Browse Items (11855 total)
Sort by:
-
Evaluating the Effectiveness of a Facial Recognition-Based Attendance Management System in a Real-World Setting
Face recognition technology has been extensively used in multiple verticals of security, surveillance, and human-computer interaction. Conventional techniques including manual sign-ins, identity cards, or biometric verification have been used by traditional attendance systems. Face recognition systems have, however, become a popular way to track attendance, thanks to developments in computer vision and machine learning. The construction of an attendance registration application is the main topic of this research study, which also offers a thorough overview of facial recognition attendance systems. This study seeks to provide light on the benefits, drawbacks, and potential applications of these fast-developing technologies. Face recognition technology may be integrated into attendance systems to increase productivity, accuracy, and user comfort. However, issues like privacy worries and technological constraints must be resolved. With predicted future improvements in machine learning algorithms and hardware capabilities, face recognition attendance systems look to have a bright future. This research article adds to a deeper understanding and successful application of facial recognition technology in attendance systems by examining these features. 2023 IEEE. -
Enhancement of Accuracy Level in Parking Space Identification by using Machine Learning Algorithms
Parking space identification is a crucial component in the development of intelligent transportation systems and smart cities. Accurate detection of parking spaces in urban areas can significantly improve traffic management, reduce congestion, and enhance overall parking efficiency. This proposed model is focuses on enhancing the accuracy of parking space identification through the utilization of Support Vector Machine (SVM) algorithms. The proposed methodology involves the following steps. First, a dataset comprising labelled parking space images is collected and pre-processed to ensure optimal quality and consistency. Next, feature extraction techniques are applied to capture certain relevant spatial and textural information from the images in the dataset, enabling the creation of informative feature vectors. These feature vectors are then utilized to train a SVM model, which is well-known for its capability to handle complex classification tasks. To measure the effectiveness of the SVM-based approach, a comprehensive set of experiments is carried out using real-world parking data. The performance metrics is to analysis accuracy level of the parking space identification. Comparative analysis has been done by comparing the proposed SVM approach with other popular machine learning algorithmsto demonstrate the superiority. The results indicate that the SVM-based model achieves a significantly higher accuracy level in parking space identification compared to other existing algorithms. 2023 IEEE. -
Area and Energy Efficient Method Using AI for Noise Cancellation in Ear Phones
Adaptive filters are suitable for most of the Digital Signal Processing (DSP) applications such as channel equalization, noise cancellation, echo cancellation, channel estimation and system identification. Nowadays due to the advancement in semiconductor technology, the need for Active Noise Cancellation (ANC) headphones in compact devices is increased. The major idea behind this proposed work is to design an area and energy efficient novel adaptive filter suitable for in-ear headphones by combining Normalized Least Mean Square (NLMS) and Block LMS (BLMS). The proposed filter is designed and simulated using Xilinx ISE 13.2. The simulation results shows that the proposed design mitigates the unwanted noises in various frequency bands. 2023 IEEE. -
An Efficient and Robust Explainable Artificial Intelligence for Securing Smart Healthcare System
The advent of IoT technologies has a tremendous impact on the healthcare sector enabling efficient monitoring of patients and utilizing the data for better analytics. Since every activity related to a patients health is monitored, the focus on smart healthcare applications has significantly transferred from service provision to a security perspective. As most healthcare applications are automated security plays a vital role. The technique of machine learning has been widely used in securing smart healthcare systems. The major challenge is that these applications require high-quality labeled images, which are difficult to acquire from real-time security applications. Further, it highly time-consuming and cost-expensive process. To address these constraints, in this paper, we define an efficient and robust explainable artificial intelligence technique that takes a small quantity of labeled data to train and de-ploy the security countermeasure for targeted healthcare applications. The proposed approach enhances the security measure through the detection of drifting samples with explainability. It is observed that the proposed approach improved accuracy, high fidelity, and explanation measures. Also, this approach is proven to be considerably resistant against numerous security threats. 2023 IEEE. -
Unraveling Campus Placement Success Integrating Exploratory Insights with Predictive Machine Learning Models
The dynamics of campus placements have garnered considerable attention in recent years, with educational institutions, students, and employers all keenly invested in understanding the factors that drive successful recruitment. This surge in interest stems from the potential implications for academic curricula, student preparation, and hiring strategies. In this study, we aimed to unravel the myriad factors that influence a student's placement success, drawing from a comprehensive dataset detailing a range of academic and demographic attributes. Our methodology combined thorough exploratory data analysis with advanced predictive modeling. The exploratory phase unveiled notable patterns, particularly highlighting the roles of gender, academic performance analysis, Degree and MBA specialization in placement outcomes. In the predictive modeling phase, the spotlight was on state-of-the-art machine learning models, with a particular emphasis on their capacity to forecast placement success. Notably, algorithms like Logistic Regression and Support Vector Machines not only confirmed the insights from our exploratory analysis but also showcased remarkable predictive prowess, with accuracy scores nearing perfection. These findings not only demonstrate the capabilities of machine learning in the academic and recruitment spheres but also emphasize the enduring importance of core academic achievements in influencing placement outcomes. As a prospective direction, future research might benefit from examining how placement trends evolve over time and integrating qualitative insights to provide a holistic view of the campus recruitment process. 2023 IEEE. -
A Comparative Analysis of LSB & DCT Based Steganographic Techniques: Confidentiality, Contemporary State, and Future Challenges
In order to maintain anonymity and security, the steganography is the technique of cloaking confidential data within what seems like harmless digital material. Several steganographic methods have been established devised over time, but those centered around the discrete cosine transformation (DCT) and the least significant bit (LSB) have drawn the most consideration. In this study, two common steganographic methods are compared and contrasted with an emphasis on the secrecy they can keep, the usage they are now receiving, and any potential difficulties in the future. As an alternative, the DCT-based method uses the frequency domain properties of cover media to obfuscate hidden information. Since it spreads the concealed information across several frequency coefficients, it provides greater security than LSB-based techniques. The resilience and imperceptibility of the concealed data are improved by a variety of DCT-based algorithms, such as the modified quantization and matrix encoding approaches, which we explore in detail. We also give a general summary of both approaches'current state in terms of their application, constraints, and areas in which they may be used. We evaluate the benefits and drawbacks of each approach, considering elements like payload size, computing difficulty, and detection resistance. 2023 IEEE. -
Prior Cardiovascular Disease Detection using Machine Learning Algorithms in Fog Computing
The term latent disease refers to an infection that does not show symptoms but remains forever. In this paper, proposed a novel methodology for addressing latent diseases in machine learning by integrating fog computing techniques. Here there is a link between HIV to heart disease, that is when a person progresses to the next stage of HIV, a plague infection develops, causing cholesterol deposits to form. Plaque development causes the inside of the arteries to constrict over time, which may stimulate the release of numerous heat shock proteins and immune complexes into the bloodstream, potentially leading to heart disease. Heart disease has long been considered as a significant life-threatening illness in humans. Heart disease is driven by a range of factors including unhealthy eating, lack of physical exercise, gaining overweight, tobacco, as well as other hazardous lifestyle choices. Five different classifiers are used to perform the precision; they are Support vector machine, K-nearest neighbor, decision tree, and random forest, after we have used the classifier, the recommended ideal will split disease into groups which is created based on their threat issues. This will be beneficial to doctors assisting doctors in analyzing the risk factors associated with their patients. 2023 IEEE. -
Enhancing Customer Experience and Sales Performance in a Retail Store Using Association Rule Mining and Market Basket Analysis
The retail business grows steadily year after year andemploys an abounding amounts of people globally, especially with the soaring popularity of online shopping. The competitive character of this fast-paced sector has been increasingly evident in recent years. Customers desire to blend the advantages of old purchasing habits with the ease of use of new technology. Retailers must thus guarantee that product quality is maintained when it comes to satisfying customer demands and requirements. This research paper demonstrates the potential value of advanced data analytics techniques in improving customer experience and sales performance in a retail store. Apriori, FP-Growth, and Eclat algorithms are applied in the real time transactional data to discover sociations and patterns in transactional data. Support, confidence and lift ratio parameters are used and apriori algorithm puts out several candidate item sets of increasing lengths and prunes those that fail to offer the assistance that is required threshold. We identified lift values are more when considering frozen meat, milk, and yogurt. if the customer decides to buy any of these items together, there is a chance that the customer will buy 3rd item from that group. Research arrived High confidence score is for Items like Semi Finished Bread and Milk so these products should be sold together, Followed by Packaged food and rolls. As retailers continue to face increasing competition and pressure to improve their operations, The aforementioned techniques may provide you a useful tool to comprehend consumer buying habits and tastes and for utilising that knowledge to come up with data-driven decisions that optimise product placement, enhance customer satisfaction, and attract sales. 2023 IEEE. -
A Dynamic Anomaly Detection Approach for Fault Detection on Fire Alarm System Based on Fuzzy-PSO-CNN Approach
Early detection is crucial due to the catastrophic threats to life and property that are involved with fires. Sensory systems used in fire alarms are prone to false alerts and breakdowns, endangering lives and property. Therefore, it is essential to check the functionality of smoke detectors often. Traditional plans for such systems have included periodic maintenance; however, because they don't account for the condition of the fire alarm sensors, they are sometimes carried out not when necessary but rather on a predefined conservative timeframe. They describe a data-driven online anomaly detection of smoke detectors, which analyzes the behavior of these devices over time and looks for aberrant patterns that may imply a failure, to aid in the development of a predictive maintenance approach. The suggested procedure begins with three steps: preprocessing, segmentation, and model training. A pre-processing unit can enhance data quality by compensating for sensor drifts, sample-to-sample volatility, and disturbances (noise). The proposed approach normalizes the data in preparation. The smoke source can be detected by using segmentation to differentiate it from the background. Following segmentation, Fuzzy-PSO-CNN is used to train the models. CNN and PSO, two of the most used alternatives, are both outperformed by the proposed method. 2023 IEEE. -
Utilizing Machine Learning for Sport Data Analytics in Cricket: Score Prediction and Player Categorization
Cricket is a popular sport with complex gameplay and numerous variables that contribute to team performance. In recent years, sports analytics has gained significant attention, aiming to extract valuable insights from large volumes of cricket data. Cricket has many fans in India. With a strong fan following, many try to use their cricket intuition to predict the outcome of a match. A set of rules and a points system govern the game. The venue and the performance of each player greatly affect the outcome of the match. The game is difficult to predict accurately as the various components are closely related. The CRR (Current Run Rate) approach is used to predict the final score of the first innings of a cricket match. Total points are calculated by multiplying the average number of runs scored in each over by the total number of overs. For ODI cricket, these methods are useless as the game can change very quickly regardless of the current run rate. The game may be decided by 1 or 2 overs. For more accurate score predictions, a system is needed that can more accurately predict the outcome of an inning. This research paper explores the application of machine learning techniques to predict scores and classify players based on their roles in the squad. The study utilizes a comprehensive dataset comprising various attributes of cricket matches, including player statistics, match conditions, and historical performance. Linear Regression, Logistic Regression, Naive Bayes, Support Vector Machines (SVM), Decision Tree, and Random Forest regression models are employed to predict scores. Additionally, player categorization is performed using a classification approach. The results demonstrate the effectiveness of machine learning techniques in enhancing performance analysis and decision-making in the game of cricket. 2023 IEEE. -
The Troubling Emergence of Hallucination in Large Language Models - An Extensive Definition, Quantification, and Prescriptive Remediations
The recent advancements in Large Language Models (LLMs) have garnered widespread acclaim for their remarkable emerging capabilities. However, the issue of hallucination has parallelly emerged as a by-product, posing significant concerns. While some recent endeavors have been made to identify and mitigate different types of hallucination, there has been a limited emphasis on the nuanced categorization of hallucination and associated mitigation methods. To address this gap, we offer a fine-grained discourse on profiling hallucination based on its degree, orientation, and category, along with offering strategies for alleviation. As such, we define two overarching orientations of hallucination: (i) factual mirage (FM) and (ii) silver lining (SL). To provide a more comprehensive understanding, both orientations are further sub-categorized into intrinsic and extrinsic, with three degrees of severity - (i) mild, (ii) moderate, and (iii) alarming. We also meticulously categorize hallucination into six types: (i) acronym ambiguity, (ii) numeric nuisance, (iii) generated golem, (iv) virtual voice, (v) geographic erratum, and (vi) time wrap. Furthermore, we curate HallucInation eLiciTation (), a publicly available dataset comprising of 75,000 samples generated using 15 contemporary LLMs along with human annotations for the aforementioned categories. Finally, to establish a method for quantifying and to offer a comparative spectrum that allows us to evaluate and rank LLMs based on their vulnerability to producing hallucinations, we propose Hallucination Vulnerability Index (HVI). Amidst the extensive deliberations on policy-making for regulating AI development, it is of utmost importance to assess and measure which LLM is more vulnerable towards hallucination. We firmly believe that HVI holds significant value as a tool for the wider NLP community, with the potential to serve as a rubric in AI-related policy-making. In conclusion, we propose two solution strategies for mitigating hallucinations. 2023 Association for Computational Linguistics. -
Lane Detection using Kalman Filtering
Autonomous vehicles are the future of transportation. Modern high-tech vehicles use a sequence of cameras and sensors and in order to assess their atmosphere and aid to the driver by generating various alerts. While driving, it is always a challenging task for drivers to notice lane lines on the road, especially at night time, it becomes more difficult. This research proposes a novel way to recognize lanes in a variety of environments, including day and night. First various pre-processing techniques are used to improve and filter out the noise present in the video frames. Then, a sequence of procedure with respect to lane detection is performed. This stable lane detection is achieved by Kalman filter, by removing offset errors and predict future lane lines. 2023 Elsevier B.V.. All rights reserved. -
An Enhanced Data-Driven Weather Forecasting using Deep Learning Model
Predicting present climate and the evolution of the ecosystem is more crucial than ever because of the huge climatic shift that has occurred in nature. Weather forecasts normally are made through compiling numerical data on from the atmospheric state at the moment and also applying scientific knowledge in the atmospheric processes to forecast on how the weather atmosphere would evolve. The most popular study subject nowadays is rainfall forecasting because of complexity in handling the data processing in addition to applications in weather monitoring. Four different state temperature data were collected and applied deep learning methods to predict the temperature level in the forthcoming months. The results brought out with the accuracy from 92.5% to 97.2% for different state temperature data. 2023 IEEE. -
A Study on the Factors Affecting Infants' Health-Related Issues and Child Mortality using Machine Learning
Child mortality and infant health-related issues remain significant challenges worldwide. Understanding the factors that influence these outcomes is crucial for implementing effective interventions and improving child health outcomes. In this study, we employ machine learning techniques to identify and analyze the key factors affecting infants' health-related issues and child mortality. Further, we identify several significant factors that influence infants' health-related issues and child mortality. These factors include maternal health indicators, access to healthcare services, socioeconomic status, environmental factors, and demographic characteristics. The machine learning models provide insights into the relative importance of these factors, enabling policymakers and healthcare professionals to prioritize interventions and allocate resources effectively. Additionally, we investigate the potential interaction effects among these factors and their impact on child health outcomes. This analysis helps in understanding the complex relationships and causal pathways involved in infants' health-related issues and child mortality. The findings of this study contribute to the existing knowledge by leveraging machine learning techniques to identify and analyze the factors affecting infants' health-related issues and child mortality. The insights gained from this research can inform evidence-based policies and interventions aimed at reducing child mortality rates and improving infant health outcomes globally. By addressing the underlying factors identified through this study, we can work towards achieving better health outcomes for infants and reducing the burden of child mortality worldwide. 2023 IEEE. -
An Integrated and Optimized Fog Computing enabled Framework to minimize Time Complexity in Smart Grids
A distributed computing paradigm known as 'cloud computing'works as a connection between IoT devices and cloud data centres. The environment system model in this work is on basis of clouds and fog and includes smart grids, which we explore. Prior to understanding the use of fog computing in smart grids we discuss about various features of cloud computing and talk about how to manage the connection between fog and cloud computing. Along with the usual performance of low latency, low cost, and high intelligence, the distinctive characteristics and service scenarios are also explored. Based on the outcome of the simulation, it appears that our suggested PSO-SA algorithm outperforms other optimization algorithms. It recorded a least mean response time of 3.86 seconds only. While the model build up delay was 4.6 seconds, the model execution delay was also found to be only 4.9 seconds with PSO-SA method. The improved efficiency of the technique can be credited to the best aspects of particle swarm optimisation (PSO) and a modified inertia weight obtained by simulated annealing. 2023 IEEE. -
AUTONOMOUS IOT MOVEMENT IN HOSTILE AREAS USING ROBOTICS AND DEEP FEDERATED ALGORITHMS
Innovative solutions are required when Internet of Things (IoT) devices are deployed in hostile or difficult locations to ensure dependable and effective operation. In order to enable autonomous IoT mobility in such challenging circumstances, this study suggests a novel approach integrating robotics and deep federated algorithms. Robotics and IoT can work together to create a system that can adapt to dangerous environments, extreme weather conditions, and unexpected terrain. Deep federated algorithms further improve system performance by facilitating dispersed device collaboration for learning while protecting data privacy. The suggested framework covers the issues of communication stability, energy optimization, and real-time decision-making. We illustrate the practicality of this strategy in strengthening the dependability and efficiency of IoT deployments in hostile situations through simulations and tests. 2023 IEEE. -
Mapping the Landscape of Business Intelligence Research: A Bibliometric Approach
The integration of Business Intelligence (BI) is an essential element in contemporary enterprises, facilitating the conversion of voluminous data into valuable insights to support informed decision-making. Consequently, a considerable body of literature has been devoted to investigating the utilization of Business Intelligence (BI) in enhancing company efficiency and competitiveness. The present investigation employs bibliometric methods as a means to examine the research pertaining to Business Intelligence (BI). This includes an examination of the main writers and universities, publication patterns, and the intellectual framework of the domain. This investigation centers on the timeframe spanning from 2000 to 2022 and scrutinizes a corpus of 3729 Scopus articles pertaining to business intelligence. The findings suggest that the domain of Business Intelligence (BI) has experienced a substantial expansion recently. The study's results reveal significant contributors, establishments, nations, and references in the discipline, along with developing research patterns and prospects for further investigation. In general, this research emphasizes the significance of bibliometric evaluation as a means of comprehending the present status of BI research and discovering approaches to enhance the utilization of BI in contemporary organizational decision-making procedures. This study has the potential to provide valuable insights into the present state of research within the field, pinpoint significant trends and themes, and highlight potential avenues for future research. 2023 IEEE. -
Optimizing Kidney Ultrasound images through Pre-Processing Filters
Medical image processing and analysis have greatly advanced in the past decade, significantly contributing to the diagnosis of various diseases.However, It is crucial to address the need for effective data management in the medical field due to the significant rise in data generation and storage. It necessitates the exploration of compression methods as a means of achieving efficient data handling. Consideration should be given to image processing approaches to minimize redundancy. Ultrasound imaging has gained importance in recent years, but the presence of artifacts in ultrasound images has complicated diagnoses. An evaluation has been performed to identify appropriate Pre-processing techniques for kidney images before extracting kidney features. Observing the sensitivity and calculating the PSNR and MSE of the filtered image are used to assess the applied methods. The results indicate that the median filter is ideal for image quality enhancement, while the Sobel filter is highly effective in detecting kidney edges. 2023 IEEE. -
Image Analysis of MRI-based Brain Tumor Classification and Segmentation using BSA and RELM Networks
Brain tumor segmentation plays a crucial role in medical image analysis. Brain tumor patients considerably benefit from early discovery due to the increased likelihood of a successful outcome from therapy. Due to the sheer volume of MRI images generated in everyday clinical practice, manually isolating brain tumors for cancer diagnosis is a challenging task. Automatic segmentation of images of brain tumors is essential. This system aimed to synthesize previous methods for BSA-RELM-based brain tumor segmentation. The proposed methodology rests on four fundamental pillars: preprocessing, segmentation, feature extraction, and model training. Filtering, scaling, boosting contrast, and sharpening are all examples of preprocessing techniques. When doing segmentation, a clustering technique based on Fuzzy Clustering Means (FCM) is used to breakdown the overall dataset into numerous subsets. The proposed approach used the region of filling for feature extraction. After that, a BSA-RELM is used to train the models with the input features. The proposed technique outperforms BSA and RELM, two of the most common alternatives. There was a 98.61 percent success rate with the recommended method. 2023 IEEE. -
Wearable Leaf-Shaped Slotted Antenna Including Human Phantom for WBAN Applications
A 5.8 GHz leaf-shaped slotted antenna for Wireless Body Area Network (WBAN) applications is presented in this piece of content. The leaf structure includes tri leaves, having a complete ground plane at the lowest floor and a central circle slot. The suggested antenna is 60 mm by 60 mm by 1.16 mm in total dimensions. The ISM (Industrial Science and Medical) band frequency of 5.8 GHz is covered by this antenna's radiation range of 5.5 to 6.4 GHz. The radiated pattern, efficiency, S11 magnitude and gain were the different attributes of the leaf-patterned slot antenna. The creation of a stylish leaf-shaped antenna that can be incorporated into clothing designs is the main goal of this project. This antenna may be used in difficult situations because of its flexible base and conductive fabric. The method considers the needs of wearable antennas, such as the impact of human interactions on this antenna, as well as the opposite. 2023 IEEE.