The modern world is highly dependent on portable electronic gadgets, so high-performance energy storage devices are a major demand for human beings. Here, we construct neodymium-doped vanadium pentoxide anchored with reduced graphene oxide nanocomposite (rGO/Nd:V2O5) as the electrode material for a high-performance symmetric capacitor device. The prepared electrodes showed pseudocapacitor behaviour and double layer capacitor behaviour, indicating the hybrid nature of the rGO/Nd:V2O5 electrode. Also, the V2O5, Nd:V2O5 and rGO/Nd:V2O5 electrodes show higher capacitance behaviour of 447, 677 and 1122 F/g at 1 A/g and 89 %, 94 % and 98 % cyclic efficiency at the 1000th cycle. However, the rGO/Nd:V2O5 symmetric capacitor device exhibits a higher capacitance value of 218 F/g at 1 A/g and a cyclic efficiency of 82 % at the 10000th cycle. Also, this electrode shows a low charge transfer resistance value of 12.67 ?. This result shows the prepared rGO/Nd:V2O5 electrode as the high-performance electrode material for the supercapacitor devices. 2023 Elsevier Ltd -
Electrochemical investigations of chitosan/ZrO2-Bi2O3 composite for advanced energy and environmental applications
Energy needs are on the rise, and the need for effective corrosion resistance measures are also vital to meet the requirements prevailing in society. A multifunctional Chitosan/ZrO2-Bi2O3 composite is synthesized, keeping electrochemical analysis of energy and environmental applications in mind. Various physicochemical methods confirm the impact of integrating ZrO2-Bi2O3 into chitosan, resulting in improved efficacy across applications. The electrocatalytic supercapacitance, hydrogen evolution reaction, and corrosion inhibition studies are carried out to evaluate the efficiency of the synthesized composite. The composite shows a specific capacitance of 636.5 F/g, ensuring the effective utility for supercapacitance applications. The lower overpotential of 135.2 mV is shown by the composite in the electrocatalytic hydrogen evolution reaction. The synthesized composite also shows 96.2 % efficacy in corrosion inhibition studies. The studies conducted demonstrate the increased effectiveness of chitosan when combined with bimetal oxide. The chitosan composite is therefore a competent catalyst for energy and environmental applications. 2024 Elsevier Ltd -
Electrochemical non-enzymatic strategy with green synthesized Fe2O3CuO nanocomposite for detection of amiprofos-methyl herbicide in industrial effluents and soils
Iron oxide-Copper oxide nanoparticles composite (Fe2O3CuO NPs) was synthesized through a green phytosynthetic approach using Ocimum sanctum Linn (commonly known as Tulsi) leaf extract. The evaluation of electrocatalytic properties were evaluated by carrying out electrochemical detection of amiprofos-methyl (APM), an organophosphorus herbicide. It is moderately toxic to mammals and aquatic biodiversity and is considered to be an acetylcholinesterase inhibitor. The presence of specific natural phytochemicals such as eugenol, naringenin, apigenin, quercetin, and high amount of ascorbic acid in the aqueous extract of Ocimum sanctum Linn plant parts, has been widely used for the synthesis of various metallic nanoparticles where these compounds serve as reducing, stabilizing, and capping agents. The synthesized Fe2O3CuO NPs were characterized using scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction analysis (XRD), UVVis spectroscopy, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The modified electrode was electrochemically characterized by cyclic voltammetry and differential pulse voltammetry (DPV) techniques for the detection of APM. The electrochemical signals have increased by three folds in the detection of APM with Fe2O3CuO nanocomposite compared to the bare glassy carbon electrode. The electrochemical sensor showed a linear range of 0.05 to 30 g/mL with a limit of detection of 0.0065 g/mL. The developed electrochemical sensor was successfully applied for the detection of APM in different water and soil samples with recoveries ranging from 96.00?99.00%. The electrode showed good stability and reproducibility over a period of 10 days with a 95% of peak current than the former. The newly synthesized nanoparticles, thus, proved to be an interesting material for electrochemical and biological studies. 2023 The Authors -
Electrochemical performance of ZnxCo3-xO4/N-doped rGO nanocomposites for energy storage application
In this study, nanocomposites consisting of zinc-doped cobalt oxides with a spinel structure and nitrogen-doped reduced graphene oxide (ZnxCo3-xO4 (x = 0 and 1))/N-doped rGO) were synthesized using a solvothermal method. The synthesized materials were investigated using XRD, TEM, EDS, BET, Raman, and XPS for their phase formation, morphology, elemental composition, surface area, and chemical states. XRD analysis revealed that the metal oxides (Co3O4 and ZnCo2O4) present in the composites exhibited a single-phase cubic spinel structure, with a nanocrystalline nature and crystallite size ranging from 8 nm to 20 nm. Raman and TEM analyses revealed the co-existence of metal oxide nanoparticles and N-doped rGO phases in the composites. Electrodes were fabricated using the synthesized nanocomposite materials and subjected to electrochemical testing, including CV, GCD and EIS. The specific capacitiance (Cs) of samples determined to be 181 F/g and 234 F/g for CO/NrGO (Co3O4/N-doped rGO) and ZCO/NrGO (ZnCo2O4/N-doped rGO) nanocomposites, respectively, at lower current density (0.5 A/g). At all current densities, the CS of ZCO/NrGO nanocomposite electrode is observed to be higher than the CO/NrGO nanocomposite, probably due to structural defects and uniform anchoring of ZnCo2O4 particles over the layers of NrGO. The ZCO/NrGO composite electrode exhibits ?86 % capacitance retention after 3000 cycles. 2024 Elsevier B.V. -
Electrochemical Sensing of Formaldehyde in Fish Samples Using a Polydopamine-Modified Stainless Steel Electrode
Electrodeposited polydopamine (pDA) on a stainless steel substrate was developed for electrochemical sensing of formaldehyde in fish samples. Experimental conditions such as influence of scan rate, pH, and concentration were optimized. The pDA modified electrode was sensitive enough to detect formaldehyde at a potential of 0.8 V in an acidic aqueous solution. The lLinear dynamic range for the detection of formaldehyde was in the range of 0.43 to 1.60 ?m under optimal conditions. The detection and quantitation limits were found to be 0.14 and 0.43 ?m respectively. The method was effectively employed for the detection of formaldehyde in fish samples. 2021 The Electrochemical Society ("ECS"). Published on behalf of ECS by IOP Publishing Limited. -
Electrochemical sensing of vitamin B12 deficiency marker methylmalonic acid using PdAu-PPy tailored carbon fiber paper electrode
Vitamin B12 is very important for human metabolism and its deficiency can cause anemia and the production of large red blood cells. An increased concentration of methylmalonic acid (MMA) is detected much before the transformation of blood cells, which thereby is an early indicator for mild or serious Vitamin B12 deficiency. A simple electrochemical sensor based on PalladiumGold (PdAu) was developed by electrodeposition of PdAu nanoparticles on Polypyrrole (PPy) modified carbon fiber paper (CFP) electrode. The modified electrodes were characterized by High resolution transmission electron microscopy (HRTEM), Field emission scanning electron microscopy (FESEM) with energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electroanalytical techniques. Differential Pulse Voltammetric (DPV) studies have established that under optimum conditions, the developed sensor exhibits a broad linear dynamic range (4.01 pM - 52.5 nM) with a very low detection limit (1.32 pM). The proposed method was effectively applied in the non-enzymatic determination of MMA at an ultralow level in human blood serum and urine samples. The method displayed high selectivity toward MMA in the presence of other interfering substances. 2020 Elsevier B.V. -
Electrochemical sensing of vitamin B6 using platinum nanoparticles decorated poly(2-aminothiazole)
Vitamin B6 (Vit B6), also known as pyridoxine, is pivotal in fundamental physiological and metabolic processes within the body. Insufficient levels of this essential nutrient may contribute to various health complications. We introduce an electrochemical sensor designed to determine Vit B6 levels precisely. This sensor is constructed through a two-step process: first, by modifying a bare carbon fiber paper electrode (CFP) with poly(2-aminothiazole) (PAT), and second, by electrodepositing platinum nanoparticles onto the modified electrode surface, giving the final working electrode- Pt/PAT/CFP. Electrochemical impedance spectroscopy (EIS) and Cyclic voltammetry (CV) were utilized to examine the electrochemical characteristics of the developed sensor. The characterization of the sensor was done through a range of analytical techniques, including X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and optical profilometric studies. Furthermore, we optimized the sensor's performance by assessing the impact of pH, scan rates, and analyte concentrations. The sensor showed a wide linear dynamic range of 5.0 nM80 M and a low detection limit of 0.054 M. We have successfully quantified Vit B6 levels in tablet formulations and dried palm date fruits. The outcomes of this study hold the promise of substantial progress in Vit B6 quantification, with far-reaching implications across pharmaceuticals, healthcare, and nutritional science. 2024 Elsevier B.V. -
Electrochemical sensor based on PVP coated cobalt ferrite/graphite/PANI nanocomposite for the detection of hydrazine
In this study, we developed a multi-layered electrode as an efficient nanocomposite electrochemical sensor for detecting carcinogenic hydrazine in water. Nano-cobalt ferrite (CoFe2O4) was prepared using poly (vinylpyrrolidone) (PVP), mixed with an optimum quantity of graphite and pasted on a stainless-steel current collector. The nanocomposite was further hybridised by electrodepositing with polyaniline (PANI). The obtained composite was characterized using XRD, FTIR, SEM, and electrochemical techniques. XRD analysis shows the successful formation of composite from individual precursors. According to SEM, wrinkled and layered morphology for graphite and aggregate clusters for cobalt with spike or tubular structure for polyaniline were observed. When subjected to amperometry current, the prepared electrode showed different peaks for different concentrations of hydrazine, such as 1 ?M to 100 ?M. Cyclic voltammetry studies showed an increase in oxidation and reduction peaks. These studies will lead to a new platform for their potential applications in detecting toxic materials in real samples such as water, plastic bottle, water etc., 2023 The Author(s). Published by IOP Publishing Ltd. -
Electrochemical sensors using conducting polymer/noble metal nanoparticle nanocomposites for the detection of various analytes: a review
Abstract: Conducting polymer/noble metal nanoparticle (CP/NMNP) composites have made a history of sorts since its inception in the field of electrochemical research, which resulted to be an impetus for scientists to indulge and explore the opportunities it can unleash. This review throws light on the synergic effects and the enhancement in the electrocatalytic activity on dispersing noble metal particles on conducting polymers. This review aids the readers to analyse the electrochemical sensing efficiency of CP/NMNP composites, and provides a platform for the researchers to engineer and develop CP/NMNP composite materials for electrochemical sensing. This work also draws the attention of the readers to the application of NMNP (Ag, Au, Pt, Pd, Ir, and Ru) dispersed on CPs [polyaniline (PANI), polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT)] and their composites with other materials like carbon nanotubes (CNTs), graphene, zeolites, and peptide nanotubes (PNTs) for sensing of various analytes. Graphic abstract: This review draws the attention of the readers to the application of NMNP (Ag, Au, Pt, Pd, Ir and Ru) dispersed on CPs (polyaniline (PANI), polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT)) and their composites with other materials like carbon nanotubes (CNTs), graphene, zeolites, and peptide nanotubes (PNTs) for sensing of various analytes.[Figure not available: see fulltext.]. 2021, Islamic Azad University. -
Electrochemical Synthesis of Carbocyclic and Heterocyclic Motifs
Programmability has left its mark on every facet of business, with technology playing newlinean integral role. Social networking industry trends underscore technology s ubiquity in newlinenearly every business transaction. Traditional networks grapple with numerous challenges, rendering them ill-equipped to process and handle the demands of the modern newlinelandscape effectively. The lack of programming in these networks leads to stagnation, newlineinhibiting their ability to evolve or enhance performance. The advent of Software Defined Networks (SDN) has introduced increased flexibility into conventional networks, newlineopening avenues for creating innovative services. newlineSDN technology addresses challenges in large-scale networks, offering solutions for newlinehigh throughput, virtualization, fault detection, and load balancing, providing effective network management. The rapid expansion of network services and applications newlinein SDN environments demands sophisticated load-balancing solutions that adapt to newlinedynamic traffic patterns and varying service requirements. This study presents a pioneering algorithm, the Dynamic Load Balancing Algorithm (DLBA), which utilizes the newlineProgramming Protocol-independent Packet Processors (P4) language. The algorithm is newlinespecifically crafted to tackle the issues associated with optimizing traffic distribution in newlinethe data plane of SDN. newlineP4 programming language, recognized as one of the most robust languages, addresses newlinethe limitations of traditional networking, enhancing programmability and agility by newlinedistributing the load across the network. The research implements a novel quotDynamic newlineLoad Balancing Algorithmquot using the P4 language to instill dynamism and achieve load newlinebalance in large-scale networks. The P4-based implementation showcases dynamicity, scalability, flexibility, and adaptability. This research commences with thoroughly newlineexamining existing load-balancing algorithms implemented using the P4 language, followed by a comparative analysis between these algorithms and DLBA. -
Electrochemical Synthesis of Heterocyclic Carbonyls Using Carbon Based Electrocatalysts
Electro-organic synthesis (EOS) is emerging as a powerful and sustainable technique newlinefor synthesizing organic compounds. EOS offers a compelling alternative to newlineconventional synthetic methods, driven by the need for cleaner and more efficient newlineprocesses and a growing focus on environmental impact. This approach minimizes newlineenvironmental impact by reducing dependence on hazardous chemicals and solvents. newlineAdditionally, EOS enables precise control over reaction parameters, leading to selective newlineproduct formation and potentially novel reaction pathways. newlineThis work presents the development of electrocatalysts for the electro-oxidation of newlineselected heterocyclic alcohols, namely piperonyl alcohol (PA), thiophene-2-ylmethanol newline(TM), furfuryl alcohol (FA) and indole-3-carbinol (IC) to their corresponding newlinealdehydes. A Toray carbon fiber paper (TCFP) substrate modified with 2D materials, newlineconducting polymers, metal oxides, and metal oxide nanoparticles are employed in newlinethefabrication of the electrodes. newlineThe efficiency of the developed electrode was studied employing different newlineelectrochemical and physicochemical studies. X-ray Diffraction Spectroscopy (XPS), newlineField Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray newlineSpectrometry (EDS), X-ray Photoelectron Spectroscopy (XPS), and Optical newlineProfilometry (OP) techniques were utilized for the physicochemical studies of the newlinefabricated electrodes. Cyclic voltammetry (CV), Electrochemical Impedance newlineSpectroscopy (EIS), Chronoamperometry (CA) and Bulk Electrolysis (BE) techniques newlinewere employed for the electrochemical studies, including optimization and synthesis of newlineheterocyclic aldehydes. The fabricated electrocatalysts demonstrated remarkable newlinestability, higher electrocatalytic activity, and good conductivity. The electro-oxidation newlinereactions were carried out in a three-electrode system via BE using 4-acetamido- newline2,2,6,6-tetramethylpiperidine 1-oxyl (4-ACT) mediator. The products obtained were newlinecharacterized by Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy.