Browse Items (432 total)
Sort by:
-
Mucormycosis (black fungus) ensuing COVID-19 and comorbidity meets - Magnifying global pandemic grieve and catastrophe begins
Post COVID-19, mucormycosis occurred after the SARS-CoV-2 has rampaged the human population and is a scorching problem among the pandemic globally, particularly among Asian countries. Invasive mucormycosis has been extensively reported from mild to severe COVID-19 survivors. The robust predisposing factor seems to be uncontrolled diabetes mellitus, comorbidity and immunosuppression acquired through steroid therapy. The prime susceptive reason for the increase of mucormycosis cases is elevated iron levels in the serum of the COVID survivors. A panoramic understanding of the infection has been elucidated based on clinical manifestation, genetic and non- genetic mechanisms of steroid drug administration, biochemical pathways and immune modulated receptor associations. This review lime-lights and addresses the What, Why, How and When about the COVID-19 associated mucormycosis (CAM) in a comprehensive manner with a pure intention to bring about awareness to the common public as the cases are inevitably and exponentially increasing in India and global countries as well. The article also unearthed the pathogenesis of mucormycosis and its association with the COVID-19 sequela, the plausible routes of entry, diagnosis and counter remedies to keep the infection at bay. Cohorts of case reports were analysed to spotlight the link between the pandemic COVID-19 and the nightmare-mucormycosis. 2021 Elsevier B.V. -
Multi-criteria decision making (MCDM) in diverse domains of education: a comprehensive bibliometric analysis for research directions
Multiple Criteria Decision Making has been one of the powerful and structured approach in solving real world problems in the past. The aim is to determine the best alternative based on multiple criteria. It has shown a remarkable performance in the field of education. In order to gain insights into the existing body of research in this area, a bibliometric analysis was conducted. The study is conducted to provide a comprehensive analysis since 2000 in the field of application of MCDM in the various domains of education. The publication information was accessed from Scopus Database on 1 December 2023 and the bibliometric analysis has been done through Vosviewer, R package bibliometrics and Tableau. Initially 5185 documents were found which were reduced to 1706 after multi layered screening criteria. The analysis is performed to find the relevant documents, most valuable researchers, the major countries where the research in this area is exhaustively conducted. After extensive research it is observed that researchers belonging to China are highly involved in the domain taken for study. Also, research conducted in China is highly cited which shows its quality of work. Further, it is observed that mostly fuzzy analysis techniques are widely used for MCDM. The collaborative work done by Arunodaya Raj Mishra and Rani Pratibha research work is remarkable and highly recommended to conduct the research in the considered domain in the research paper. The conducted bibliometric analysis provides an overview of the scope and global trends of MCDM in shaping the education sector. This would help the researchers to explore the most relevant study, analysis and finding the research gaps as per their research needs. The Author(s) under exclusive licence to The Society for Reliability Engineering, Quality and Operations Management (SREQOM), India and The Division of Operation and Maintenance, Lulea University of Technology, Sweden 2024. -
Multicomponent Synthesis Strategies, Catalytic Activities, and Potential Therapeutic Applications of Pyranocoumarins: A Comprehensive Review
Fused coumarins, because of their remarkable biological and therapeutic properties, particularly pyranocoumarins, have caught the interest of synthetic organic chemists, leading to the development of more efficient and environmentally friendly protocols for synthesizing pyranocoumarin derivatives. These compounds are the most promising heterocycles discovered in both natural and synthetic sources, with anti-inflammatory, anti-HIV, antitubercular, antihyperglycemic, and antibacterial properties. This review employed the leading scientific databases Scopus, Web of Science, Google Scholar, and PubMed up to the end of 2022, as well as the combining terms pyranocoumarins, synthesis, isolation, structural elucidation, and biological activity. Among the catalysts employed, acidic magnetic nanocatalysts, transition metal catalysts, and carbon-based catalysts have all demonstrated improved reaction yields and facilitated reactions under milder conditions. Herein, the present review discusses the various multicomponent synthetic strategies for pyranocoumarins catalyzed by transition metal-based catalysts, transition metal-based nanocatalysts, transition metal-free catalysts, carbon-based nanocatalysts, and their potential pharmacological activities. 2023 The Authors. Chemistry & Biodiversity published by Wiley-VHCA AG, Zurich, Switzerland. -
Multifarious pigment producing fungi of Western Ghats and their potential
Concerns about the negative impacts of synthetic colorants on both con-sumers and the environment have sparked a surge of interest in natural col-orants. This has boosted the global demand for natural colorants in the food, cosmetics and textile industries. Pigments and colorants derived from plants and microorganisms are currently the principal sources used by mod-ern industry. When compared to the hazardous effects of synthetic dyes on human health, natural colors are quickly degradable and have no negative consequences. In fact, fungal pigments have multidimensional bioactivity spectra too. Western Ghats, a biodiversity hotspot has a lot of unique eco-logical niches known to harbor potential endophytic pigment-producing fungi having enumerable industrial and medical applications. Most of the fungi have coevolved with the plants in a geographical niche and hence the endophytic associations can be thought to bring about many mutually ben-eficial traits. The current review aims to highlight the potential of fungal pigments found in the Western ghats of India depicting various methods of isolation and screening, pigment extraction and uses. There is an urgent need for bioprospecting for the identification and characterization of ex-tremophilic endophytic fungi to meet industry demands and attain sustain-ability and balance in nature, especially from geographic hotspots like the Western Ghats. 2022 Horizon e-Publishing Group. All rights reserved. -
Multifractal analysis of volatility for detection of herding and bubble: Evidence from CNX Nifty HFT
This study delves into the herding and bubble detection in the volatility domain of a capital market underlying. Furthermore, it focuses on creating heuristics, so that common investors find it relatively easy to understand the state of the market volatility. Hence, it can be termed that this study is focused on the specific financial innovation regarding bubble and herding detection coupled with investor awareness. The traces of possible volatility bubble emerge when it is positioned against its own lags (both lag1 and lag2). The volatility trigger indicated clear traces of herding and an embedded parabola function. Continuous and repetitive parabola function hinted at a subtle presence of "fractals". Firstly, the detrended fluctuation analysis has been used with its multifractal variant. Secondly, the regularized form of Hurst calculation and analysis have been used. Both tests reveal the traces of nascent bubble formation owing to prominent herding in CNX Nifty HFT environment. They also indicate a clear link with Hausdorff topological patterns. These patterns would help to create heuristics, enabling investors to be aware of possible bubble and herd situations. Bikramaditya Ghosh, Emira Kozarevic, 2019. -
Multifunctional biosensor activities in food technology, microbes and toxins A systematic mini review
Biosensors have its significant applications in various fields, its use in food processing, food safety and food technology has helped to enhance the overall health of the society as it can successfully determine the presence and concentration of different microorganisms including Escheichia coli, Vibrio cholera, Clostridium spp. etc., and also determination of various toxins present in food like acrylamides, benzene, ethylbenzene, toluene, xylene, nitrosamines, Benzo[a]pyrene (BaP) which are carcinogenic. The preface of biosensors has assisted food industries for monitoring and verification of raw materials, food processing, and composition of the food and assessment of product freshness. Symbolic biosensors have been developed in recent years and yet there is much immediate need for the development of more reliable, cost-effective, sensitive and novel biosensors for rapid detection and identification of food borne pathogens and toxins. Extensive review recapitulates overall food-pathogen testing research market trends, as well as commercialization of biosensors for the food safety industry as legislation creates novel standards for microbial monitoring. Furthermore, the world's concern about the food safety and human's healthcare, the one and only biosensor's exclusive demand is nothing but an alternative in real time diagnosis of diseases causing pathogens. 2022 Elsevier Ltd -
Nano-technological interventions in crop productiona review
Agricultural industry is facing huge crisis due to fast changing climate, decreased soil fertility, macro and micronutrient insufficiency, misuse of chemical fertilizers and pesticides, and heavy metal presence in soil. With exponential increase in world's population, food consumption has increased significantly. Maintaining the production to consumption ratio is a significant challenge due to shortage caused by various issues faced by agricultural industry even withthe improved agricultural practices. Recent scientific evidence suggests that nanotechnology can positively impact the agriculture sector by reducing the harmful effects of farming operations on human health and nature, as well as improving food productivity and security. Farmers are combining improved agricultural practices like usage of fertilizers, pesticides etc. with nano-based materials to improve the efficiency and productivity of crops. Nano technology is also playing a significant role improving animal health products, food packaging materials, and nanosensors for detecting pathogens, toxins, and heavy metals in soil among others. The nanobased materials have improved the productivity twice with half the resources being utilized. Nanoparticles that are currently in use include titanium dioxide, zinc oxide, silicon oxide, magnesium oxide, gold, and silver used for increasing soil fertility and plant growth. Crop growth, yield, and productivity are improved by controlled release nanofertilizers. In this review we elaborate on the recent developments in the agricultural sector by the usage of nanomaterial based composites which has significantly improved the agricultural sector especially how nanoparticles play an important role in plant growth and soil fertility, in controlling plant diseases by the use of nanopesticides, nanoinsecticides, nanofertilizers, Nanoherbicides, nanobionics, nanobiosensors. The review also highlights the mechanism of migration of nanoparticles in plants and most importantly the effects of nanoparticles in causing plant and soil toxicity. 2023, Prof. H.S. Srivastava Foundation for Science and Society. -
Nanocarbon assisted green hydrogen production: Development and recent trends
The increasing consumption of energy and consequent fast depletion of fossil fuels and associated environmental challenges necessitate transformative innovations in the field of energy conversion. Owing to its exceptional energy density and zero emissions during combustion, Hydrogen is hailed as a promising source of clean and renewable energy that can replace fossil fuels in future energy conversion systems. Since Hydrogen is not readily available in the atmosphere, a variety of pathways have been followed for the evolution of Hydrogen from water and organic materials, which requires the involvement of catalysts to accelerate the reactions. Currently, noble metals and their alloys represent state-of-the-art materials for HER (Hydrogen Evolution Reaction), and the scarcity and high expense of such materials impose significant constraints on their widespread implementation in hydrogen production. In this context, nanocarbons and their composites for HER are worth exploring owing to their abundance, cost-effectiveness, eco-friendliness, exceptionally large surface-to-volume ratio, and excellent electrical and charge transfer properties. Here, three leading hydrogen production methods - biological, electrochemical, and photo-driven- are analyzed based on their characteristics, effectiveness, and limitations w.r.t. different nanocarbon materials. 2023 Hydrogen Energy Publications LLC -
Nanomaterials as novel elicitors of pharmacologically active plant specialized metabolites in cell and organ cultures: current status and future outlooks
Specialized plant metabolites, such as phenolics, terpenes, terpenoids, nitrogen-containing compounds, and sulfur-containing compounds, are commercially valuable owing to their wide array of applications in the medical, pharmacological, cosmetic, agriculture, and food industries. Procuring valuable specialized metabolites from wild or cultivated plants is desirable; however, the concentrations and quality of secondary compounds vary between samples. Therefore, plant cells and organ cultures have been selected as viable alternatives for producing specialized metabolites. Elicitation is a strategy used to enhance the accumulation of specialized compounds in cell and organ cultures. Different biotic substances, including signaling chemicals such as salicylic acid and methyl jasmonate, elements of plant cell walls (cellulose and pectin), polysaccharides from microbes (chitin and glucan), and abiotic substances such as inorganic salts, heavy metals, UV radiation, and high salinity, have been successfully tested and used as elicitors for the hyperaccumulation of bioactive substances in cell and organ cultures. Recently, metals, metal oxide nanoparticles, and carbon-based nanomaterials have been used as unique elicitors to boost the synthesis of bioactive compounds in cell and organ cultures. The applications and usage of nanoparticles as elicitors in plant cell and organ cultures are summarized in this review. The mechanism of elicitation, toxicity, benefits, and drawbacks of using nanoparticles in plant cell and organ cultures are discussed. Graphical abstract: (Figure presented.) The Author(s), under exclusive licence to Springer Nature B.V. 2023. -
Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges
Cancer is a life-threatening disease, resulting in nearly 10 million deaths worldwide. There are various causes of cancer, and the prognostic information varies in each patient because of unique molecular signatures in the human body. However, genetic heterogeneity occurs due to different cancer types and changes in the neoplasms, which complicates the diagnosis and treatment. Targeted drug delivery is considered a pivotal contributor to precision medicine for cancer treatments as this method helps deliver medication to patients by systematically increasing the drug concentration on the targeted body parts. In such cases, nanoparticle-mediated drug delivery and the integration of artificial intelligence (AI) can help bridge the gap and enhance localized drug delivery systems capable of biomarker sensing. Diagnostic assays using nanoparticles (NPs) enable biomarker identification by accumulating in the specific cancer sites and ensuring accurate drug delivery planning. Integrating NPs for cancer targeting and AI can help devise sophisticated systems that further classify cancer types and understand complex disease patterns. Advanced AI algorithms can also help in biomarker detection, predicting different NP interactions of the targeted drug, and evaluating drug efficacy. Considering the advantages of the convergence of NPs and AI for targeted drug delivery, there has been significantly limited research focusing on the specific research theme, with most of the research being proposed on AI and drug discovery. Thus, the study's primary objective is to highlight the recent advances in drug delivery using NPs, and their impact on personalized treatment plans for cancer patients. In addition, a focal point of the study is also to highlight how integrating AI, and NPs can help address some of the existing challenges in drug delivery by conducting a collective survey. 2023 Das and J. -
Navigating green synthesized metal-based nanoparticles as anti-inflammatory agent Comprehensive review
The biosynthesis of nanomaterials is a vast and expanding field of study due to their applications in a variety of fields, particularly the pharmaceutical and biomedical fields. Various synthetic routes, including physical and chemical methods, have been developed in order to generate metal nanoparticles (NPs) with definite shapes and sizes. In this review, focused on the recent advancements in the green synthetic methods for the generation of silver, zinc and copper NPs with simple and eco-friendly approaches and the potential of the biosynthesized metal and metal oxide NPs as alternative and therapeutic agent for the treatment of inflammatory diseases. Inflammation is a body's own defense mechanism that can become chronic inflammation affecting healthy cells. Owning to the size-based advantages of NPs which can mitigate in theses medical conditions and serve as anti-inflammatory drugs. The factors influencing their physicochemical properties, toxicity, biocompatibility and mode of action to formulate an effective nanomedicine in the treatment of inflammation. 2024 Elsevier B.V. -
New frontiers in polyphenol analysis: A review of electrochemical sensors and commercial devices enhancing food and beverage analysis
Food safety concerns arise from outbreaks of foodborne illnesses and contamination within the food supply. Polyphenols, naturally occurring compounds in plants, are characterized by multiple phenolic (hydroxyl) groups and are prevalent in fruits, vegetables, tea, coffee, and wine. While beneficial in moderation, excessive polyphenol intake is harmful, and they classified as secondary pollutants in environment. Therefore, accurate quantification of polyphenols is essential for ensuring product safety, quality, and nutritional value, which is the focus of this review. Electrochemical sensors offer a sensitive, selective, and cost-effective method for detecting polyphenols in food and beverages. The review examines advanced voltammetric techniques for identifying polyphenols in various food samples, including beverages and dietary products. Additionally, total antioxidant capacity (TAC) sensors are highlighted as valuable tools for assessing the antioxidant potential of foods, aiding in nutritional analysis and quality control. This review, for the first time, catalogs around ten commercially available devices and twenty assay kits for detecting antioxidant polyphenols, highlighting their significance in advancing food safety, bolstering consumer confidence, and supporting ongoing nutritional research. Additionally, made efforts to bridge a crucial gap between conventional research and industry needs by expanding the existing body of knowledge and providing fresh insights into polyphenol analysis. 2025 Elsevier Inc. -
New horizons in surface topography modulation of MXenes for electrochemical sensing toward potential biomarkers of chronic disorders
MXenes are recently advanced two-dimensional layered nanomaterials that have various characteristic properties for developing electrochemical sensors for bioanalytical applications, such as hydrophilicity, good biocompatibility, electrical conductivity, heightened ion transportation, and ease of functionalization. MXenes are revealed to be having applications in various other fields including energy storage, and catalysis. The combination of a layered structure, biocompatibility, and high surface functionalities makes MXene a highly versatile material for electrochemical sensing applications. The effect of various synthesis and functionalization strategies on tuning the properties of MXenes toward improving sensing abilities has been comprehensively discussed. This review article also discusses the relevance of early diagnosis of various biomarkers of chronic diseases via MXene modified electrochemical sensor for gaining a better understanding of their early diagnosis, disease progression, and risk assessment. Modification with MXenes improves the electrocatalytic functionality of the electrodes thereby improving their applicability in health and biomedical fields. 2022 Taylor & Francis Group, LLC. -
New Horizons in the Synthesis, Properties, and Applications of MXene Quantum Dots
The progress of MXenes, a 2D layered structural material since its discovery in 2011 recently arouses a great deal of attention due to their plethora of applications in a diverse range of fields. Their excellent properties in terms of surface chemistry, optical activity, electrical conductivity, presence of abundant active catalytic sites, tunable band gap structure, ease of surface functionalization, and good biocompatibility make them an ideal candidate. The authors aim to guide the readers through various aspects such as their unique properties, synthesis techniques, and the recent advancements associated with MXene quantum dots (QDs). Herein, this review serves as a one-stop point for prospective researchers to gain a better understanding of the application of MXene QDs in various fields including electrochemical detection, biomedical applications, and energy conversion and storage applications. 2023 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH. -
Nitrogen-doped carbonized polymer dots (CPDs) and their optical and antibacterial characteristics: A short review
Substantial advancements in the field of Carbon Dots (CDs) and their derivatives in recent years can be accredited to their tunable properties. Recently Carbonized Polymer Dots (CPDs) are the emerging form in the CDs family, which possesses a typical polymer/Carbon hybrid structure and properties due to its incomplete carbonization. Alteration of various parameters during the synthesis process suggested that the properties of CPDs depend on temperature and pH. It was found that doping of CPDs using nitrogen enhanced its optical properties, thereby being used as biomarkers. CPDs generally hold a strong green and blue emission, while intense red luminescence was observed doping with nitrogen. Photoluminescence Quantum Yield (PLQY) was also found to increase with the increase in doping and temperature. Doped CPDs find several applications, including bio-imaging, LEDs, etc. In this review, we focus on analyzing the increase in efficiency of CPDs with the process of doping considering optical and antibacterial applications. 2021 by the authors. -
Novel electrochemical biosensor key significance of smart intelligence (IoMT & IoHT) of COVID-19 virus control management
Recent outbreak of COVID-19 pandemic has led to the different possibilities of the development of treatment against corona virus. To know the phylogenicity of SARS-CoV, various studies have been conducted with the outcome of the results showing virulence is caused due to spike protein. Various detection techniques with clinical approach like imaging technology, RT-PCR etc. are comparatively expensively than the use of biosensors. Nano-biosensors have an excellent way of approach to track the conditions of individual and public providing information about the existing condition and treatment status. Electrochemical nano-biosensors are referred as an excellent way of detection. The use of graphene based electrochemical nano-biosensors are most advantageous due to its elevated properties. Fluorescence investigation is one of the precise ways of sensing, optical biosignals that helps in obtaining real time results with high accuracy and negligible changes. The potential application of nano-biosensors are very wide, improvised and advanced Nanotechnology helps in the use of nano-biosensors detect all possible biosignals. Significant ubiquitous IoT-enabled novel sensor technologies that can be potentially utilized to respond various facets the growing COVID-19 pandemic from diagnostic and therapeutics to the prevention stage. 2022 Elsevier Ltd -
Nutrition paves the way to environmental toxicants and influences fetal development during pregnancy
Nutrition plays a major role in the healthy pregnancy and development of the fetus. In addition, nutrition can expose humans to a wide range of potentially hazardous environmental constituents, such as organic pollutants and heavy metals from marine or agricultural food products while processing, producing, and packaging. Humans constantly face these constituents through air, water, soil, food, and domestic products. During pregnancy, the rate of cellular division and differentiation is higher; exposure to any of these environmental toxicants can lead to developmental defects as they cross the placental barrier and, in some cases, can harm the successive generation too, as some contaminants can act on the reproductive cells of the fetus (Diethylstilbestrol). Pregnant women are considered a vulnerable population to food contaminant exposure and require a proper dietary chart and conscious food choices. Food is a source of both essential nutrients and environmental toxicants. Here, we have researched the possible toxicants of the food industry and their influence on the fetus's in-utero development, along with the importance of dietary interventions and the need to balance a healthy diet to overcome the harms. The cumulative exposure to environmental toxicants can influence the mother's prenatal environment and affect the fetus's development. 2023 -
Occupational stress: A pre and post COVID-19 perspective on teaching personnel in higher education institutions of India
The COVID-19 as a catalytic phenomenon exposes many loop holes in the socio-economic sustainability of business and society. It exposed people to different occupational stressors and anxiety. This study was focused on occupational stress of teaching personnel in higher education institutions (HEIs), in both pre and post COVID-19 scenario. Descriptive analysis shows work autonomy, career progression, community membership, work conditions, and freedom to use own judgements are major stressors to to HEI teachers in the post COVID-19 scenario. Inferential evaluation has confirmed that Job security, social service, and creativity are major concerns to HEI teachers. They experience limitations to try their own ways of doing job. 2021 Ecological Society of India. All rights reserved. -
Occurrence, identification, and decontamination of potential mycotoxins in fruits and fruit by-products
The incidence of aflatoxins, ochratoxin A, and patulin in fruits and processed fruit products has been ever more challenging and gained additional focus on ecofriendly mitigation strategies. The onset of these toxins is due to several factors involving insect attacks, agricultural practices, and climate change. Acute and chronic health hazards are clinically proven after consuming contaminated foodstuffs, even at lower concentrations of mycotoxins. Synergistic, masked, and substantial occurrence in fruit matrices increase their complexity in detection and detoxification; apparently, this article reviewed the available information on the occurrence of mycotoxins in several fruits and their products, focused on the conventional and advanced methods of identification, quantification, and decontamination techniques. Strengthening and implementing stringent international and national guidelines are required for impactful, tangible measures in the future. Nevertheless, controlling the mycotoxins in fruits will certainly be challenging for scientists. Therefore, more impactful technologies are still needed to eliminate the toxins at the threshold level of the food chain and ensure sustainable global food safety. 2023 The Authors. Food Frontiers published by John Wiley & Sons Australia, Ltd and Nanchang University, Northwest University, Jiangsu University, Zhejiang University, Fujian Agriculture and Forestry University. -
Ochratoxin A as an alarming health threat for livestock and human: A review on molecular interactions, mechanism of toxicity, detection, detoxification, and dietary prophylaxis
Ochratoxin A (OTA) is a toxic metabolite produced by Aspergillus and Penicillium fungi commonly found in raw plant sources and other feeds. This review comprises an extensive evaluation of the origin and proprieties of OTA, toxicokinetics, biotransformation, and toxicodynamics of ochratoxins. In in vitro and in vivo studies, the compatibility of OTA with oxidative stress is observed through the production of free radicals, resulting in genotoxicity and carcinogenicity. The OTA leads to nephrotoxicity as the chief target organ is the kidney. Other OTA excretion and absorption rates are observed, and the routes of elimination include faeces, urine, and breast milk. The alternations in the Phe moiety of OTA are the precursor for the amino acid alternation, bringing about Phe-hydroxylase and Phe-tRNA synthase, resulting in the complete dysfunction of cellular metabolism. Biodetoxification using specific microorganisms decreased the DNA damage, lipid peroxidation, and cytotoxicity. This review addressed the ability of antioxidants and the dietary components as prophylactic measures to encounter toxicity and demonstrated their capability to counteract the chronic exposure through supplementation as feed additives. 2022 Elsevier Ltd