Browse Items (11855 total)
Sort by:
-
Bio-derived fuels as diesel fuel and gasoline blend components /
Patent Number: 202241032675, Applicant: Kiran K.
To maximize the effectiveness of a refinery's diesel output, a model for the planning of refinery diesel streams is being created. To determine blending parameters with more accuracy than is possible with typical linear models, nonlinear blending models are utilized. Because there are so many equations and variables involved, it may yield an infeasible solution if the beginning points that have been provided are not enough. -
Bio-Inspired Energy Storage Electrode: Utilizing Co3O4 Hollow Spheres Derived from Sugarcane Bagasse Extract Synthesis Via Hydrothermal Route
Recent research has explored the utilization of sugarcane bagasse, a bio-industrial waste, to fabricate energy storage devices due to ecofriendly nature, low cost with industrial scale production. In this investigation, cobalt oxide hollow spheres (Co3O4 HSs) were synthesized from waste sugarcane bagasse extract with the carbon spheres (CSs) act as template. The main component of sucrose (C12H22O11) linked with cellulose fibers and other oxygenic functional groups were used to prepare CSs. Previously, a metal precursor (Co(NO3)2.6H2O) was mixed with sugarcane bagasse extract and subjected to a hydrothermal process, resulting in uniform-sized metal CSs. The uniform sized Co3O4 HSs were formed by calcined metal CSs. The calcination temperature plays a crucial role to eliminating implanted carbon material on inter surface area of the metal oxide, shaping the Co3O4 HSs. Structural, vibrational, morphology and elemental analyses were confirmed by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), respectively. Electrochemical tests show improved ion transport and low resistance, leading to high capacitance in asymmetric supercapacitor (ASC) devices. Subsequently, for asymmetric supercapacitor (ASC) devices, using with Co3O4 HSs has function of cathode and activated carbon (AC) as anode, the devices demonstrated impressive results of 33.1 Fg? 1 at 1 Ag? 1, 86.8% retention after 4,000 cycles, as well as the energy density and power density of 5.9W h kg? 1 at 1500W kg? 1. The Co3O4 HSs||AC device exhibits promising energy storage properties for future applications. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. -
Bio-waste derived multifunctional carbon dots for white light generation, forensic and antibacterial applications
The synthesis of multi-colour emitting solid-state fluorescent (SSF) carbon dots (CDs) is a challenging task due to the phenomenon of aggregation-induced self-quenching. However, this study presents an efficacious method to synthesize CDs from the sap stain of the cupressus lusitanica tree (cl-CDs) via a simple one-step microwave treatment. The resulting SSF CDs exhibited a particle size of approximately 3 nm, high stability, and remarkable efficacy in light conversion when coated on a UV light emitting diode (UV LED). The ensuing coating generated white light with CIE colour coordinates of (0.33, 0.34) and a high luminescence efficiency of approximately 671 L/W. The fluorescence capabilities exhibited by the cl-CDs in response to 254 nm and 365 nm UV light excitation make them an ideal choice for developing fluorescent inks to prevent counterfeiting. Moreover, the study investigated the notable fluorescence properties of cl-CDs as a luminescent fingerprint powder for the recognition of latent fingerprints on various surfaces. Additionally, the antibacterial potential of cl-CDs was evaluated against gram-positive and gram-negative bacteria, where the cl-CDs were utilized as an antibacterial dusting powder for fluorescent imaging of latent fingerprints on different substrates. Therefore, we believe that our present work offers a plethora of exciting possibilities for the multifunctional application of SSF green CDs with significant implications in white light generation, counterfeiting prevention, forensic applications, and healthcare. 2024 Elsevier B.V. -
Bioactive Compounds and Biological Activities of Arrowroot (Maranta arundinacea L.)
Arrowroot is one of the most widely studied herbal species belonging to the family Marantaceae, which originated from South America and is mainly found in tropical areas. Species belonging to the Maranta genus attaining worldwide attention due to the bioactive compounds are present in their rhizomes. The nutritional values of the Maranta arundinacea plant parts were explored in traditional medicine and culinary practices. Maranta arundinacea flour is a good source of fiber, starch, and carbohydrate and is extensively utilized as a major ingredient in food products. It is also used as an alternative to wheat as the flour is gluten-free. Dietary fibers present in the Maranta arundinacea are beneficially used in the treatment of digestive disorders such as celiac disease and immune disorders. Its known to stimulate the production of IgM by immune cells. Maranta arundinacea is commonly used for weight management as it is protein-rich and has fewer calories. The rhizome contains substantial amounts of sodium, magnesium, phosphorus, potassium, calcium, iron, and zinc. The processed starch from the Maranta arundinacea rhizomes is broadly used in nutritional food products as well as in pharmacological applications. The bioactive compounds present in the Maranta arundinacea rhizome make it the subject of novel pharmaceutical studies. The current chapter tries to emphasize the general morphology, nutritional benefits and processing, bioactive compounds, and biological activities of the Maranta arundinacea. Springer Nature Switzerland AG 2024. -
Bioactive Compounds and Biological Activities of Cassava (Manihot esculenta Crantz)
The most significant tropical tuberous crop, cassava (Manihot esculenta Crantz), is grown extensively around the world. It has a lot of minerals that have been linked to health benefits, is high in calories, and contains vitamin C, an antioxidant that supports the creation of collagen and boosts immunity. It is known to be the biggest generator of carbohydrates among stable crops, with its roots serving as the main source of starch and dietary energy. Currently, cassava flour is being used in gluten-free or gluten-reduced foods as a novel food application. The cassava plant extract is a rich source of major phytochemicals consisting of flavonoids, tannins, cardiac glycosides, anthraquinone, phlobatannins, saponins, and anthrocyanosides along with other antinutritive factors that contribute to its diverse pharmacological activities like antibacterial activity, in vitro ovicidal and larvicidal activity, antioxidant activity, anti-inflammatory activity, and analgesic and antipyretic activities. This chapter provides a comprehensive overview of the botanical features, production statistics, nutritional composition and benefits, phytochemicals present and their biological activities present in different parts of cassava plants, toxicity, food applications, and various strategies of breeding for crop improvement. Springer Nature Switzerland AG 2024. -
Bioactive Compounds and Biological Activities of Ensete Species
Ensete, commonly known as the false banana, is a plant of the subtropical and tropical regions of Asia and Africa. Ensete has received global attention in the past decade. The various parts of the plant, such as the fruits, fruit peel, corm, pseudostem, seed, leaves, flowers, sap, and roots, have been used in traditional medicine to treat various ailments. Starch and other minor/trace components found in Ensete plants have been used as tablet binders, disintegrants, pharmaceutical gelling agents, and sustained release agents in pharmaceuticals and nutraceuticals. Ensete has been used as a staple and co-staple food by Ethiopians and has many ethnomedicinal uses. The present chapter validates the historic use of various parts of Ensete in treating ailments by providing detailed information on the phytochemicals present in the plant and discussing various biological properties such as antioxidant, antimicrobial, antidiabetic, immunomodulatory, hypolipidemic, cytotoxic, antiurolithiatic, antiestrogenic, nephroprotective, and hepatoprotective properties. Springer Nature Switzerland AG 2024. -
Bioactive Compounds and Biological Activities of Lotus (Nelumbo nucifera Gaertn.)
Nelumbo nucifera Gaertn.Nelumbo nucifera Gaertn.Lotus (Nelumbonaceae A. Rich.) is a beautiful aquatic flowering plant with a subterranean rhizome. With a vast array of culinary applications and a storehouse of bioactive compounds in its plant parts, N. nucifera functions as both an underground food crop and a valuable medicinal plant. With a more than 7,000-year history of cultivation, this plant is one of the few aquatic plants used as a vegetable. N. nucifera possesses copious amounts of alkaloids and flavonoids as phytochemicals, along with various other derivatives. The rhizome is consumed as a vegetable since it has more carbohydrates, proteins, and vitamins, and it also possesses phytocompounds that exhibit immunomodulatory, antiviral, and antioxidant properties. Many countries in Asia use N. nucifera starch as a major culinary ingredient. To date, many phytochemicals isolated from this plant are used in many medicinal systems, including traditional, Ayurvedic, herbal, and oriental medicine. The extracts of various organs of this plant are used to treat numerous types of cancers, cardiac diseases, liver ailments, diabetes, and nervous disorders. The flower extracts are effective against fever, adipsia, cholera, and diarrhea. Eaten raw or puffed, lotus seeds are high in protein and contain minerals like calcium, phosphorus, iron, and potassium. The seeds are used as antibiotics to cure skin diseases like leprosy. Chinese medicine uses lotus seeds to treat renal and cardiac problems. Accordingly, N. nucifera is employed in food, medicine, culture, and religion. Furthermore, N. nucifera is an excellent environmental adapter and has the capacity to modify its resistance to environmental stress in order to adapt to a variety of abiotic stresses including flooding, extremely high temperatures, salt, low light, and heavy metals. It can therefore be grown in a variety of environments. Although this aquatic crop is restricted to an extensive geographical region and has a huge variety of cultivars, many parts of the world are still uninformed about this crop. Therefore, it is crucial to comprehend the medicinal and nutritional benefits of this tuberous crop in order to investigate it as a potential replacement for present-day food crops as well as a source of medicine. In order to effectively utilize this aquatic underground crop, this chapter aims to embody the nutritional advantages, traditional uses, phytochemistry, and bioactivity of the phytocompounds from the various parts of N. nucifera. It also emphasizes lotus breeding to date, applications as food, cultural aspects, and future production of potential N. nucifera underground crops of the highest quality. Springer Nature Switzerland AG 2024. -
Bioactive Compounds and Biological Activities of Lotus (Nelumbo nucifera Gaertn.)
Nelumbo nucifera Gaertn. (Nelumbonaceae A. Rich.) is a beautiful aquatic flowering plant with a subterranean rhizome. With a vast array of culinary applications and a storehouse of bioactive compounds in its plant parts, N. nucifera functions as both an underground food crop and a valuable medicinal plant. With a more than 7,000-year history of cultivation, this plant is one of the few aquatic plants used as a vegetable. N. nucifera possesses copious amounts of alkaloids and flavonoids as phytochemicals, along with various other derivatives. The rhizome is consumed as a vegetable since it has more carbohydrates, proteins, and vitamins, and it also possesses phytocompounds that exhibit immunomodulatory, antiviral, and antioxidant properties. Many countries in Asia use N. nucifera starch as a major culinary ingredient. To date, many phytochemicals isolated from this plant are used in many medicinal systems, including traditional, Ayurvedic, herbal, and oriental medicine. The extracts of various organs of this plant are used to treat numerous types of cancers, cardiac diseases, liver ailments, diabetes, and nervous disorders. The flower extracts are effective against fever, adipsia, cholera, and diarrhea. Eaten raw or puffed, lotus seeds are high in protein and contain minerals like calcium, phosphorus, iron, and potassium. The seeds are used as antibiotics to cure skin diseases like leprosy. Chinese medicine uses lotus seeds to treat renal and cardiac problems. Accordingly, N. nucifera is employed in food, medicine, culture, and religion. Furthermore, N. nucifera is an excellent environmental adapter and has the capacity to modify its resistance to environmental stress in order to adapt to a variety of abiotic stresses including flooding, extremely high temperatures, salt, low light, and heavy metals. It can therefore be grown in a variety of environments. Although this aquatic crop is restricted to an extensive geographical region and has a huge variety of cultivars, many parts of the world are still uninformed about this crop. Therefore, it is crucial to comprehend the medicinal and nutritional benefits of this tuberous crop in order to investigate it as a potential replacement for present-day food crops as well as a source of medicine. In order to effectively utilize this aquatic underground crop, this chapter aims to embody the nutritional advantages, traditional uses, phytochemistry, and bioactivity of the phytocompounds from the various parts of N. nucifera. It also emphasizes lotus breeding to date, applications as food, cultural aspects, and future production of potential N. nucifera underground crops of the highest quality. 2023, Springer Science and Business Media B.V.. All rights reserved. -
Bioactive Compounds and Biological Activities of Taro (Colocasia esculenta (L.). Schott)
Plants are said to be the finest source of food and phytochemicals. Along with aerial plant components, subterranean tuberous, stems, and roots were often consumed for their phytochemical and nutritional worth. Colocasia esculenta(L.). Schott is an essential plant that is utilized for its nutritional and phytochemical properties. It is commonly called taro, which is very rich in plant secondary metabolites and their respective pharmacological properties. Taro is consumed by people worldwide and serves as a staple food in Asian and African countries, leading to its abundant production. Extensive studies has explored the nutritional composition of taro, which has been identified as a promising source of dietary fiber. Moreover, taro exhibits a wealth of minerals and phytochemicals, including phenols, flavonoids, and various derivatives, which contribute to its diverse pharmacological activities, such as antioxidant, antimicrobial, antidiabetic, anti-inflammatory, and anticancer effects. This chapter provides a comprehensive overview of taro, encompassing its nutritional profile, phytochemistry, and numerous pharmacological properties. Additionally, it addresses the important aspects of biosafety in relation to taro consumption and highlights potential prospects for sustainable production of this remarkable tuber crop. Springer Nature Switzerland AG 2024. -
Bioactive Compounds and Biological Activities of Taro (Colocasia esculenta (L.). Schott)
Plants are said to be the finest source of food and phytochemicals. Along with aerial plant components, subterranean tuberous, stems, and roots were often consumed for their phytochemical and nutritional worth. Colocasia esculenta (L.). Schott is an essential plant that is utilized for its nutritional and phytochemical properties. It is commonly called taro, which is very rich in plant secondary metabolites and their respective pharmacological properties. Taro is consumed by people worldwide and serves as a staple food in Asian and African countries, leading to its abundant production. Extensive studies has explored the nutritional composition of taro, which has been identified as a promising source of dietary fiber. Moreover, taro exhibits a wealth of minerals and phytochemicals, including phenols, flavonoids, and various derivatives, which contribute to its diverse pharmacological activities, such as antioxidant, antimicrobial, antidiabetic, antiinflammatory, and anticancer effects. This chapter provides a comprehensive overview of taro, encompassing its nutritional profile, phytochemistry, and numerous pharmacological properties. Additionally, it addresses the important aspects of biosafety in relation to taro consumption and highlights potential prospects for sustainable production of this remarkable tuber crop. Springer Nature Switzerland AG 2023. -
Bioactive compounds from Cordyceps and their therapeutic potential
The Clavicipitaceae familys largest and most diverse genus is Cordyceps. They are most abundant and diverse in humid temperate and tropical forests and have a wide distribution in: Europe, North America, and East and Southeast Asian countries, particularly: Bhutan, China, Japan, Nepal, Korea, Thailand, Vietnam, Tibet, and the Himalayan region of India, and Sikkim. It is a well-known parasitic fungus that feeds on insects and other arthropods belonging to 10 different orders. Over 200 bioactive metabolites, that include: nucleotides and nucleosides, polysaccharides, proteins, polypeptides, amino acids, sterols, and fatty acids, among others have been extracted from Cordyceps spp. demonstrating the phytochemical richness of this genus. These components have been associated with a variety of pharmacological effects, including: anti-microbial, anti-apoptotic, anti-cancer, anti-inflammatory, antioxidant, and immunomodulatory activities. In this paper, the bioactivity of various classes of metabolites produced by Cordyceps spp., and their therapeutic properties have been reviewed in an attempt to update the existing literature. Furthermore, one of its nucleoside and a key bioactive compound, cordycepin has been critically elaborated with regard to its biosynthesis pathway and the recently proposed protector-protmechanism as well as various biological and pharmacological effects, such as: suppression of purine and nucleic acid biosynthesis, induction of apoptosis, and cell cycle regulation with their mechanism of action. This review provides current knowledge on the bioactive potential of Cordyceps spp. 2023 Informa UK Limited, trading as Taylor & Francis Group. -
Bioactive nanoparticles derived from marine brown seaweeds and their biological applications: a review
The biosynthesis of novel nanoparticles with varied morphologies, which has good implications for their biological capabilities, has attracted increasing attention in the field of nanotechnology. Bioactive compounds present in the extract of fungi, bacteria, plants and algae are responsible for nanoparticle synthesis. In comparison to other biological resources, brown seaweeds can also be useful to convert metal ions to metal nanoparticles because of the presence of richer bioactive chemicals. Carbohydrates, proteins, polysaccharides, vitamins, enzymes, pigments, and secondary metabolites in brown seaweeds act as natural reducing, capping, and stabilizing agents in the nanoparticles synthesis. There are around 2000 species of seaweed that dominate marine resources, but only a few have been reported for nanoparticle synthesis. The presence of bioactive chemicals in the biosynthesized metal nanoparticles confers biological activity. The biosynthesized metal and non-metal nanoparticles from brown seaweeds possess different biological activities because of their different physiochemical properties. Compared with terrestrial resources, marine resources are not much explored for nanoparticle synthesis. To confirm their morphology, characterization methods are used, such as absorption spectrophotometer, X-ray diffraction, Fourier transforms infrared spectroscopy, scanning electron microscope, and transmission electron microscopy. This review attempts to include the vital role of brown seaweed in the synthesis of metal and non-metal nanoparticles, as well as the method of synthesis and biological applications such as anticancer, antibacterial, antioxidant, anti-diabetic, and other functions. Graphical abstract: (Figure presented.). The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024. -
Bioactive Phytochemicals from DatePalm (Phoenix dactylifera L.) Seed Oil Processing By-products
Humans cultivate plants for their daily commodities, like food and medicines. Innumerable varieties of crops and plant-derived products like cotton, fruits, vegetables, grains, pulses, and oils have been developed. A variety of seed oils have been used by humankind in dietary supplements and regarded as feedstock for the production of biofuels. Date palm (Phoenix dactylifera L.) is one such plant used in the production of oil. Date palm is a commercial fruit that is primarily cultivated in South Mediterranean countries. Date palm fruit and its processed products such as jams, jellies, and syrup are globally consumed. However, tons of seed waste is generated after processing and raises environmental problems due to poor seed waste disposal practices. Scientific reports suggest that date palm seed oil is a rich in minerals, fatty acids, and various phytochemicals like phenols, flavonoids, sterols, and tocopherols. These bioactive molecules possess significant pharmacological activities like antidiabetic, anti-inflammatory, antioxidant, antimicrobial, and hepatoprotectivity. This chapter summarizes the phytochemicals present in the date palm seed oil, discusses the fatty acid composition in various date palm cultivars worldwide, and highlights the pharmacological activities exhibited by the date seed oil. The chapter also discusses the effective utilization of date seed oil in the food and pharmaceutical industry and the seed oil by-products in biofuel production. Pharmaceuticals and biofuel production presents an excellent opportunity for the valorization of date palm cultivation and economic returns. 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG. -
Biocidal activities of nickel oxide nanoparticles modified by copper and manganese, synthesized by green process
In recent years, the development of dual dopant-based nanoparticles (NPs) has gained significant attention as they possess exceptional physico-chemical and biomedical properties, making them potential candidates for antimicrobial and anticancer uses. In this research, we successfully synthesized nickel oxide (NiO) and copper, manganese-doped NiO (CuMn:NiO) NPs using a green synthesis method. The synthesis process involved Trigonella foenum-graecum (T.f.graecum) leaves extract as a nucleating agent. The synthesized nanoparticles were confirmed by various physico-chemical studies. Based on X-ray diffraction analysis, the median size was determined as 36 nm for NiO and 32 nm for CuMn:NiO NPs. The antibacterial study revealed that CuMn:NiO NPs exhibited a higher zone of inhibition in contrast to both Gram-positive (Streptococcus pneumoniae, Bacillus subtilis, Bacillus megaterium) and Gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, Vibrio cholerae) compared with NiO NPs and commercial amoxicillin. The antifungal studies conducted against Candida albicans demonstrated that CuMn:NiO NPs exhibited enhanced efficacy in comparison to NiO NPs. In vitro testing against human breast cancer cells (MCF-7) demonstrated the anticancer potential of NiO and CuMn:NiO NPs, supported by IC50 concentrations of 11 and 9?g/mL, respectively. The photoluminescence (PL) spectra of NiO and CuMn:NiO NPs exhibited a green emission at 508 and 518 nm, respectively, which indicated the generation of active free radicals by the NPs. These findings suggest that CuMn:NiO NPs hold promise in the healthcare industry. 2024 John Wiley & Sons Ltd. -
Biocontrol of Aedes aegypti using Talaromyces islandicus Synthesized Silver Nanoparticles
Aedes aegypti is the vector that spreads the dengue virus, causing dengue fever and dengue hemorrhagic fever. With more than half the worlds population at the risk of acquiring this infection, controlling the Aedes mosquitoes is the only path to limit the spread of the fatal disease. The emergence of insect resistance in mosquitoes raised the need for developing novel insecticides. Present research is focused on using fungus (Talaromyces islandicus) as the biosystem in the synthesis of nanoparticles. Myco-synthesized silver nanoparticles were characterized using UV-visible spectrometry that exhibited a peak at 429 nm. The XRD spectral peaks were in the range of 27.83, 32.27, 38.23and 65.01. The FTIR spectrum showed peaks corresponding to O-H, N-O, S=O, etc. representing the silver nanoparticles. SEM and EDAX represent the formation of silver ions that are spherical in shape with a size range of 23 to 26 nm. The antioxidant activity of silver nanoparticles and the extract of Talaromyces islandicus were assessed by DPPH assay, reducing power assay and hydrogen peroxide assay. The nanoparticles studied for its bio efficacy against the larval stages of Aedes aegypti indicated the LC50 value of 352.03, 389.86, 397.72 and 443.50 when tested against first, second, third and fourth instar larvae. respectively. The LC50 value of 540.41 was determined against the pupae of Aedes. The predatory efficiency of P. reticulata indicated the positive feeding behaviour of the fish when exposed to the silver nanoparticles. The cell toxicity assay was conducted against C6/36 insect cell lines and the cell viability inhibition was calculated. A toxic free, environmentally acceptable approach for controlling the mosquito vector by utilizing fungal nanoparticles was assessed and their efficacy in vector control was analyzed in this study. 2022 Chemical Publishing Co.. All rights reserved. -
Bioconvection in buoyancy induced flow of Williamson nanofluid over a Riga Plate-DTM-Padapproach
The buoyancy induced flow of Williamson nanofluid containing Gyrotactic microorganisms along a vertical Riga plate has been investigated. This research aims at analysing the heat and mass transfer characteristics of Williamson Nanofluid in the presence of Gyrotactic microorganisms that helps in avoiding the agglomeration of nanoparticles during the nanofluid flow. The Gyrotactic microorganisms act as active mixers that help in stabilising the nanoparticles in the suspension. Also, the movement of these cells gives rise to a macro phenomenon called bioconvection that helps in preventing the agglomeration of nanoparticles. Furthermore, the magnetic field generated due to the flow of nanofluid is considered in addition to Thermophoresis and Brownian Motion to make the results more appropriate. Buongiornos Model has been incorporated to frame the system of equations that govern the fluid flow. Later, lie group analysis is performed to transform these equations into ordinary differential equations that are further solved using the differential transform method with Padapproximant. It is observed that the Lorentz force generated by the Riga plate in parallel to the flow helps in increasing the velocity of the nanofluid. It is also noticed that bioconvection reduces the flow speed and enhances the heat transfer rate. 2020 by American Scientific Publishers All rights reserved. -
Bioconvection of a radiating hybrid nanofluid past a thin needle in the presence of heterogeneous-homogeneous chemical reaction
The photocatalytic nature of TiO2 finds applications in medicinal field to kill cancer cells, bacteria, and viruses under mild ultraviolet illumination and the antibacterial characteristic of Ag makes the composition Ag - TiO2 applicable for various purposes. It can also be used in other engineering appliances and industries such as humidity sensor, coolants, and in footwear industry. Hence, this study deals with the analysis of the effects of magnetic field, thermal radiation, and quartic autocatalysis of heterogeneous-homogeneous reaction in an electrically conducting Ag - TiO2 - H2O hybrid nanofluid. Furthermore, the gyrotactic microorganisms are used as active mixers to prevent agglomeration and sedimentation of TiO2 that occurs due to its hydrophobic nature. The mathematical model takes the form of partial differential equations with viscosity and thermal conductivity being the functions of volume fraction. These equations are converted to ordinary differential equations by using similarity transformation and are solved by RKF-45 method with the aid of shooting method. It is observed that the increase in the size of the needle enhances the overall performance of the hybrid nanofluid. Furthermore, the temperature of the hybrid nanofluid increases with the increase in volume fraction. It is observed that the friction produced by the Lorentz force increases the temperature of the nanofluid. It is further observed that the heterogeneous reaction parameter has more significant effect on the concentration of bulk fluid than the homogeneous reaction parameter. Copyright 2021 by ASME. -
Bioconvective DarcyFrochherimer flow of the ReeEyring nanofluid through a stretching sheet with velocity and thermal slips
In the current study, the bioconvective flow of ReeEyring through an expanding sheet with the porous medium is analyzed by considering the inclined magnetic field and gyrotactic microorganisms. Buongiorno's model, which defines the two major mechanisms; thermophoresis and Brownian motion is used to frame the mathematical model. The presence of motile cells helps in stabilizing the nanoparticle and avoids the sedimentation due to nanoparticles. The mathematical model with these assumptions is framed using partial differential equations (PDE) that are later remodeled to ordinary nonlinear differential equations by incorporating desirable similarity transformation. The equations so obtained shall be solved using DTM and the outcomes are described through graphs and tables. The graphs indicated that the velocity of the nanofluid flow reduces with the increase in the porosity and similarly, the higher values of Peclet number (Pe) are found to diminish the motile density. Whereas the increase in the thermophoresis parameter enhances the thermal and mass profiles of the nanofluid. 2022 Informa UK Limited, trading as Taylor & Francis Group. -
Bioconvective flow of bi-viscous Bingham nanofluid subjected to Thompson and Troian slip conditions
This paper describes the bioconvection phenomenon and its significant influence on the thermal features of the flow of bi-viscous Bingham (BVB) nanofluid past a vertically stretching flat surface. The analysis of the impact of convection parameters is considered along with various other forces. Meanwhile, the flow of BVB nanofluid is put through the slip conditions defined by Thompson and Troian for the velocity at the boundary. The flow of BVB nanofluid is modeled using the partial differential equations (PDEs) under the assumptions of thermophoresis and Brownian motion which occur due to the movement of nanoparticles. Along with these forces, the radiation is also considered so that the obtained results are close to the practical scenarios. Thus, using the proper Lie group similarity transformations, the intended mathematical model is converted into ordinary differential equations (ODEs). The resulting equation system is encoded using the RKF-45 technique, and the outcomes are explained using graphs and tables. The solutions found for the model showed that, for higher ranges of the non-Newtonian fluid parameter, the velocity decreases while the heat transferred by the nanofluid increases. The availability of motile density at the surface grows as the Plet number rises, whereas the Schmidt numbers decline in their respective profiles. 2023 World Scientific Publishing Company. -
Bioconversion of chicken feather waste into feather hydrolysate by multifaceted keratinolytic Bacillus tropicus LS27 and new insights into its antioxidant and plant growth-promoting properties
Abstract: Keratin, the main structural constituent of feathers, contains a lot of valuable amino acids which are potential bioactive compounds as well. Since conventional methods are not efficient enough to achieve complete removal of chicken feather waste, biological mode of feather degradation is one of the most appropriate ways to utilize feathers, thereby reducing wastes as well as generating value-added products from feathers. This study was focussed on valorizing chicken feather into feather hydrolysate (FH) containing bioactive compounds for plant growth promotion. Keratinolytic bacteria capable of degrading chicken feathers were isolated from the poultry waste dumping site of Russell Market, Shivajinagar, Bangalore, Karnataka, India. The isolated bacteria was identified as Bacillus tropicus LS 27. A minimal media with chicken feather as the sole source of carbon and nitrogen was prepared and inoculated with Bacillus tropicus LS 27 [5% (v/v)]. Degradation of keratin protein by bacteria caused the solubilization of amino acids which was confirmed by high-performance liquid chromatography (HPLC) analysis where an appreciable amount of amino acids like cysteine, valine, isoleucine, proline, lysine, methionine, and phenylalanine was detected. The Fourier transform infrared spectroscopy (FTIR) analysis of hydrolysed chicken feathers showed C=0 stretching, S-H bond stretching, and formation of carboxylic acid groups indicating effective degradation of chicken feathers. Scanning electron microscope (SEM) images revealed the degradation pattern of feathers showing complete degradation of barbs and barbules with a portion of rachis remaining. Feather hydrolysate was further explored for its antioxidant activity using DPPH scavenging assay, and the value was found to be 1.5 mg/mL. The bacterial cells when screened for heavy metal tolerance showed significant metal tolerance to lead (Pb) and chromium (Cr). Since Bacillus tropicus LS27 showed indole-3-acetic acid (IAA), siderophore, and ammonia production, the prepared feather hydrolysate along with the bacterial cells were used as soil amendment for plant growth studies over Spinacia oleracea L. The study revealed that plants supplemented with 20% (v/v) FH showed elevated plant growth, therefore proving to be optimum for the support of plant growth. Graphical abstract: [Figure not available: see fulltext.] 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.