Enzyme based bioelectrocatalysis over laccase immobilized poly-thiophene supported carbon fiber paper for the oxidation of D-ribofuranose to D-ribonolactone
- Title
- Enzyme based bioelectrocatalysis over laccase immobilized poly-thiophene supported carbon fiber paper for the oxidation of D-ribofuranose to D-ribonolactone
- Creator
- Thadathil D.A.; Varghese A.; Ahamed C.V.S.; Krishnakumar K.A.; Varma S.S.; Lankalapalli R.S.; Radhakrishnan K.V.
- Description
- A modified electrode based on laccase immobilized poly-thiophene-3-carboxylic acid supported on carbon fiber paper was developed for the electrocatalytic oxidation of D-ribofuranose to otherwise difficult-to-access D-ribonolactone, a precursor for C-nucleoside based drug like Remdesivir. The electrochemical oxidation of D-ribofuranose was achieved by the TEMPO-mediated electrochemical process. The experimental parameters were optimized and validated using Design of Experiment (DoE) statistical tool indicating the concentration of TEMPO and stirring as important parameters in bulk electrolysis. The mechanism for the electrochemical oxidation of D-ribofuronose followed single electron anodic oxidation of TEMPO mediated by laccase to the corresponding oxoammonium nitrosonium species which was vital for the mediated electrochemical oxidation. The mechanism for the electrochemical oxidation was established using cyclic voltammetry and computational studies. The plausible interactions of laccase enzyme with TEMPO mediator were studied using molecular docking experiments. This facile method was successfully applied for the oxidation of D-ribofuranose to D-ribonolactone. 2022
- Source
- Molecular Catalysis, Vol-524
- Date
- 2022-01-01
- Publisher
- Elsevier B.V.
- Subject
- D-ribonolactone; Electrocatalysis; Laccase; Oxidation; TEMPO
- Coverage
- Thadathil D.A., Department of Chemistry, CHRIST (Deemed to be University), Karnataka, Bangalore, 560029, India; Varghese A., Department of Chemistry, CHRIST (Deemed to be University), Karnataka, Bangalore, 560029, India; Ahamed C.V.S., Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India; Krishnakumar K.A., Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India; Varma S.S., Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India; Lankalapalli R.S., Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India; Radhakrishnan K.V., Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
- Rights
- Restricted Access
- Relation
- ISSN: 24688231; CODEN: MCOAD
- Format
- Online
- Language
- English
- Type
- Article
Collection
Citation
Thadathil D.A.; Varghese A.; Ahamed C.V.S.; Krishnakumar K.A.; Varma S.S.; Lankalapalli R.S.; Radhakrishnan K.V., “Enzyme based bioelectrocatalysis over laccase immobilized poly-thiophene supported carbon fiber paper for the oxidation of D-ribofuranose to D-ribonolactone,” CHRIST (Deemed To Be University) Institutional Repository, accessed February 24, 2025, https://archives.christuniversity.in/items/show/15160.